Ring-Opening Polymerization

ethylene-units are formed i n this way. ... from 2 different monomers, but since the monomer i t - ... sulphuric acid as catalyst is heated up to 100Â...
6 downloads 0 Views 2MB Size
6 Ring-Opening Polymerization of Macrocyclic Acetals ROLF C. SCHULZ, K. ALBRECHT, C. RENTSCH, and Q. V. TRAN THI

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

Institute of Organic Chemistry, University of Mainz, D-65 Mainz, West Germany

Numerous oxacyclic compounds are well known to form polymers in the presence of cationic initiators. In this way polyethers and polyacetals are obtained (1)(11). Besides the parent compounds, listed in Table 1 many substituted oxacycles, furthermore bicyclic (12)-

Table I. Some polymerizable oxacyclic compounds

77

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

78

RING-OPENING

POLYMERIZATION

(15) as w e l l as spirocyclic oxygen c o n t a i n i n g compounds (16);(17) a r e p o l y m e r i z a b l e . The p o l y m e r i z a t i o n mechanism does n o t o n l y depend on the monomer, b u t a l s o on the initiator and the e x p e r i m e n t a l c o n d i t i o n s . In particular the p o l y m e r i z a t i o n o f 1.2.- and 1.3-epoxides ( 1 ) - ( 5 ) ; ( 1 8 ) ; ( 1 9 ) ; t e t r a h y d r o f u r a n e ( 1 ) ( 4 ) ; ( 6 ) ; ( 2 0 ) ; d i o x o l a n e (21);(22) and t r i o x a n e ( 1 1 ) ; (23)-(26) was t h o r o u g h l y i n v e s t i g a t e d . F o r reviews see ( 4 ) ; ( 8 ) ; ( 2 7 ) ; ( 2 8 ) ; ( 3 0 ) . I t s h o u l d be emphasized, t h a t different o x a c y c l i c monomers c a n a l s o be c o p o l y m e r i zed by cationic catalysts. Of g r e a t practical importance is e.g. the c o p o l y m e r i z a t i o n o f t r i o x a n e w i t h e t h y l e n e o x i d e o r d i o x o l a n e ( 3 1 ) . Macromolecules w i t h a statistic distribution o f oxymethylene- and oxye t h y l e n e - u n i t s a r e formed i n t h i s way. On the o t h e r hand, however, t h e h o m o p o l y m e r i z a t i o n o f d i o x o l a n e y i e l d s a polymer c o n s i s t i n g o f s t r i c t l y a l t e r n a t i n g oxymethylene- and o x y e t h y l e n e u n i t s ( 2 1 ) ; ( 3 2 ) ; t h e r e f o r e i t can f o r m a l l y be c o n s i d e r e d as an a l t e r n a t i n g copolymer ( e q . i ) .

- C H O - •CH CH 0M E a

2

2

(i)

I t i s not formed by a normal c o p o l y m e r i z a t i o n s t a r t i n g from 2 d i f f e r e n t monomers, b u t s i n c e t h e monomer i t s e l f a l r e a d y c o n t a i n s both u n i t s i n the r a t i o o f 1 t o 1. We wanted t o i n v e s t i g a t e , whether i t would be poss i b l e t o p r e p a r e copolymers w i t h o t h e r sequences from analogous monomers by h o m o p o l y m e r i z a t i o n . F o r t h i s purpose one needs c y c l i c a c e t a l s , which c o n t a i n the oxymethylene- and o x y e t h y l e n e - u n i t s i n the d e s i r e d molar r a t i o . Of course d u r i n g t h e p o l y m e r i z a t i o n o f these monomers no e l i m i n a t i o n o f formaldehyde o r r e arrangement may o c c u r , s i n c e o t h e r w i s e the r e g u l a r sequence i n t h e polymer i s d i s t u r b e d . Monomers, which s h o u l d be a b l e t o form sequenced copolymers a c c o r d i n g t o t h e d e s c r i b e d p r i n c i p l e , a r e the compounds /1/-/6/. In t h e f o l l o w i n g , p r e p a r a t i o n and p r o p e r t i e s o f these monomers and the c o r r e s p o n d i n g polymers w i l l be described.

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

6.

SCHULZ ET AL.

