12 Rheology of Xanthan G u m Solutions
Downloaded by UCSF LIB CKM RSCS MGMT on August 26, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0045.ch012
P. J. WHITCOMB General Mills Chemicals, Inc., 2010 E. Hennepin Ave., Minneapolis, MN 55413 B. J. EK and C. W. MACOSKO Dept. of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455
Xanthan gum is a high molecular weight p o l y s a c charide produced by fermentation with the bacterium "Xanthomonas campestris". Adding ½% of t h i s biopolymer increases water's v i s c o s i t y by a factor of 100,000 at low shear r a t e s ; yet at high shear r a t e s , the factor i s reduced to 10. This remarkable shear t h i n n i n g ability ( p s e u d o p l a s t i c i t y ) can be used to great advantage. In fact the main use of xanthan gum is rheology c o n t r o l . In the past most data on xanthan gum rheology has been taken over a l i m i t e d shear rate range and i s relative, not absolute. Figure 1 presents t y p i c a l shear stress v s . shear rate data. Only two decades of shear rate are covered and the shear rate i s given as rpm, r e l a t i v e u n i t s . The use of arithmetic scales for t h i s p l o t make it difficult to resolve s o l u t i o n properties. Figure 2 presents a typical v i s c o s i t y v s . shear rate p l o t . The use of l o g scales aids i n i n t e r p r e t a t i o n of the flow curves. However shear rate covers only two decades and i s again reported as rpm. While r e l a t i v e data i s useful for comparisons under s p e c i f i e d c o n d i t i o n s , there are many advantages to having absolute data, where the units have p h y s i c a l s i g n i f i c a n c e . Absolute data i s independent of the instrument or geometry used to gather the data. R e l a t i v e data i s not. This means that a very broad shear rate range can be covered by compiling r e s u l t s , obtained i n absolute u n i t s , from several instruments. Shear rate overlap between instruments insures the integrity of the data, since a systematic error due to a p a r t i c u l a r instrument will be detected. With absol u t e data, c o n s t i t u t i v e or e m p i r i c a l r e l a t i o n s h i p s can be used to model the dependence of v i s c o s i t y on shear r a t e . Such models are e s s e n t i a l to p r e d i c t flow 160
In Extracellular Microbial Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Rheology
of Xanthan
Gum
Solutions
Downloaded by UCSF LIB CKM RSCS MGMT on August 26, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0045.ch012
WHITCOMB ET AL.
In Extracellular Microbial Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
162
EXTRACELLULAR MICROBIAL POLYSACCHARIDES
behavior, design equipment, and i n t e r p r e t rheology i n terms o f molecular s t r u c t u r e . I t i s t h e purpose o f t h i s work t o c o l l e c t a b s o l u t e data and e v a l u a t e i t i n t e r m s o f an a p p r o p r i a t e model.
Downloaded by UCSF LIB CKM RSCS MGMT on August 26, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0045.ch012
Description A commercial p r o d u c t , G A L A X Y X B X a n t h a n gum ( l o t D 5 3 5 3 A ) , was u s e d f o rt h i s s t u d y . The c o m m e r c i a l p r o d u c t was p u r i f i e d f u r t h e r u s i n g a m o d i f i c a t i o n o f a p r o c e d u r e b y J e a n e s (l) : T h e gum i s h y d r a t e d i n a water-ethanol mixture, c e n t r i f u g e d , p r e c i p i t a t e d and washed. T h e w e t gum i s t h e n d r i e d a n d g r o u n d , A schematic o f t h e p u r i f i c a t i o n procedure i s given i n F i g u r e 3. A n a l y s i s o f t h e commercial and p u r i f i e d gums a r e g i v e n i n T a b l e I , T h e v i s c o s i t y o f t h e p u r i f i e d gum i s s l i g h t l y l e s s t h a n t h a t o f t h e c o m m e r c i a l g u m , s e e F i g u r e k. The r e m a i n d e r o f t h i s paper d e a l s o n l y w i t h t h e p u r i f i e d gum, TABLE
1
ANALYSIS Commercial Product S o l u t i o n O.D, kOO NM Water
- Wt. %
Nitrogen Protein Ash
- Wt, % MFB -
Wt, % MFB
- Wt, % MFB
Sodium
- Wt. % MFB
Phosphorus
- W t , % MFB
Purified Gum
.07
.19 10,6
1 3 .0
0.67
0 .69
3.8
3 .9
13.8
7 .9
k.h
1 .9
0.32
0 .23
A l l s o l u t i o n s used i n t h i s study were prepared f r o m gum h y d r a t e d i n d i s t i l l e d w a t e r . The s o l u t i o n s w e r e p r e p a r e d b y s p r i n k l i n g t h e g r o u n d x a n t h a n gum onto t h e s i d e s o f a v o r t e x formed i n a high speed blender. A l l gum c o n c e n t r a t i o n s a r e r e p o r t e d o n a moisture free basis.
