Subscriber access provided by University of Sunderland
Article
Rhodium-Catalyzed Annulation of #-Imino Carbenes with #,#-Unsaturated Ketones: Construction of Multi-substituted 2,3-Dihydropyrrole/pyrrole Rings Xueji Ma, Li Liu, Jiaying Wang, Xianglin Xi, Xuemei Xie, and Hangxiang Wang J. Org. Chem., Just Accepted Manuscript • Publication Date (Web): 06 Nov 2018 Downloaded from http://pubs.acs.org on November 6, 2018
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Rhodium-Catalyzed Annulation of α-Imino Carbenes with α,β-Unsaturated Ketones: Construction of Multi-substituted 2,3-Dihydropyrrole/pyrrole Rings
Xueji Ma†, Li Liu†, Jiaying Wang†, Xianglin Xi†, Xuemei Xie†, Hangxiang Wang *‡ † Department
‡
of Chemistry and Chemical Engineering, Xinxiang University, xinxiang 453003, China.
The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of
Public Health, Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310003, China. E-mail:
[email protected] N N
N Ts
1
R
Rh(II)
+ R3
2
R
R3
R4
O R2
Ts N
O R1
base
R4
2
R
H N
R3
O R1 R4
Novel carbenoid strategy to construct multi-substituted 2,3-dihydropyrroles/pyrroles
ABSTRACT: An efficient annulation of α-imino rhodium carbenes with α,β-unsaturated ketones has been developed to generate multi-substituted 2,3-dihydropyrrole derivatives. Using the optimized catalyst, this approach is compatible with both cyclic and normal linear α,β-unsaturated ketones. Further detosylation in the presence of base could produce multi-substituted pyrroles. The new method has the potential to enable the rapid construction of bioactive molecules containing pyrrole rings.
ACS Paragon Plus Environment
1
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 24
INTRODUCTION Multi-substituted 2,3-dihydropyrroles and their pyrrole derivatives are valuable structural motifs in many compounds with biological activity.1 For example, these skeletons are widespread among approved pharmaceuticals, such as sunitinib and atorvastatin, that exhibit promising activities in treating malignancies and hyperlipemia (Figure 1).2 Several effective methods were established for the synthesis of the key structures, such as transition metal-catalyzed C-H activation and metal-catalyzed cyclization (Scheme 1, eq 1 and 2).3-4 In addition, catalytic activation of propargyl alcohols and their derivatives has emerged as a powerful tool.5 However, these methods suffer from some drawbacks such as limited substrate scopes and the employment of expensive catalysts. Therefore, the development of new synthetic protocols for accessing these useful skeletons is highly desirable and would facilitate the exploration of new drug candidates. HO O
H N
HN H 3C F
CH3 H N
CO2H OH H
F N
NEt2
H N
O
Sunitinib
O Atorvastatin
Figure 1. Representative drugs containing multi-substituted pyrrole cores. N-Sulfonyl-1,2,3-triazoles, which can be facilely obtained through Cu(I)-catalyzed cycloadditions of alkynes and sulfonylazides, have become important carbene resource over the past decade.6 This class of compounds can produce α-imino carbenes in the presence of rhodium (II) catalysts.7 These generated α-rhodium imino carbene species can subsequently serve as electrophiles in reactions with heteroatoms bearing lone pairs of electrons such as nitrogen,8 oxygen,9 sulfur,10 and even bromine.11 Aldehydes, 1,3-diketones, epoxides and amides can be used to generate oxonium ylides to enable the efficient construction of heterocyclic compounds and multi-substituted olefins.9,12 α,β-Unsaturated aldehydes and α-imino carbenes were recently exploited to efficiently synthesize disubstituted 2,3-dihydropyrroles.9a ACS Paragon Plus Environment
2
Page 3 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Inspired by this finding, we anticipate that α,β-unsaturated ketones, a ubiquitous motif, can be used to construct multi-substituted 2,3-dihydropyrroles, which are useful building blocks for drug development. However, to the best of our knowledge, such reactions have not been explored.
Previous methods: R4
R3 R2
R5 H
R1
N
+
H
R1
Ph
R2
N
O R2 Rh(II)
2
R
R3
Ts N
O R1 base R4
(2)
R1
R3 R4
N Ts
H
base, DMSO
R1
T his method: N N
Cu(OAc)2 , O2
H
HN
R1
R5 (1)
N
COR3
R2
R3
R4
R2
Cu(OAc)2
Ph
H
R3
[CpRuCl2]2 AgSbF6
R2
H N
O R1
R4 R3 R2 = H
Scheme 1. Methods for synthesis of multi-substituted pyrrole rings Indeed, we have explored reactions of α,β-unsaturated ketones with α-imino carbenes but failed to obtain any desired products. The poor reactivity of α-imino carbenes with ketones is in sharp contrast to that of classical α-ester carbenes, which have been widely utilized to generate oxonium ylides using ketones as a reaction partner.13 The reactivity of formamide with α-imino carbenes suggested that the high electron density of nucleophilic oxygen atoms is essential in this reaction.12 Moreover, we previously found that cyclic α,β-unsaturated amide 3-methyleneindolin-2-ones could afford pyrroloindoles, while no products were obtained with linear α,β-unsaturated amides.12c Considering the impact of the electronic effects and structurally rigidity, enhancing the reactivity of α-imino carbenes through tuning the substituents on the α,β-unsaturated ketone derivative may be favorable. Herein we report a feasible protocol for synthesizing multi-substituted 2,3-dihydropyrroles/pyrroles using α,β-unsaturated ketones as substrates (Scheme 1, eq 2). ACS Paragon Plus Environment
3
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 24
RESULTS AND DISCUSSION For this purpose, we initially examined the reaction of N-tosyl-4-phenyl-1,2,3-triazole (1a, 0.4 mmol) with 2-benzylidenebenzofuran-3(2H)-one (2a, 0.2 mmol) in the presence of Rh2(OAc)4 (2.0 mol %) in dichloromethane (DCM) at 100 °C. However, only decomposition of the reactants was observed after 2 h (Table 1, entry 1). To our delight, trans-2,3-dihydro-1H-benzofuro[3,2-b]pyrrole (product 3a) was obtained in 54% yield as the only product using Rh2(Oct)4 as the catalyst (Table 1, entry 2).
9a,12c,14
Rh2(Piv)4 and Rh2(esp)2 exhibited comparable activities, furnishing 3a in moderate yields (entries 3-4). Rh2(TFA)4 did not lead to any products (entry 5). Interestingly, Rh2(S-PTV)4 was highly effective, affording the product in excellent yield (87%, entry 6). A structurally similar catalyst, Rh2(S-PTTL)4, was also active in this reaction and resulted in 83% yield (entry 7). Unfortunately, when catalysts bearing bulky ligands were exploited, the reaction was substantially suppressed (entries 8 and 9). Further optimization of the reaction conditions using Rh2(S-PTV)4 revealed that 110 °C was the optimal temperature (entries 10 and 11).