Polymerization

of Macrocyclic

Acetals

79

1.3.5-trioxacycloheptane *(trioxepane)/!/ T r i o x e p a n e / l / i s formed as a b y - p r o d u c t d u r i n g t h e copolymerization o f trioxane or tetroxane with e t h y l e n e oxide o r d i o x o l a n e ( 3 3 ) - ( 3 5 ) . F o r i t s p r e p a r a t i o n a mixture o f d i o x o l a n e , paraformaldehyde and s u l p h u r i c a c i d as c a t a l y s t i s h e a t e d up t o 100°C f o r 5 h. A f t e r w a r d s one d i s t i l s a t 12 t o r r and 50°C ( 3 6 ) . A f t e r r e p e a t e d f r a c t i o n a t i o n a l d i s t i l l a t i o n s from lithium-aluminium hydride a gaschromatographically pure monomer i s o b t a i n e d (b.p. 1 3 0 ° C ) . I n t h e H-NMR spectrum o n l y two sharp s i n g l e t s appear (see F i g . l ) . The s i g n a l a t B = 4.92 ppm i s a s s i g n e d t o the methyl e n e p r o t o n s (M) and the s i g n a l a t S = 3.8 2 ppm t o the e t h y l e n e p r o t o n s ( E ) . The peak r a t i o i s e x a c t l y 1 t o 1. An a d d i t i o n o f s h i f t r e a g e n t s (Eu(F0D)3) l e a d s to a s h i f t w i t h o u t s p l i t t i n g o f t h e s i g n a l s ( 3 7 ) . The monomer i s e a s i l y p o l y m e r i z a b l e by c a t i o n i c c a t a l y s t s i n s o l u t i o n and i n b u l k . C o l o u r l e s s , w a x l i k e polymers a r e o b t a i n e d . At the p o l y m e r i z a t i o n o f / l / , e i t h e r the bond between 01 and C2 o r the bond between C2 and 03 can be c l e a v e d . In b o t h cases polymers w i t h the same t r i a d - s e q u e n c e c o n s i s t i n g o f 2 oxymethylene and 1 o x y e t h y l e n e - u n i t s (MME) would o c c u r .

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

RING-OPENING POLYMERIZATION

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

80

A change o f the r i n g opening mechanism o r a t r a n s a c e t a l i z a t i o n would o f c o u r s e l e a d to o t h e r sequences. Whereas Gresham and B a l l (36) assume, t h a t the polymers o f t r i o x e p a n e have a r e g u l a r s t r u c t u r e w i t h a r a t i o o f 2 M to I E , Duke (38) c o n c l u d e d from IRand NMR-measurements, t h a t l o n g e r M-sequences must e x i s t . In our own NMR-spectroscopic i n v e s t i g a t i o n s we a l s o found, t h a t i n the homopolymers o f t r i o x e p a n e also MMM-triads ( S = 4,89 ppm) and E M E - t r i a d s ( 6 = 4,77 ppm) o c c u r b e s i d e the e x p e c t e d MME-triads (see F i g . l ) . Furthermore from the 13C-NMR-spectra we were a b l e t o determine pentad-sequences (see F i g . 2 ) and a f t e r a d d i t i o n o f Eu(F0D)3 even heptad-sequences (37). B e s i d e t h i s we c o n f i r m e d , t h a t i n the polymer the mole f r a c t i o n o f the M-units i s e v i d e n t l y l a r g e r than the c a l c u l a t e d v a l u e o f 0,666. T h e r e f o r e the polymer made from / l / has n e i t h e r the r i g h t o v e r a l l c o m p o s i t i o n nor the e x p e c t e d r e g u l a r s t r u c t u r e . In o r d e r t o c l e a r up t h e s e anomalies the p r o g r e s s o f the p o l y m e r i z a t i o n i n d i c h l o r o e t h a n e w i t h boront r i f l u o r i d e a t d i f f e r e n t temperatures was i n v e s t i ­ g a t e d . H e r e t o the d e c r e a s e o f the monomer has been d e t e r m i n e d by gas chromatography ( 3 9 ) . An example o f a t i m e - c o n v e r s i o n curve i s shown i n F i g . 3 . The p o l y ­ m e r i z a t i o n proceeds r a t h e r q u i c k l y ; the monomer con­ c e n t r a t i o n reaches a f i n a l s t a t e , which does not change o v e r s e v e r a l h o u r s . T h i s c o n c e n t r a t i o n i n ­ c r e a s e s w i t h i n c r e a s i n g p o l y m e r i z a t i o n temperature (see T a b l e 2 ) . These f a c t s l e a d us to c o n c l u d e t h a t i t i s an e q u i l i b r i u m p o l y m e r i z a t i o n . The p l o t o f In (M) a g a i n s t 1/T f o r temperatures between 0° and 60°C i s shown i n F i g . 4 . We c a l c u l a t e d Δ S • -18,9 J/Mol*K and H = -6,6 k J / M o l . By e x t r a p o l a t i o n t o a monomer c o n c e n t r a t i o n o f (M) = 1 Mol/1 i n e q u i l i b r i u m , a f o r m a l c e i l i n g temperature o f 80°C r e s u l t s . In f a c t a t 80°C and w i t h a monomer concen­ t r a t i o n o f 1 Mol/1 no p o l y m e r i z a t i o n t a k e s p l a c e . But as we found, i n the gas chromatogramm o f the r e a c t i o n m i x t u r e , d i o x o l a n e too i s formed d u r i n g p o l y ­ m e r i z a t i o n (see F i g . 3 ) . T h i s f a c t e x p l a i n s the NMRs p e c t r o s c o p i c s t a t e m e n t , t h a t the polymer does not have the same c o m p o s i t i o n as the monomer, but c o n t a i n s an excess o f M - u n i t s . The c o n c e n t r a t i o n o f d i o x o l a n e a l s o reaches a f i n a l v a l u e , which i n c r e a s e s w i t h r i s i n g p o l y m e r i z a t i o n temperature (see T a b l e 2 ) . But t h i s means, t h a t the c o m p o s i t i o n o f polymer depends on temperature and approaches the t h e o r e t i c a l v a l u e o n l y at low p o l y m e r i z a t i o n t e m p e r a t u r e . The d e s c r i b e d r e s u l t s show, t h a t i n the p o l y m e r i z a t i o n o f t r i o x e p a n e s s