In Extracellular Microbial Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
WHITCOMB E T A L .
Rheology
of Xanthan
Gum
Solutions
95% eTWAMOU
IL Downloaded by UCSF LIB CKM RSCS MGMT on August 26, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0045.ch012
moisi
Figure 3.
Purification procedure
4+
••
•
4470 Ppri COflHEftciAL XAHIHOH
•
4470 PPM PUfUHfcP )j
2 +
S
ot
•—I—
-4
-z
H— Ο
UOC, 5H&AP- £ATe, -
t
Figure 10.
»
Xanthan gum rheology
In Extracellular Microbial Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
*
h
12.
WHITCOMB ET AL.
Rheology
of Xanthan
Gum
Solutions
extrapolated t o zero concentration. This i s i l l u s t r a t e d i n F i g u r e 11 a n d y i e l d s an v i s c o s i t y o f 35.70 d e c i l i t e r s / g m .
Downloaded by UCSF LIB CKM RSCS MGMT on August 26, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0045.ch012
Discussion
and
169
determination intrinsic
Conclusions
There appears t o be a c r i t i c a l concentration b e t w e e n 2 , 0 0 0 a n d 1 0 , 0 0 0 ppm a b o v e w h i c h a y i e l d s t r e s s exists. I d e n t i f y i n g and measuring y i e l d stress i s important for p r e d i c t i n g t h e long term s t a b i l i t y o f suspensions, Concentrations below t h e c r i t i c a l value w i l l have a Newtonian r e g i o n a t very l o w shear r a t e s , This r e g i o n i s c h a r a c t e r i z e d by t h e zero shear rate v i s c o s i t y , r)o. A l l c o n c e n t r a t i o n s s h o u l d have a Newtonian r e g i o n a t very high shear r a t e s . Without t h i s r e g i o n t h e s o l u t i o n v i s c o s i t i e s w i l l go b e l o w that o f their solvent, water. This region i s charac t e r i z e d by t h e i n f i n i t e shear r a t e v i s c o s i t y , . Many m a t h e m a t i c a l e x p r e s s i o n s have been proposed to model t h e p s e u d o p l a s t i c behavior e x h i b i t e d by xanthan. The most w i d e l y used i s t h e power l a w o f O s t w a l d (6) . η = Κ f ~ n
1
The p o w e r l a w i s a p p e a l i n g b e c a u s e o f i t s s i m p l i c i t y , t h e r e a r e o n l y t w o a d j u s t a b l e p a r a m e t e r s n a n d Κ. K, t h e v i s c o s i t y a t 1 s e c "" * m e a s u r e s c o n s i s t e n c y a n d n , t h e f l o w i n d e x , m e a s u r e s p s e u d o p l a s t i c i t y . Many e m p i r i c a l and a n a l y t i c a l s o l u t i o n s f o r complex flows have been worked o u t u s i n g t h e power law. Examples b e i n g l a m i n a r a n d t u r b u l e n t p i p e f l o w , (7.) a n n u l a r f l o w (8_) , f l o w t h r o u g h p o r o u s m e d i a (9.) » m i x i n g c h a r a c t e r i s t i c s a n d h e a t t r a n s f e r p r o b l e m s (10_) t o c i t e a few. The m a i n d i s a d v a n t a g e o f t h e power l a w i si t s f a i l u r e i n t h e r e g i o n s o f v e r y l o w s h e a r , rio o r τ , a n d very high shear, . More s o p h i s t i c a t e d models c S n account f o r t h e Newtonian regions i n high and l o w shear rate regions. However, f o r t h e xanthan c o n c e n t r a t i o n s s t u d i e d t h e l o g data i s l i n e a r f o r s e v e r a l decades o f shear r a t e . T a b l e I I I shows t h e power l a w f i t o f o u r xanthan data. The h i g h d e t e r m i n a t i o n i n d e x and t h e broad range o f shear r a t e f i t f o r each c o n c e n t r a t i o n v e r i f y t h e u t i l i t y o f t h i s model, 1