ACS Paragon Plus Environment
4
Page 5 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Table 1. Optimization of Reaction Conditions of 1a and 2a a
N
N
O N Ts
Rh(II)
+ O
Ph 1a
O
Ts N
Ph
CH2Cl2
Ph
Ph
O 3a
2a
entry
Rh2L4
temp (°C)
yield b
1
Rh2(OAc)4
100
0
2
Rh2(Oct)4
100
54
3
Rh2(Piv)4
100
50
4
Rh2(esp)2
100
65
5
Rh2(TFA)4
100
0
6
Rh2(S-PTV)4
100
87
7
Rh2(S-PTTL)4
100
83
8
Rh2(S-NTV)4
100
10
9
Rh2(S-NTTL)4
100
80%). In the case of 5b, the reaction condition was modified slightly to improve the yield, producing 0.96 g product in 63% yield. Therefore, the approach has the potential as a practical tool for synthesizing multi-substituted pyrrole derivatives. Scheme 5. Scale-up synthesis of products 3k and 5b O N
N
N Ts
+
Ts N Rh2(S-PTV)4 (121mg)
O
Ph
1.91 g, 6.4 mmol
N
N
0.81 g, 3.2 mmol
OMe
Ph
1.93 g, 5.5 mmol
+
0.83 g, 3.0 mmol
OMe
3k
1.36 g, 82% yield MeO
Ph
MeO
Ph
O
CH2Cl2 (8 mL), 110 oC, 2 h
O N Ts
O
Ts N
Rh2(S-PTV)4 (139 mg) CH2Cl2 (15 mL), 115-120 oC, 2 h
O Ph
5b
0.96 g, 63% yield
The proposed catalytic cycle for the formation of products 3 and 5 is depicted in Scheme 6 based on the experimental results and literature precedent. First, the triazole generates α-imino rhodium carbene species in the presence of a Rh(II) catalyst. Subsequent nucleophilic attack on the carbene species by the oxygen atom of the α,β-unsaturated ketone leads to the formation of oxonium ylide species A. The nucleophilic attack by the imino group of A on the carbon atom of the carbonyl group followed by ACS Paragon Plus Environment
10
Page 11 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
1,2-addition forms oxazole compound B. However, B is unstable, and C-O bond cleavage and rearrangement afford the multi-substituted 2,3-dihydropyrrole. On the other hand, A can give seven-membered heterocyclic products through intramolecular ring closure.
9a,12c
However, no
1,4-addition type product was detected during the whole work. We could attribute this excellent selectivity to the high electron-attracting property of carbonyl groups towards amino groups and the preferential generation of five-membered rings rather than seven-membered rings. Scheme 6. Proposed Catalytic Cycle to Generate 3 or 5 R2
O N
N
Rh
Rh(II)
N Ts
- N2
R1
NTs
R2
R1 R2
O
- Rh(II)
R1 R2
path 1 R3 R2
TsN A
O R1
R3 Reported Product
B O
Ts N
R1 Rh
TsN A
R3
N Ts
R3
R3
O
R1 Rh
R2 1,4-addition path 2
O
R1
NTs R3 Undetected Product
CONCLUSIONS In summary, we have described a new and efficient method for the synthesis of multi-substituted 2,3-dihydropyrroles from α-imino rhodium carbenes and α,β-unsaturated ketones in moderate to excellent yields. These products can be facilely converted into multi-substituted pyrroles through an E1cB/prototropy sequence. The protocol outlined here proved the obvious nucleophilicity of α,β-unsaturated ketones towards α-imino rhodium carbenes, which may enable the rapid construction of molecular complexity for generating various bioactive pharmaceuticals.
EXPERIMENTAL SECTION 1H
NMR spectra were recorded in deuterated solvents on a Bruker 400 (400 MHz) spectrometer and
calibrated to the residual solvent peak or tetramethylsilane (δ = 0 ppm). CDCl3 or d6-DMSO was used ACS Paragon Plus Environment
11
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 12 of 24
as solvent. Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, dt = doublet of triplet, br = broad. J-values are in Hz. HRMS was measured by a Finnigan MA+ mass spectrometer or a GCT Premier (7000FWHM). Organic solvents used were dried by standard methods when necessary. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with Huanghai GF254 silica gel coated plates. Organocatalysts were synthesized according to the literatures. Flash column chromatography was carried
out
using
200-300
mesh
silica
gel
at
increased
pressure.
Starting
materials
N-tosyl-4-phenyl-1,2,3-triazole 1,15 2-benzylidenebenzofuran-3(2H)-one 2, 16 and Chalcone deriviatives 4 17were prepared according to literatures. General procedure for the synthesis of products 3, 5 and 6a. A 15 mL tube was filled with N2 before it was charged with a solution of N- Sulfonyl-1,2,3-triazole 1 (0.40 mmol), 2-Methylenebenzofuran-3(2H)-one 2 (0.20 mmol) and Rh2(S-PTV)4 (8.0 μmol ) in dry DCM (1.0 mL). The tube was sealed, and the reaction mixture was stirred at 110 °C in an oil bath. The reaction was monitored by TLC, and generally finished in 2 h. After completion and the removal of solvent, the resulting product 3 was isolated by column chromatography on silica gel using ethyl acetate-petroleum ether mixture as eluent. The preparation of 5 and 6a is of generally the same method as above. The reaction was conducted in DCM at 130 °C. Phenyl(3-phenyl-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)methanone
(3a):
petroleum ether:ethyl acetate = 10:1-4:1; white solid; mp = 175 °C-177 °C; yield: 82 mg, 83%; 1H NMR (400 MHz, CDCl3): δ = 8.18 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 7.2 Hz, 2H), 7.60 (t, J = 7.8 Hz, 1H),7.56 (d, J = 8.4 Hz, 2H), 7.43 (t, J = 7.8 Hz, 2H), 7.37-7.42 (m, 2H), 7.33-7.37 (m, 1H), 7.22 (d, J = 8.4 Hz, 2H), 7.19 (t, J = 7.8 Hz, 1H), 7.04 (t, J = 7.8 Hz, 2H), 6.34 (d, J = 7.2 Hz, 2H), 5.36 (d, J = 5.4 Hz, 1H), 4.41 (d, J = 5.4 Hz, 1H), 2.44 (s, 3H);
13C{1H}
NMR (100 MHz, CDCl3): δ = 193.4, 160.0, 149.4,
144.5, 138.3, 134.2, 133.9, 131.5, 130.1, 129.2, 128.9, 128.8, 128.5, 128.4, 128.0, 127.4, 125.0, 124.0, 120.7, 120.2, 112.5, 79.2, 48.3, 21.6; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C30H24NO4S 494.1426; Found 494.1442. (4-Ethylphenyl)(3-phenyl-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)methanone
(3b):
petroleum ether:ethyl acetate = 10:1-5:1; white solid; mp = 202 °C- 204 °C yield: 88 mg, 84%; 1H NMR (400 MHz, CDCl3): δ = 8.19 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.32-7.43 (m, 3H), 7.18-7.27 (m, 5H), 7.04 (t, J = 7.6 Hz, 2H), 6.34 (d, J = 7.2 Hz, 2H), 5.34 (d, J = 5.2 Hz, 1H), 4.41 (d, J = 5.2 Hz, 1H), 2.71 (q, J = 7.6 Hz, 2H), 2.45 (s, 3H), 1.26 (t, J = 7.6 Hz, 3H), ; 13C {1H} NMR (100 MHz, CDCl3): δ = 188.1, 155.2, 146.4, 144.7, 139.8, 133.6, 126.9, 126.7, 125.4, 124.7, ACS Paragon Plus Environment