A

S

S

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Polymerization

SCHULZ ET AL.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

6.

of Macrocyclic

Acetals

Figure 1. H-NMR spectra of trioxepane / l / and the polymer

ι

2

Figure 2. C-NMR spectrum of a polymer of trioxepane (CDCU; 25, 2 MHz). (1) MEMEM; (2) MMMEM; (3) EMMEM; (4) MMMMM; (5) EMMMM; (6) EMMME; (7) MMEMM; (8) ΎΜΕΜΕ, EMEMM. 13

Γ92.35 89.06!88,27 67.41 66.79 95,45 91.99 88.68

6 in ppm

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

81

82

RING-OPENING POLYMERIZATION Polymerization of trioxepane at 20°C with BF .Et 0 in CH-pCHfl

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

3

2

Figure 3. Time-conversion curve for the consumption of monomer (χ) and forma­ tion of dioxolane (O) during the polymeri­ zation of trioxepane /!/

*

*

11-

rit-

Table II· E q u i l i b r i u m c o n c e n t r a t i o n o f Dioxolane £DOlJ d u r i n g p o l y m e r i z a t i o n o f t r i o x e p a n e / l / w i t h BF^-etherate i n dichloroethane e

[m£ (Mol/1)

temp.(°C)

JDOLj

Q

5,55

0

5,72

20

0,50

5,82

30

0,60

5,50

45

1,01

5,71

60

1,36

(Mol/1)

0,23

Polymerization of

0

in Cf^CICH a 2

-0J

mth BF .Et 0 3

2

-0.3

-05 -Q6 Ό.7 -0.6 Figure 4. Monomer concentration at equilibrium in the polymerization of trioxepane /!/

3.5 eo

30

0

I VTtK .1(P] 4

X

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

2Ch

6.

SCHULZ ET AL.

Polymerization

of Macrocyclic

Acetals

83

s e v e r a l r e a c t i o n s o c c u r s i m u l t a n e o u s l y and d i f f e r e n t polymers and monomers are formed s i d e by s i d e . The f o l l o w i n g scheme comprises the o b s e r v a t i o n s .

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

stst. copolymer

(iii)

J polymer +X

3o) i n ­ d i c a t i n g t h a t the r a t e o f i n i t i a t i o n i s c o n s i d e r a b l y lower than t h a t o f p r o p a g a t i o n and t h a t the p o l y m e r i ­ z a t i o n i s accompanied by some c h a i n b r e a k i n g r e a c t i o n s . The thermodynamic parameters o f the e q u i l i b r i u m p o l y ­ m e r i z a t i o n o f 111 (and some r e l a t e d c y c l i c f o r m a i s ) was s t u d i e d i n more d e t a i l by Yamashita e t a l . (22) and by B u s f i e l d and Lee ( 4 4 ) . Furthermore, i t was p o s t u l a t e d t h a t the polymer degraded e x c l u s i v e l y to monomer i n the p r e s e n c e o f boron t r i f l u o r i d e . In our own work we were o c c u p i e d p r e d o m i n a n t l y w i t h the NMR-spectroscopic sequence a n a l y s i s , i n o r d e r t o see, whether the c o n c e p t f o r p r e p a r i n g sequenced copolymers, d e s c r i b e d a t the b e g i n n i n g , c o u l d be v a l i d a t e d (41). In the H-NMR-spectrum the monomer 11/ shows o n l y two sharp s i n g l e t s a t S = 3,8 ppm (E) and S = 4,9 ppm (M) w i t h a peak r a t i o o f 4 to 1 (see F i g . 5 ) . A d d i t i o n o f Eu (DPM)3 e f f e c t s a s h i f t t o lower f i e l d and a s t r o n g s p l i t t i n g o f the e t h y l e n e s i g n a l , as the p r o t o n s a t C4 and C8 are not e q u i v a l e n t to the p r o t o n s at C5 and C7. In the H-NMR-spectra o f the homo­ polymer a l s o o n l y two peaks o c c u r , h a v i n g the same peak r a t i o as i n the monomer (see F i g . 5 ) . From t h i s , i t can be c o n c l u d e d , t h a t not o n l y the o v e r a l l compo­ s i t i o n but a l s o the o r d e r o f M- and Ε-units i s the same i n polymer and i n monomer. Hence t h e r e i s o n l y one k i n d o f r i n g opening and rearrangements or e l i m i ­ n a t i o n s can be e x c l u d e d . That means, i n f a c t , t h a t a t the r i n g opening h o m o p o l y m e r i z a t i o n o f t r i o x o c a n e , a sequenced copolymer w i t h a r e g u l a r sequence o f (MEE)t r i a d s i s formed ( e q . v i i ) .