In Extracellular Microbial Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
170
EXTRACELLULAR MICROBIAL POLYSACCHARIDES
TABLE I I I POWERLAW
CONSTANTS
Κ CONC. (DYNE*SEC) η PPM /CM DIMENSIONLESS 2
Downloaded by UCSF LIB CKM RSCS MGMT on August 26, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0045.ch012
10,000
35
2,5xKf
2
2.5xlO
1
6.25xlO
3.U
.39
l.OxlO""
1,000
0 98
Λ9
U.TlxlO
0.23
.6k
h.71x10"
kkj
1
- 1
U.OxlO* 2,5xl0
.98
+ 3
.23
2,000
f
DETERMINATION INDEX
1
γ RANGE, SEC"" MAX. MIN.
+ 2
2
+ 2
.97 .99 ,99
Examination of Table I I I reveals Κ increases with increasing concentration while η decreases. T h i s means t h a t t h e h i g h e r t h e c o n c e n t r a t i o n o f xanthan t h e thicker the s o l u t i o n . However, h i g h e r c o n c e n t r a t i o n s a r e more p s e u d o p l a s t i c , have a l o w e r η v a l u e , so a t h i g h shear r a t e s a l l c o n c e n t r a t i o n s , a t l e a s t t h o s e o f 1 0 , 0 0 0 ppm and l e s s , a p p r o a c h t h e v i s c o s i t y o f w a t e r . The power l a w f i t f o r t h e 1 0 , 0 0 0 a n d 1 , 0 0 0 ppm s o l u t i o n s a r e shown i n F i g u r e 12. Note t h e d i f f e r e n c e i n Κ and η f o r the two c o n c e n t r a t i o n s , see T a b l e I I I . Power law d a t a i s v e r y v a l u a b l e i n e v a l u a t i n g s o l u t i o n p r o p e r t i e s and solving p r a c t i c a l problems. A n o t h e r type o f t h e o r y has been used t o e x p l o r e intrinsic viscosity. Assuming the conformation of a x a n t h a n m o l e c u l e c a n be a p p r o x i m a t e d by a c y l i n d r i c a l rod, i t i s possible to estimate i t s characteristic length. U s i n g t h e t h e o r y o f K h a l i k a n d B i r d (11.) r o d l e n g t h c a n be d e t e r m i n e d by t h e f o l l o w i n g e x p r e s s i o n : T.3
=
[η]
(US)
L [η]MW D Ν -
(MW)
( I n (L/D)
)
Rod l e n g t h Intrinsic viscosity Molecular weight Rod d i a m e t e r A v o g a d r o number
T h i s e x p r e s s i o n can be s o l v e d by i t e r a t i o n i f r o d l e n g t h i s t h e o n l y unknown. The m o l e c u l a r w e i g h t o f x a n t h a n h a s e s t i m a t e d t o b e i n t h e r a n g e o f l . U t o 3.6 χ 10 ( D i n t z i s et a l (12)) , The i n t r i n s i c viscosity was m e a s u r e d t o be 35.7 d e c i l i t e r s / g m . We h a v e 6
In Extracellular Microbial Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UCSF LIB CKM RSCS MGMT on August 26, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0045.ch012
12.
WHiTCOMB E T A L .
ο
1
1
1
'
Rheology of Xanthan Gum Solutions
4 — ι — ι — ι — ι — \ — ι — Η .ά>5 .ΟΙΟ Λ ~ '' ' J. ~
171
1 — ι — I — ι — ι — I — " — I .οΊ* *™ Jill
Figure 11.