12
Page 13 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
124.1, 123.7, 123.6, 123.5, 123.2, 122.7, 120.2, 119.2, 115.9, 115.4, 107.8, 74.3, 43.6, 24.3, 16.9, 10.3; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C32H28NO4S 522.1733; Found 522.1740. (4-Methoxyphenyl)(3-phenyl-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)methanone
(3c):
petroleum ether:ethyl acetate = 3:1; white solid; mp = 204 °C-206 °C; yield: 96 mg, 92%; 1H NMR (400 MHz, CDCl3): δ = 8.19 (d, J = 7.6 Hz, 1H), 7.81 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.33-7.44 (m, 3H), 7.17-7.26 (m, 3H), 7.05 (t, J = 7.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 6.34 (d, J = 7.6 Hz, 2H), 5.31 (d, J = 5.2 Hz, 1H), 4.41 (d, J = 5.2 Hz, 1H), 3.87 (s, 3H), 2.45 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ = 191.8, 164.3, 160.0, 149.6, 144.6, 138.5, 131.7, 131.4, 130.1, 128.8, 128.5, 128.4, 128.0, 127.5, 126.9, 124.9, 123.9, 120.7, 120.3, 114.1, 112.5, 78.9, 55.6, 48.5, 21.7; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C31H26NO5S 524.1532; Found 524.1529. (4-Fluorophenyl)(3-phenyl-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)methanone
(3d):
petroleum ether:ethyl acetate = 10:1-5:1; white solid; mp = 178 °C-180 °C; yield: 62 mg, 61%; 1H NMR (400 MHz, CDCl3): δ = 8.19 (d, J = 7.6 Hz, 1H), 7.86 (dd, J = 8.4 Hz, 5.6 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.32-7.44 (m, 3H), 7.17-7.26 (m, 3H), 7.11 (t, J = 7.6 Hz, 2H), 7.06 (d, J = 7.6 Hz, 2H), 6.34 (d, J = 7.6 Hz, 2H), 5.28 (d, J = 5.2 Hz, 1H), 4.42 (d, J = 5.2 Hz, 1H), 2.45 (s, 3H);
13C{1H}
NMR (100
MHz, CDCl3): δ =191.9, 160.1, 149.4, 144.7, 138.2, 132.1, 132.0, 131.2, 130.2, 128.9, 128.5, 128.3, 128.1, 127.4, 125.1, 124.1, 120.7, 120.1, 116.2, 116.0, 112.6, 79.3, 48.3, 21.7; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C30H23FNO4S 512.1332; Found 512.1329. (4-Chlorophenyl)(3-phenyl-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)methanone
(3e):
petroleum ether:ethyl acetate = 10:1-5:1; white solid; mp = 180 °C-182 °C; yield: 58 mg, 55%; 1H NMR (400 MHz, CDCl3): δ = 8.18 (d, J = 7.6 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.33-7.43 (m, 5H), 7.18-7.25 (m, 3H), 7.06 (t, J = 7.6 Hz, 2H), 6.34 (d, J = 7.6 Hz, 2H), 5.26 (d, J = 5.2 Hz, 1H), 4.43 (d, J = 5.2 Hz, 1H), 2.45 (s, 3H);
13C{1H}
NMR (100 MHz, CDCl3): δ = 192.4, 160.1,
149.3, 144.7, 140.6, 138.2, 132.4, 131.2, 130.6, 130.2, 129.2, 128.9, 128.5, 128.2, 128.1, 127.4, 125.1, 124.1, 120.7, 120.1, 112.6, 79.4, 48.3, 21.7; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C30H23ClNO4S 528.1036; Found 528.1028. (4-Bromophenyl)(3-phenyl-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)methanone
(3f):
petroleum ether:ethyl acetate = 10:1-5:1; white solid; mp = 181°C-183 °C; yield: 66 mg, 58%; 1H NMR (400 MHz, CDCl3): δ = 8.17 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.53-7.59 (m, 4H), 7.33-7.43 (m, 3H), 7.19-7.24 (m, 3H), 7.06 (t, J = 7.6 Hz, 2H), 6.36 (d, J = 7.6 Hz, 2H), 5.26 (d, J = 5.2 Hz, 1H), 4.43 (d, J = 5.2 Hz, 1H), 2.44 (s, 3H);
13C{1H}
NMR (100 MHz, CDCl3): δ = 192.7, 160.1, 149.3,
144.7, 138.2, 132.9, 132.2, 131.2, 130.7, 130.2, 129.4, 128.9, 128.5, 128.3, 128.1, 127.4, 125.1, 124.1, ACS Paragon Plus Environment
13
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 14 of 24
120.7, 120.1, 112.6, 79.4, 48.3, 21.6; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C30H23BrNO4S 572.0531; Found 572.0528. (3-Fluorophenyl)(3-phenyl-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)methanone
(3g):
petroleum ether:ethyl acetate = 10:1-6:1; white solid; mp = 209 °C-212 °C; yield: 82 mg, 80%; 1H NMR (400 MHz, CDCl3): δ = 8.18 (d, J = 8.0 Hz, 1H), 7.53-7.58 (m, 4H), 7.35-7.44 (m, 4H), 7.86 (dt, J = 2.0 Hz, 8.0 Hz, 1H), 7.18-7.26 (m, 3H), 7.06 (t, J = 7.6 Hz, 2H), 6.35 (d, J = 7.6 Hz, 2H), 5.27 (d, J = 5.2 Hz, 1H), 4.42 (d, J = 5.2 Hz, 1H), 2.45 (s, 3H); 13C{1H} NMR (100 MHz, d6-DMSO): δ = 192.2, 159.6, 150.5, 145.8, 138.4, 136.3, 131.7, 131.1, 131.0, 129.2, 128.6, 128.5, 127.8, 127.3, 125.8, 125.7, 124.9, 121.9, 119.9, 119.8, 115.9, 113.4, 78.8, 55.4, 46.7, 21.5; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C30H23FNO4S 512.1332; Found 512.1333. (3,5-Dimethylphenyl)(3-phenyl-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)methanone
(3i):
petroleum ether:ethyl acetate = 4:1; white solid; mp = 225 °C-228 °C; yield: 87 mg, 83%; 1H NMR (400 MHz, CDCl3): δ = 8.17 (d, J = 7.6 Hz, 1H), 7.58 (d, J = 8.4 Hz, 2H), 7.36-7.41 (m, 3H), 7.35 (s, 2H), 7.19-7.26 (m, 4H), 7.04 (t, J = 7.6 Hz, 2H), 6.34 (d, J = 7.2 Hz, 2H), 5.41 (d, J = 5.2 Hz, 1H), 4.33 (d, J = 5.2 Hz, 1H), 2.46 (s, 3H), 2.26 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3): δ = 193.2, 160.0, 149.4, 144.5, 138.4, 135.6, 134.0, 131.9, 130.1, 128.8, 128.5, 128.4, 128.0, 127.7, 127.1, 124.9, 123.9, 120.8, 120.3, 112.5, 79.2, 48.4, 21.6, 21.2; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C32H28NO4S 522.1733, Found 522.1731. Phenyl(3-(p-tolyl)-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)(phenyl)methanone
(3j):
petroleum ether:ethyl acetate = 10:1-6:1; white solid; mp = 181°C-182 °C; yield: 82 mg, 81%;1H NMR (600 MHz, CDCl3): δ = 8.18 (d, J = 7.6 Hz, 1H), 7.82 (d, J = 7.6 Hz, 2H), 7.61 (t, J = 7.2 Hz, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.32-7.42 (m, 3H), 7.25 (d, J = 8.0 Hz, 2H), 6.84 (d, J = 7.6 Hz, 2H), 6.20 (d, J = 7.6 Hz, 2H), 5.34 (d, J = 5.2 Hz, 1H), 4.37 (d, J = 5.2 Hz, 1H), 2.47 (s, 3H), 2.29 (s, 3H) ; 13C{1H} NMR (100 MHz, CDCl3): δ = 193.4, 160.0, 149.6, 144.5, 137.8, 135.3, 134.2, 133.9, 131.6, 130.1, 129.5, 129.2, 128.8, 128.5, 128.1, 127.4, 124.9, 123.9, 120.7, 120.2, 112.5, 79.3, 48.1, 21.6, 21.1; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C31H26NO4S 508.1583; Found 508.1580. (3-(4-methoxyphenyl)-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)(phenyl)methanone
(3k):
petroleum ether:ethyl acetate = 4:1; white solid; mp = 180 °C-182 °C; yield: 92 mg, 88%; 1H NMR (400 MHz, CDCl3): δ = 8.20 (d, J = 7.6 Hz, 1H), 7.84 (d, J = 7.2 Hz, 2H), 7.63 (t, J = 7.2 Hz, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.46 (t, J = 8.0 Hz, 2H), 7.40-7.45 (m, 3H), 7.27 (d, J = 7.6 Hz, 2H), 6.59 (d, J = 8.4 Hz, 2H), 6.27 (d, J = 8.4 Hz, 2H), 5.34 (d, J = 5.2 Hz, 1H), 4.39 (d, J = 5.2 Hz, 1H), 3.79 (s, 3H), 2.48 (s, 3H);
13C{1H}
NMR (100 MHz, CDCl3): δ = 193.3, 160.0, 159.2, 149.6, 144.6, 134.1, 134.0, 131.5, ACS Paragon Plus Environment
14
Page 15 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
130.3, 130.2, 129.2, 128.9, 128.6, 128.5, 128.1, 124.9, 124.0, 120.7, 120.2, 114.2, 112.5, 79.4, 55.3, 47.8, 21.7; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C31H26NO5S 524.1532; Found 524.1535. (3-(4-Fluorophenyl)-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)(phenyl)methanone
(3l):
petroleum ether:ethyl acetate = 10:1-4:1; white solid; mp = 197 °C-200 °C; yield: 74 mg, 72%; 1H NMR (400 MHz, CDCl3): δ = 8.18 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.45 (t, J = 8.0 Hz, 2H), 7.36-7.44 (m, 3H), 7.24 (d, J = 8.4 Hz, 2H), 6.74 (t, J = 8.4 Hz, 2H), 6.26-6.35 (m, 2H), 5.30 (d, J = 5.2 Hz, 1H), 4.41 (d, J = 5.2 Hz, 1H), 2.46 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ = 193.1, 159.7, 150.4, 145.9, 134.8, 134.1, 131.0, 129.8, 129.7, 129.6, 129.4, 128.4, 127.6, 125.8, 124.9, 120.0, 119.9, 116.2, 115.9, 113.5, 78.3, 46.0, 21.5; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C30H23FNO4S 512.1332; Found 512.1334. (3-(4-Bromophenyl)-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)(phenyl)methanone
(3m):
petroleum ether:ethyl acetate = 10:1-4:1; white solid; mp = 175 °C-177 °C; yield: 80 mg, 70%; 1H NMR (400 MHz, d6-DMSO): δ = 8.03 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 7.6 Hz, 2H), 7.75 (t, J = 7.2 Hz, 1H), 7.53-7.57 (m, 5H), 7.41-7.50 (m, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 6.25 (d, J = 8.0 Hz, 2H), 5.53 (d, J = 4.4 Hz, 1H), 4.79 (d, J = 4.4 Hz, 1H), 2.44 (s, 3H);
13C{1H}
NMR (100 MHz,
d6-DMSO): δ = 193.1, 159.7, 150.3, 145.8, 138.1, 134.8, 134.2, 132.1, 131.2, 130.9, 129.7, 129.6, 129.5, 128.4, 127.8, 125.8, 124.9, 121.6, 120.1, 119.9, 113.5, 77.9, 46.1, 21.5; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C30H23BrNO4S 572.0531; Found 572.0529. (3-(3-Methoxyphenyl)-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)(phenyl)methanone
(3n):
petroleum ether:ethyl acetate = 10:1-4:1; white solid; mp = 201 °C-212 °C; yield: 86 mg, 82%; 1H NMR (400 MHz, CDCl3): δ = 8.19 (d, J = 7.6 Hz, 1H), 7.87 (d, J = 7.6 Hz, 2H), 7.63 (t, J = 7.6 Hz, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.34-7.45 (m, 3H), 7.23 (d, J = 8.0 Hz, 2H), 6.99 (t, J =8.0 Hz, 1H), 6.76 (d, J = 7.6 Hz, 1H), 6.01 (s, 1H), 5.97 (d, J = 7.6 Hz, 1H), 5.41 (d, J = 5.2 Hz, 1H), 4.71 (d, J = 5.2 Hz, 1H), 3.67 (s, 3H), 2.44 (s, 3H); 13C{1H} NMR (100 MHz, d6-DMSO): δ = 193.3, 159.8, 159.7, 150.3, 145.9, 140.0, 134.8, 134.3, 130.9, 130.3, 129.5, 129.4, 128.3, 127.5, 125.7, 124.8, 120.0, 119.9, 119.7, 114.0, 113.5, 113.4, 78.4, 55.5, 47.1, 21.6; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C31H26NO5S 524.1532; Found 524.1537. (3-(2-Fluorophenyl)-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)(phenyl)methanone
(3o):
petroleum ether:ethyl acetate = 5:1; white solid; mp = 176 °C-178 °C; yield: 82 mg, 85%; 1H NMR (400 MHz, CDCl3): δ = 8.11 (d, J = 7.2 Hz, 1H), 7.94 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.49 (d, J = 7.2 Hz, 2H), 7.39-7.47 (m, 3H), 7.38 (t, J = 7.6 Hz, 2H), 7.14-7.20 (m, 1H), 7.12 (d, J = 7.6 Hz, 2H), 6.94 (t, J = 8.8 Hz, 1H), 6.89 (t, J = 8.8 Hz, 1H), 5.97 (t, J = 7.6 Hz, 1H), 5.45 (d, J = 4.8 Hz, 1H), 4.88 ACS Paragon Plus Environment
15
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(d, J = 4.8 Hz, 1H), 2.39 (s, 3H);
13C{1H}
Page 16 of 24
NMR (100 MHz, CDCl3): δ = 193.6, 159.8, 149.6, 145.8,
134.9, 134.2, 130.9, 130.8, 130.6, 130.5, 129.5, 129.4, 128.7, 128.6, 128.4, 128.2, 125.9, 125.3, 125.2, 124.9, 120.0, 116.2, 115.9, 113.5, 76.6, 21.5; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C30H23FNO4S 512.1332; Found 512.1332 . (3-(Naphthalen-2-yl)-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)(phenyl)methanone
(3p):
petroleum ether:ethyl acetate = 4:1; white solid; mp = 207 °C-208 °C; yield: 78 mg, 75%; 1H NMR (400 MHz, CDCl3): δ = 8.22 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 7.2 Hz, 2H), 7.77 (d, J = 7.2 Hz, 1H), 7.47-7.63 (m, 4H), 7.37-7.46 (m, 8H), 7.18 (d, J = 8.0 Hz, 2H), 6.92 (s, 1H), 6.40 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 5.48 (d, J = 5.2 Hz, 1H), 4.60 (d, J = 5.26 Hz, 1H), 2.39 (s, 3H); 13C{1H} NMR (100 MHz, d6-DMSO): δ = 193.3, 159.7, 150.5, 145.8, 136.0, 134.9, 134.1, 133.0, 132.7, 131.2, 131.1, 129.5, 129.4, 129.1, 128.5, 128.1, 127.6, 127.1, 127.0, 126.9, 125.8, 125.2, 124.9, 120.0, 119.9, 113.5, 78.2, 47.2, 21.6; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C34H26NO4S+ 544.1583; Found 544.1581. Phenyl(3-(4-(4-phenyl-1-tosyl-1H-imidazol-2-yl)phenyl)-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrro l-2-yl) methanone (3q): petroleum ether:ethyl acetate = 10:1-2:1; white solid; mp = 217 °C-219 °C; yield: 70 mg, 44%;1H NMR (400 MHz, CDCl3): δ = 8.22 (d, J = 7.6 Hz, 1H), 7.90 (s, 1H), 7.89 (d, J = 8.0 Hz, 2H), 7.82 (d, J = 7.6 Hz, 2H), 7.63 (t, J = 7.6 Hz, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.37-7.50 (m, 7H), 7.33 (d, J = 7.6 Hz, 1H), 7.28 (d, J = 8.0 Hz, 2H), 7.22-7.25 (m, 2H), 7.14-7.19 (m, 4H), 6.37 (d, J = 8.0 Hz, 2H), 5.32 (d, J = 5.2 Hz, 1H), 4.53 (d, J = 5.2 Hz, 1H), 2.45 (s, 3H), 2.37 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ =193.3, 160.1, 148.8, 147.7, 146.2, 145.2, 142.2, 141.1, 140.3, 134.3, 134.2, 134.0, 132.5, 132.0, 131.2, 131.1, 130.3, 129.9, 129.2, 129.0, 128.8, 128.4, 128.2, 127.7, 127.5, 126.9, 125.3, 124.2, 120.9, 120.1, 115.6, 112.6, 79.4, 48.1, 21.8, 21.7; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C46H36N3O6S2 790.2046; Found 790.2049. (3-(5-Methylfuran-2-yl)-1-tosyl-2,3-dihydro-1H-benzofuro[3,2-b]pyrrol-2-yl)(phenyl)methanone