Intrinsic viscosity
Figure 12.
Power lawfitof data
In Extracellular Microbial Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
172
EXTRACELLULAR MICROBIAL POLYSACCHARIDES
v
v
estimated the diameter of a xanthan r o d t o be i n t h e r a n g e o f l 6 t o kOA the length calculation i s quite i n s e n s i t i v e t o diameter, 9
TABLE
Downloaded by UCSF LIB CKM RSCS MGMT on August 26, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0045.ch012
CALCULATED MOLECULAR WEIGHT GM/MOLE
IV LENGTH
DIAMETER 1
[η] ML/GM
LENGTH MICRONS
l.k
χ
10
6
16
3570
0,73
l.U
χ
10
6
ho
3570
0.68
3.6 χ
10
6
16
3570
1.01
3.6 χ
10
6
ho
3570
0.96
Table IV gives the r e s u l t s of the r o d length calculation. I t would appear that a xanthan " r o d " has a l e n g t h b e t w e e n 0.7 a n d 1.0 m i c r o n s . This i s i n g o o d a g r e e m e n t w i t h H o l z w a r t h s (l_3) membrane c h r o m a tography measurements. He f o u n d t h a t e s s e n t i a l l y a l l x a n t h a n p a r t i c l e s c a n p a s s t h r o u g h a membrane w i t h 1.0 m i c r o n p o r e s b u t a r e b l o c k e d by a membrane w i t h 0.8 micron pores. f
Nomenclature D Κ L M MWn Ν O.D. R Τ β t η Ποη
οο-
[η]
Rod d i a m e t e r , (microns) Power l a w c o n s t a n t , i n t e r c e p t Rod l e n g t h (microns) Torque (gm-cm) Molecular Weight Power l a w c o n s t a n t , s l o p e A v o g a d r o number Optical Density Cone r a d i u s (cm) T e m p e r a t u r e (°C) Cone a n g l e (radians) Shear r a t e (sec ) Viscosity (poise) Zero shear r a t e v i s c o s i t y (poise) (poise) I n f i n i t e shear rate v i s c o s i t y Intrinsic viscosity (deciliters/gm) - 1
In Extracellular Microbial Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
WHITCOMB E T A L .
12.
τ τ oo
Rheology of Xanthan Gum Solutions
173
2
1
2
Shear s t r e s s (dyne/cm ) Yield stress (dyne/cm ) Angular speed (radians/sec , 1 2
y
Literature Cited
Downloaded by UCSF LIB CKM RSCS MGMT on August 26, 2014 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0045.ch012
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Jeanes, A., P i t t s l e y , J.E., Senti, F.R., J. Applied Polymer S c i , (1961), 5, p. 519-526. Van Wazer, J.R., et al, "Viscosity and Flow Measurement", p. 113-116, Wiley, Ν.Υ. 1963. Macosko, C.W., S t a r i t a , J., S.P.E. Journal,(1971), 27, p. 38-42. Middleman, S., "The Flow of High Polymers", p.28, Wiley, New York, 1968. Willey, S.J. Ph.D. Thesis, University of Minnesota, 1976. Ostwald, W., Kolloid-Zeitschrift, (1925), 36, p. 99-117. Metzner, A . B . , Reed, J.C., A.I.Ch.E. J., (1955), 1, p. 434-440. Mishra, P., Mishra, I., A.I.Ch.E. J.,(1976), 22, p. 617-619. Sheffield, R.E., Metzner, A . B . , A.I.Ch.E. J., (1976), 22, p. 736-744. Wilkinson, W.L., "Non-Newtonian Fluids", Pergamon, New York, 1960. Abdel-Khalik, S . K . , B i r d , R.Β., Biopolymers, (1975), 14, p. 1915-1932. D i n t z i s , E . R . , Babcock, G.Ε., Tobin, R., Carbohydrate Research. (1970), 13, p. 257-267. Holzwarth, G . , "Polysaccharide from Xanthomonas Campestris: Rheology, Solution Conforma t i o n , And Flow Through of Petroleum Chemistry, A.C.S., New York Meeting, April 4-9, 1976.
In Extracellular Microbial Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.