(3s):
petroleum ether:ethyl acetate = 10:1-6:1; white solid; mp = 214 °C-217 °C; yield: 82 mg, 82%;1H NMR (400 MHz, d6-DMSO): δ = 8.01 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 7.6 Hz, 2H), 7.74 (t, J = 7.6 Hz, 1H), 7.55-7.63 (m, 5H), 7.41-7.48 (m, 2H), 7.38 (d, J = 8.0 Hz, 2H), 5.89 (d, J = 2.0 Hz, 1H), 5.72 (d, J = 5.2 Hz, 1H), 5.66 (d, J = 3.5 Hz, 1H), 4.86 (d, J = 5.2 Hz, 1H), 3.37 (s, 3H), 2.02 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ = 192.3, 158.9, 152.2, 148.0, 147.1, 144.8, 134.3, 133.5, 131.0, 130.2, 129.0, 128.9, 127.8, 126.7, 125.3, 124.3, 119.5, 119.4, 112.9, 109.2, 106.6, 74.7, 40.4, 21.0, 13.1; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C29H24NO5S 498.1375; Found 498.1374. (5-(2,4-Dimethoxyphenyl)-3-phenyl-1-tosyl-2,3-dihydro-1H-pyrrol-2-yl)(phenyl)methanone
(5a):
petroleum ether:ethyl acetate = 10:1-5:1; white solid; mp = 153 °C-154 °C; yield: 78 mg, 72%; 1H NMR ACS Paragon Plus Environment
16
Page 17 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
(400 MHz, CDCl3): δ = 8.04 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.35-7.40 (m, 3H), 7.15-7.24 (m, 5H), 6.83 (d, J = 7.2 Hz, 2H), 6.47 (dd, J = 8.4 Hz, 2.0 Hz, 2H), 6.37 (s, 1H), 5.40 (d, J = 5.2 Hz, 1H), 5.16 (d, J = 2.4 Hz, 1H), 3.96-3.98 (m, 1H), 3.85 (s, 3H), 3.73 (s, 3H), 2.44 (s, 3H);
13C{1H}
NMR (100 MHz, CDCl3): δ = 195.6, 161.8, 159.0, 143.5, 142.0, 141.3, 134.9,
134.5, 133.4, 132.6, 129.4, 129.2, 128.7, 128.6, 128.4, 127.7, 127.3, 114.8, 113.2, 103.7, 98.2, 73.7, 55.4, 55.3, 50.9, 21.6; HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C32H30NO5S 540.1839; Found 540.1827. (5-(4-Methoxyphenyl)-3-phenyl-1-tosyl-2,3-dihydro-1H-pyrrol-2-yl)(phenyl)methanone
(5b):
petroleum ether:ethyl acetate = 10:1-6:1; white solid; mp = 163 °C-164 °C; yield: 75 mg, 74%; 1H NMR (400 MHz, CDCl3): δ = 7.92 (d, J = 8.0 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.46-7.53 (m, 4H), 7.41 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 7.6 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.14 (t, J = 7.6 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 7.6 Hz, 2H), 5.50 (d, J = 4.4 Hz, 1H), 5.13 (d, J = 3.6 Hz, 1H), 3.87 (t, J = 3.6 Hz, 1H), 3.85 (s, 3H), 2.47 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ = 195.5, 160.3, 145.4, 143.9, 141.5, 134.6, 134.4, 133.6, 130.2, 129.6, 129.1, 128.8, 128.7, 128.2, 127.6, 127.3, 124.2, 114.1, 113.2, 73.5, 55.3, 50.8, 21.6; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C31H28NO4S 510.1733; Found 510.1720. (5-(4-Iodophenyl)-3-phenyl-1-tosyl-2,3-dihydro-1H-pyrrol-2-yl)(phenyl)methanone
(5d):
petroleum ether:ethyl acetate = 10:1-4:1; white solid; mp = 166 °C-168 °C; yield: 67 mg, 53%; 1H NMR (400 MHz, CDCl3): δ = 7.90 (d, J = 7.2 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 6.68 (d, J = 8.8 Hz, 2H), 6.58 (d, J = 8.8 Hz, 2H), 5.51 (d, J = 4.0 Hz, 1H), 5.18 (d, J = 3.2 Hz, 1H), 3.81 (t, J = 4.0 Hz, 1H), 3.80 (s, 3H), 2.49 (s, 3H);
13C{1H}
NMR (100 MHz, CDCl3): δ = 195.1, 158.9, 144.4,
144.2, 136.9, 134.7, 134.2, 133.7, 133.0, 131.5, 130.4, 129.7, 129.1, 128.8, 128.7, 128.2, 116.2, 114.1, 94.9, 73.2, 55.3, 50.4, 21.7; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C31H27INO4S 636.0699; Found 636.0702. (3-(2-Fluorophenyl)-(5-(4-methoxyphenyl)-3-phenyl-1-tosyl-2,3-dihydro-1H-pyrrol-2-yl)methanone (5f): petroleum ether:ethyl acetate = 10:1-5:1; white solid; mp = 113 °C-115 °C; yield: 47 mg, 45%; 1H NMR (400 MHz, CDCl3): δ = 7.91 (d, J = 8.4 Hz, 2H), 7.60-7.65 (m, 1H), 7.48-7.52 (m, 4H), 7.40 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.80-6.87 (m, 4H), 6.65 (dd, J = 8.4, 5.2 Hz, 2H), 5.45 (d, J = 4.4 Hz, 1H), 5.12 (d, J = 3.6 Hz, 1H), 3.86 (t, J = 4.4 Hz, 1H), 3.85 (s, 3H), 2.47 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ = 195.5, 160.3, 145.7, 144.0, 137.4, 137.2, 134.7, 134.4, 133.7, 130.1, 129.6, 129.2, 129.1, 129.0, 128.8, 128.2, 124.0, 115.6, 115.4, 113.8, 113.2, 73.4, 55.3, 49.9, 21.6; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C31H27FNO4S 528.1645; Found 528.1641. ACS Paragon Plus Environment
17
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 18 of 24
(3-(4-Methoxylphenyl)-(5-(4-methoxyphenyl)-3-phenyl-1-tosyl-2,3-dihydro-1H-pyrrol-2-yl)methanone (5g): petroleum ether:ethyl acetate = 10:1-4:1; white solid; mp = 125 °C-127 °C; yield: 76 mg, 70%; 1H NMR (400 MHz, CDCl3): δ = 7.92 (d, J = 7.2 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.46-7.51 (m, 4H), 7.42 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 8.4 Hz, 2H), 5.46 (d, J = 4.4 Hz, 1H), 5.10 (d, J = 3.2 Hz, 1H), 3.85 (s, 3H), 3.82 (t, J = 4.0 Hz, 1H), 3.80 (s, 3H), 2.47 (s, 3H);
13C{1H}
NMR (100 MHz, CDCl3): δ = 195.4, 160.2, 158.8, 145.1, 143.9,
134.8, 134.4, 133.6, 130.2, 129.6, 129.1, 128.8, 128.7, 128.3, 124.2, 114.4, 114.0, 113.2, 73.7, 55.3, 55.2, 50.2, 21.7; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C32H30NO5S 540.1839; Found 540.1833. (5-(4-Methoxyphenyl)-3-(naphthalene-2-yl)-1-tosyl-2,3-dihydro-1H-pyrrol-2-yl)(phenyl)methanone (5h): petroleum ether:ethyl acetate = 10:1-5:1; white solid; mp = 127 °C-129 °C; yield: 72 mg, 64%; 1H NMR (400 MHz, CDCl3): δ = 7.96 (d, J = 7.2 Hz, 2H), 7.96 (dd, J = 6.0 Hz, 3.6 Hz, 1H), 7.61-7.65 (m, 2H), 7.55-7.59 (m, 3H), 7.48-7.51 (m, 4H), 7.39 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 7.10 (s, 1H), 6.89 (d, J = 8.4 Hz, 2H), 6.84 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 5.58 (d, J = 4.0 Hz, 1H), 5.23 (d, J = 3.2 Hz, 1H), 4.05-4.07 (m, 1H), 3.86 (s, 3H), 2.37 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ = 195.8, 160.3, 145.7, 144.0, 139.0, 134.6, 134.5, 133.6, 133.2, 132.6, 130.2, 129.6, 129.1, 128.8, 128.6, 128.2, 127.9, 127.7, 126.3, 126.2, 126.1, 125.4, 124.2, 113.9, 113.2, 73.4, 55.3, 50.8, 21.6; HRMS (ESI-TOF) m/z:
[M+H]+
Calcd
for
C35H30NO4S
560.1896;
Found
560.1894.
(5-(4-methoxyphenyl)-3-(5-methylfuran-2-yl)-1-tosyl-2,3-dihydro-1H-pyrrol-2-yl)(phenyl)methanone (5i): petroleum ether:ethyl acetate = 10:1-6:1; white solid; mp = 103 °C-105 °C; yield: 69 mg, 67%; 1H NMR (400 MHz, CDCl3): δ = 8.13 (d, J = 7.6 Hz, 2H), 7.63 (t, J = 7.2 Hz, 1H), 7.50-7.55 (m, 4H), 7.36 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 5.78 (d, J = 3.2 Hz, 1H), 5.71 (d, J = 1.6 Hz, 1H), 5.39 (d, J = 2.4 Hz, 1H), 5.14 (d, J = 3.6 Hz, 1H), 3.90-3.93 (m, 1H), 3.85 (s, 3H), 2.40 (s, 3H), 2.25 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ = 194.3, 160.3, 151.6,151.5, 146.0, 143.5, 134.8, 134.0, 133.6, 130.1, 129.3, 129.2, 128.8, 127.9, 124.2, 113.2, 111.1, 107.4, 106.3, 70.8, 55.3, 43.9, 21.6, 13.6; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C30H28NO5S 514.1688; Found 514.1689. (5-(2,4-Dimethoxyphenyl)-3-phenyl-1-tosyl-2,3-dihydro-1H-pyrrol-2-yl)(4-flurophenyl)methanone (5j): petroleum ether:ethyl acetate = 10:1-5:1; white solid; mp = 122 °C-124 °C; yield: 62 mg, 56%; 1H NMR (400 MHz, CDCl3): δ = 8.11 (dd, J = 8.0 Hz, 5.6 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.4 Hz, 1H), 7.13-7.25 (m, 7H), 6.79 (d, J = 7.2 Hz, 2H), 6.48 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 6.39 (s, 1H), 5.25-5.30 (m, 1H), 5.16 (d, J = 2.4 Hz, 1H), 3.96-3.99 (m, 1H), 3.85 (s, 3H), 3.74 (s, 3H), 2.45 (s, 3H); 13C{1H}
NMR (100 MHz, CDCl3): δ = 194.2, 161.9, 159.1, 143.6, 141.9, 134.5, 132.5, 132.2, 132.1,
130.8, 129.2, 128.8, 128.4, 127.6, 127.4, 115.9, 115.6, 114.7, 113.1, 103.8, 98.3, 77.3, 74.1, 55.4, 51.0, 21.6; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C32H29FNO5S 558.1744; Found 558.1739. ACS Paragon Plus Environment
18
Page 19 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
(5-(2,4-Dimethoxyphenyl)-3-phenyl-1-tosyl-2,3-dihydro-1H-pyrrol-2-yl)(4-chlorophenyl)methanone (5k): petroleum ether:ethyl acetate = 10:1-5:1; white solid; mp = 179 °C-180 °C; yield: 61 mg, 53%; 1H NMR (400 MHz, CDCl3): δ = 8.02 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 1H), 7.23 (d, J = 6.8 Hz, 1H), 7.16-7.20 (m, 4H), 6.79 (d, J = 6.8 Hz, 2H), 6.48 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 6.38 (d, J = 2.4 Hz, 1H), 5.25 (d, J = 5.6 Hz, 1H), 5.16 (d, J = 2.8 Hz, 1H), 3.97 (dd, J = 5.2 Hz, 2.8 Hz, 1H), 3.85 (s, 3H), 3.74 (s, 3H), 2.45 (s, 3H);
13C{1H}
NMR (100 MHz,
CDCl3): δ = 194.6, 161.9, 159.1, 143.7, 141.9, 141.5, 139.9, 134.4, 132.8, 132.5, 130.9, 129.2, 128.9, 128.8, 128.4, 127.6, 127.5, 114.7, 113.0, 103.7, 98.2, 74.2, 55.5, 55.4, 51.0, 21.6; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C32H29ClNO5S 574.1449; Found 574.1448. (5-(2,4-Dimethoxyphenyl)-3-phenyl-1-tosyl-2,3-dihydro-1H-pyrrol-2-yl)(3-flurophenyl)methanone (5l): petroleum ether:ethyl acetate = 10:1-5:1; white solid; mp = 159 °C-160 °C; yield: 46 mg, 41%; 1H NMR (400 MHz, CDCl3): δ = 7.84 (d, J = 7.2 Hz, 2H), 7.46-7.50 (m, 1H), 7.31-7.39 (m, 4H), 7.23 (d, J = 7.6 Hz, 1H), 7.13-7.22 (m, 4H), 6.79 (d, J = 7.2 Hz, 2H), 6.48 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 6.39 (d, J = 2.0 Hz, 1H), 5.21 (d, J = 5.2 Hz, 1H), 5.16 (d, J = 2.8 Hz, 1H), 3.98-4.00 (m, 1H), 3.86 (s, 3H), 3.75 (s, 3H), 2.46 (s, 3H);
13C{1H}
NMR (100 MHz, CDCl3): δ = 194.5, 161.9, 159.2, 143.7, 141.8, 136.5,
134.3, 132.4, 130.2, 129.3, 128.8, 128.5, 127.6, 127.5, 125.2, 120.6, 120.3, 116.4, 116.1, 114.7, 113.0, 103.7, 98.2, 74.5, 55.4, 55.3, 50.9, 21.6; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C32H29FNO5S 558.1744; Found 558.1742. (5-(2,4-Dimethoxyphenyl)-3-phenyl-1-tosyl-2,3-dihydro-1H-pyrrol-2-yl)(3-Methoxylphenyl)methanone (5m): petroleum ether:ethyl acetate = 10:1-4:1; white solid; mp = 164 °C-166 °C; yield: 51 mg, 45%; 1H NMR (400 MHz, CDCl3): δ = 7.56 (dd, J = 8.0, 2.4 Hz, 2H), 7.35-7.40 (m, 4H), 7.15-7.24 (m, 6H), 6.85 (d, J = 7.2 Hz, 2H), 6.46 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 6.35 (d, J = 2.0 Hz, 1H), 5.42 (d, J = 4.8 Hz, 1H), 5.15 (d, J = 3.2 Hz, 1H), 3.96 (dd, J = 4.8 Hz, 3.2 Hz, 1H), 3.84 (s, 3H), 3.80 (s, 3H), 3.72 (s, 3H), 2.44 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3): δ = 195.3, 161.8, 159.8, 159.0, 143.5, 142.0, 141.2, 135.8, 135.0, 132.6, 129.6, 129.1, 128.7, 128.4, 127.7, 127.3, 121.9, 120.5, 114.7, 113.2, 113.1, 103.7, 98.2, 73.6, 55.5, 55.4, 55.3, 51.0, 21.6; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C33H32NO6S 570.1944; Found 570.1939. (5-(4-methoxylphenyl)-3-naphthalen-2-yl)-1H-pyrrol-2-yl)(phenyl)methanone
(6a):
petroleum ether:ethyl acetate = 10:1-4:1; light yellow solid; mp = 157 °C-159 °C; yield: 44 mg, 55%; 1H
NMR (400 MHz, d6-DMSO): δ = 12.11 (s, 1H), 7.95 (d, J = 8.8 Hz, 2H), 7.75-7.78 (m, 1H), 7.70 (s,
1H), 7.69 (d, J = 8.8 Hz, 1H), 7.57 (d, J = 8.8 Hz, 1H), 7.53 (d, J = 7.2 Hz, 2H), 7.39-7.42 (m, 2H), 7.22 (d, J = 8.8 Hz, 1H), 7.17 (t, J = 7.2 Hz, 1H), 7.01-7.08 (m, 4H), 6.90 (d, J = 2.4 Hz, 1H), 3.82 (s, 3H); ACS Paragon Plus Environment
19
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
13C{1H}
Page 20 of 24
NMR (100 MHz, CDCl3): δ = 186.3, 159.5, 139.2, 137.6, 134.1, 133.5, 133.1, 131.9, 131.7,
129.5, 128.2, 128.1, 128.0, 127.8, 127.5, 127.2, 126.3, 126.1, 124.1, 114.7, 109.7, 55.7; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C28H22NO2 404.1651; Found 404.1653. Procedure for the synthesis of product 6b. A 15 mL tube was filled with a solution of 5h (0.20 mmol) in dry DCM (1.0 mL). DBU (0.20 mmol) was added, and then the reaction mixture was stirred at 80 °C in an oil bath. The reaction was monitored by TLC, and finished in 1h. After completion and the removal of solvent, the crude product was purified by silica gel chromatography (petroleum ether:ethyl acetate = 3:1) to afford the desired product 6b. (5-(2,4-dimethoxylphenyl)-3-phenyl-1H-pyrrol-2-yl)(4-pentylphenyl)methanone
(6b):
light
yellow
solid; mp = 146 °C-148 °C; yield: 103 mg, 92%; 1H NMR (400 MHz, CDCl3): δ = 10.54 (s, 1H), 7.65 (d, J = 9.2 Hz, 1H), 7.41 (d, J = 8.0 Hz, 2H), 7.11-7.14 (m, 2H), 7.04-7.06 (m, 3H), 6.87 (d, J = 8.0 Hz, 2H), 6.64 (d, J = 2.8 Hz, 1H), 6.59-6.61 (m, 1H), 6.58 (s, 1H), 4.00 (s, 3H), 3.86 (s, 3H), 2.49 (t, J = 7.2 Hz, 2H), 1.47-1.55 (m, 2H), 1.27-1.35 (m, 2H), 1.18-1.25 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H);
13C{1H}
NMR (100 MHz, CDCl3): δ = 186.0, 160.7, 157.3, 146.3, 136.0, 135.9, 135.0, 134.1, 129.7, 129.4, 128.7, 127.6, 127.5, 126.6, 126.3, 112.2, 109.6, 105.7, 99.1, 55.9, 55.5, 35.8, 31.2, 30.9, 22.5, 14.1; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C30H32NO3 454.2376; Found 454.2376. ASSOCIATED CONTENT AUTHOR INFORMATION Corresponding Author *‡ E-mail:
[email protected] Notes The authors declare no competing financial interest.
S Supporting Information ○
Details of NMR spectra of the compounds prepared. This material is available free of charge via the Internet at http://pubs.acs.org. ACKNOWLEDGMENT.
ACS Paragon Plus Environment
20
Page 21 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
The authors thank the financial support from the National Natural Science Foundation of China (Nos. 21702176, 81773193, and 81571799) and the Key Scientific Research Project of Henan Province (17A150046).
REFERENCES (1) (a) Marti, C.; Carreira, E. M. Total synthesis of (-)-spirotryprostatin B: Synthesis and related studies. J. Am. Chem. Soc. 2005, 127, 11505. (b) Biava, M.; Porretta, G. C.; Poce, G.; Supino, S.; Deidda, D.; Pompei, R.; Molicotti, P.; Manetti, F.; Botta, M. Antimycobacterial agents: Novel diarylpyrrole derivatives of BM212 endowed with high activity toward mycobacterium tuberculosis and low cytotoxicity. J. Med. Chem. 2006, 49, 4946. (c) Magedov, I. V.; Luchetti, G.; Evdokimov, N. M.; Manpadi, M.; Steelant, W. F. A.; Van Slambrouck, S.; Tongwa, P.; Antipin, M. Y.; Kornienko, A. Novel three-component synthesis and antiproliferative properties of diversely functionalized pyrrolines. Bioorg. Med. Chem. Lett. 2008, 18, 1392. (2) (a) Gangjee, A.; Pavana, R. K.; Ihnat, M. A.; Thorpe, J. E.; Disch, B. C.; Bastian, A.; Hamel, E.; Bai, R. Discovery of antitubulin agents with antiangiogenic activity as single entities with multi-target chemotherapy potential. ACS Med. Chem.Lett. 2014, 5, 480. (b) Subramanian, G.; Sud, M. Computational modeling of kinase inhibitor selectivity. ACS Med. Chem. Lett. 2010, 1, 395. (c) Christmann, M.; Brase, M. Asymmetric Synthesis-The Esentials, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2008, 342. (3) (a) Willis, M. C. Transition metal catalyzed alkene and alkyne hydroacylation. Chem. Rev. 2010, 110, 725. (b) Guin, S.; Ghosh, T.; Rout, S. K.; Banerjee, A.; Patel, B. K. Cu (II) catalyzed imine C-H functionalization leading to synthesis of 2, 5-substituted 1, 3, 4-oxadiazoles. Org. Lett. 2011, 13, 5976. (c) Wang, Y. F.; Chen, H.; Zhu, X.; Chiba, S. Copper-catalyzed aerobic aliphatic C-H oxygenation directed by an amidine moiety. J. Am. Chem. Soc. 2012, 134, 11980. (4) (a) Rakshit, S.; Patureau, F. W.; Glorius, F. Pyrrole synthesis via allylic sp3 C-H activation of enamines followed by intermolecular coupling with unactivated alkynes. J. Am. Chem. Soc. 2010, 132, 9585. (b) Saito, A.; Konishi, O.; Hanzawa, Y. Synthesis of pyrroles by gold(I)-catalyzed amino-claisen rearrangement of N-propargyl enaminone derivatives. Org. Lett. 2010, 12, 372. (c) Rueping, M.; Parra, A. Fast, efficient, mild, and metal-free synthesis of pyrroles by domino reactions in water. Org. Lett. 2010, 12, 5281. (d) Toh, K. K.; Wang, Y. F.; Ng, E. P. J.; Chiba, S. Copper-mediated aerobic synthesis of 3-azabicyclo[3.1.0]hex-2-enes and 4-carbonylpyrroles from N-allyl/propargyl enamine carboxylates. J. Am. Chem. Soc. 2011, 133, 13942. ACS Paragon Plus Environment
21
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 22 of 24
(5) (a) Nishibayashi, Y.; Yoshikawa, M.; Hidai, M.; Uemura, S. Novel ruthenium- and platinum-catalyzed sequential reactions: Synthesis of tri- and tetra-substituted furans and pyrroles from propargylic alcohols and ketones. Angew. Chem. Int. Ed. 2003, 42, 2681. (b) Gujarathi, S.; Liu, X.; Hendrickson, H.; Zheng, G. A mild and efficient AgSbF6-catalyzed synthesis of fully substituted pyrroles through a sequential propargylation/amination/cycloisomerization reaction. Tetrahedron. 2014, 70, 5267. (c) Zhang, X. Y.; Yang, Z. W.; Chen, Z.; Wang, J.; Yang, D. L.; Zhang, J.; Cui, H. L. Tandem copper-catalyzed propargylation/alkyne azacyclization/Isomerization reaction under microwave irradiation: Synthesis of fully substituted pyrroles. J. Org. Chem. 2016, 81, 1778. (6) (a) Davies, H. M. L.; Alford, J. S. Rhodium-catalyzed transannulation of 1, 2, 3-triazoles with nitriles.
Chem.
Soc.
Rev.
2014,
43,
5151.
(b)
Chattopadhyay,
B.;
Gevorgyan,
V.
Transition-metal-catalyzed denitrogenative transannulation: Converting triazoles into other heterocyclic systems. Angew.Chem., Int. Ed. 2012, 51, 862. (c) Gulevich, A. V.; Gevorgyan, V. Versatile reactivity of rhodium-iminocarbenes derived from N-sulfonyl triazoles. Angew.Chem., Int. Ed. 2013, 52, 1371. (d) Jiang, Y.; Sun, R.; Tang, X. Y.; Shi, M. Rhodium (II)-catalyzed intramolecular annulation of 1-sulfonyl-1,2,3-triazoles with pyrrole and indole rings: Facile synthesis of N-bridgehead azepine Skeletons. Chem.- Eur. J. 2016, 50, 17910. (7) (a) Chuprakov, S.; Hwang, F. V.; Gevorgyan, W. Rh-catalyzed transannulation of pyridotriazoles with alkynes and nitriles. Angew. Chem. Int. Ed. 2007, 46, 4757. (b) Mahal, L. K.; Yarema, K. J.; Bertozzi, C. R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science. 1997, 276, 1125. (c) Wang, L.; Zhang, Z. W.; Brock, A.; Schultz, P. G. Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 2003, 100, 56. (8) (a) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.;
Fokin, V. V. Rhodium-catalyzed
transannulation of 1, 2, 3-triazoles with nitriles. J. Am. Chem. Soc. 2008, 130, 14972. (b) Chuprakov, S.; Worrell, B. T.; Selander, N.; Sit, R. K.; Fokin, V. V. Stereoselective 1, 3-insertions of rhodium (II) azavinyl carbenes. J. Am. Chem. Soc. 2014, 136, 195. (c) Lee, D. J.; Han, H. S.; Shin, J.; Yoo, E. J. Multicomponent [5+ 2] cycloaddition reaction for the synthesis of 1, 4-diazepines: Isolation and reactivity of azomethine ylides. J. Am. Chem. Soc. 2014, 136, 11606. (d) Spangler, J. E.; Davies, H. M. L. Catalytic asymmetric synthesis of pyrroloindolines via a rhodium (II)-catalyzed annulation of indoles. J. Am. Chem. Soc. 2013, 135, 6802. (9) (a) Miura, T.; Tanaka, T.; Hiraga, K.; Stewart, S. G.; Murakami, M. Stereoselective synthesis of 2,3-dihydropyrroles
from
terminal
alkynes,
azides,
and
α,β-unsaturated
aldehydes
via N-sulfonyl-1,2,3-triazoles. J. Am. Chem. Soc. 2013, 135, 13652. (b) Zibinsky, M.; Fokin, V. V. Sulfonyl-1,2,3-triazoles: Convenient synthones for heterocyclic compounds. Angew. Chem. Int. Ed. 2013, 52, 1507. (c) Chuprakov, S.; Kwok, S. W.; Fokin V. V. Copper (I) and rhodium (II) catalyzed ACS Paragon Plus Environment
22
Page 23 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
denitrogenative reactions for the synthesis of N-heterocyclic compounds. J. Am. Chem. Soc. 2013, 135, 4652. (d) Cheng, Y.; Tang, Z. Xu, F.; Li, C. Y. Synthesis of multifunctionalized 2-carbonylpyrrole by rhodium-catalyzed transannulation of 1-sulfonyl-1, 2, 3-triazole with β-diketone. Org. Lett. 2016, 18, 6168. (e) Liu,S.; Yao,W.; Liu,Y.; Wei,Q.; Chen, J. Wu, X.; Xia, F.; Hu,W. A Rh(II)-catalyzed multicomponent reaction by trapping an a-amino enol intermediate in a traditional two-component reaction pathway. Sci. Adv. 2017; 3: e1602467. (10) (a) Miura, T.; Funakoshi, Y.; Fujimoto, Y.; Murakami, M. A reaction of triazoles with thioesters to produce β-sulfanyl enamides by insertion of an enamine moiety into the sulfur-carbonyl bond. Angew. Chem., Int. Ed. 2015, 54, 9967. (b) Yadagiria, D.; Anbarasan, P. Tandem 1,2-sulfur migration and (aza)-Diels-Alder
reaction
of
β-thio-α-diazoimines:
rhodium
catalyzed
synthesis
of
(fused)-polyhydropyridines, and cyclohexenes. Chem. Sci. 2015, 6, 5847. (c) Miura, T.; Funakoshi, Y.; Fujimoto, Y.; Nakahashi, J.; Murakami, M. Facile synthesis of 2, 5-disubstituted thiazoles from terminal alkynes, sulfonyl azides, and thionoesters. Org. Lett. 2015, 17, 2454. (11) He, J.; Shi, Y.; Cheng, W.; Man, Z.; Yang, D.; Li, C. Y. Rhodium-catalyzed synthesis of 4-bromo-1,2-dihydroisoquinolines: Access to bromonium ylides by the intramolecular reaction of a benzyl bromide and an α-imino carbene. Angew. Chem. Int. Ed. 2016, 55, 4557. (12) (a) Jung, D. J.; Jeon, H. J.; Kim, J. H.; Kim, Y.; Lee, S. DMF as a source of oxygen and aminomethine: Stereoselective 1,2-insertion of rhodium(II) azavinyl carbenes into the C═O bond of formamides for the synthesis of cis-diamino enones. Org. Lett. 2014, 16, 2208. (b) Miura, T.; Funakoshi, Y.; Tanaka, T.; Murakami, M. Direct production of enaminones from terminal alkynes via rhodium-catalyzed reaction of formamides with N-Sulfonyl-1,2,3-triazoles. Org. Lett. 2014, 16, 2760. (c) Ma, X.; Xie, X.; Liu, L.; Li, T.; Wang, H. Facile synthesis of pyrroloindoles via a rhodium (ii)-catalyzed annulation of 3-benzylidene-indolin-2-ones and α-imino carbenes. Chem. Commun. 2018, 54, 1595. (d) He, J.; Man, Z.; Shi, Y.; Li, C. Y. Synthesis of β-amino-α,β-unsaturated ketone derivatives via sequential rhodium-catalyzed sulfur ylide formation/rearrangement. J. Org. Chem. 2015, 80, 4816. (13) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Modern organic synthesis with α-diazocarbonyl compounds. Chem. Rev. 2015, 115, 9981. (14) NOE experiments were conducted for 3a, 3b, 3g, 3i, 3j, 3n, 5b, 5d, 5g and 5m (ESI†). No signals were observed to confirm the interaction between ring A and ring B, which could also indicate the trans-configuration. Moreover, the tosyl groups were trans- to ring B according to the NOE experiment.
Ts R2
O
N
H2 R3
H1
B
A
(15) (a) Chuprakov, S.; Kwok, S. W.; Zhang, L.; Lercher, L.; Fokin, V. V. Rhodium-catalyzed enantioselective cyclopropanation of olefins with N-sulfonyl-1,2,3-triazoles. J. Am. Chem.Soc. 2009, ACS Paragon Plus Environment
23
The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 24 of 24
131, 18034. b) Miura, T.; Biyajima, T.; Fujii, T.; Murakami, M. Synthesis of α-amino ketones from terminal alkynes via rhodium-catalyzed denitrogenative hydration of N-Sulfonyl-1,2,3-triazoles. J. Am.Chem. Soc. 2012, 134, 194. (16) Trost, B. M.; Cramer, N.; Silverman, S. M. Enantioselective construction of spirocyclic oxindolic cyclopentanes by palladium-catalyzed trimethylenemethane-[3+2] cycloaddition. J. Am. Chem. Soc. 2007, 129, 12396. (17) Rajib, G.; Dipak, K. P. Effect of donor-acceptor coupling on TICT dynamics in the excited states of two dimethylamine substituted chalcones. J. Phys. Chem. A. 2015, 119, 11128.
ACS Paragon Plus Environment
24