— CH 0 — CH CH 0 — CH CH 0 — M E Ε 2

2

2

2

2

(vii)

χ

T h i s f i n d i n g agrees w i t h the r e s u l t s o f W e i c h e r t (42) who a n a l y s e d the s t r u c t u r e o f p o l y t r i o x o c a n e by a c T 3 i c d e c o m p o s i t i o n . I n d i c a t i o n s o f endgroups have not been

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

6.

SCHULZ ET AL.

Polymerization

of Macrocyclic

85

Acetàls

found, from which one s h o u l d not c o n c l u d e , t h a t macroc y c l i c polymers are i n hand.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

1.3.6.9-tetraoxacycloundecane f o r m a l ) /3/

(triethylene

glycol

T h i s compound and i t s p o l y m e r i z a b i l i t y was f i r s t mentioned by C a r o t h e r s ( 4 5 ) . I t i s p r e p a r e d from t r i e t h y l e n e g l y c o l and p a r a f o r m a l d e h y d e ; by a d d i t i o n o f s t r o n g a c i d s a p r e p o l y m e r i s p r o d u c e d . From t h i s , the monomer /3/ i s s p l i t o f f i n a second s t e p by h e a t i n g i n vacuo. The monomer used by us has the f o l l o w i n g p r o p e r t i e s : m.p. 27°C; b.p. 56°C/0,4 T o r r ; ηβ° = 1,4541; NMR-signals o f /3/ were f i r s t r e p o r t e d by Burg ( 4 9 ) . NMR d a t a o b t a i n e d by us are summarized i n T a b l e I I I and IV. /3/ i s p o l y m e r i z a b l e by s e v e r a l c a t i o n i c i n i t i a ­ t o r s i n s o l u t i o n and i n b u l k a t temperatures between -20°C and +150°C. The polymers are c o l o u r l e s s w a x l i k e s u b s t a n c e s ; they are r e a d i l y s o l u b l e i n water, THF, a r o m a t i c h y d r o c a r b o n s , a l c o h o l s and h a l o g e n a t e d hydro­ carbons . In the H-NMR spectrum o f the polymer o n l y 3 sharp peaks appear a t $ = 4,72; 3,67 and 3,65 ppm (see T a b l e I I I . T h e peak r a t i o o f M:E =1:6 agrees w i t h t h a t o f the monomer. The 13C-NMR-signals are at 5 =95,4; 70,4 and 66,8 ppm (see T a b l e IV) .There are no i n d i c a t i o n s o f an i r r e g u l a r s t r u c t u r e and we t h e r e f o r e c o n c l u d e , t h a t the polymer a t l e a s t c o n t a i n s v e r y l o n g b l o c k s o f (MEEE)-tetrads and c o n s e q u e n t l y can be d e s c r i b e d as a sequenced copolymer ( e q . v i i i ) .

— C H 0 — (CH CH 0) Μ Ε 2

2

2

3

(viii)

3

χ

A f t e r e s t a b l i s h i n g the s t r u c t u r e o f the polymer we s t u d i e d i n d e t a i l the way o f f o r m a t i o n . Hereto we c a r r i e d out s o l u t i o n - p o l y m e r i z a t i o n s i n methylene c h l o r i d e under argon-atmosphere ( 5 o ) . Monomer con­ c e n t r a t i o n s were between 0,15 and 2,5 Mol/1, tempe­ r a t u r e between -20°C and +20°C. T r i f l u o r o m e t h a n e s u l p h o n i c a c i d s e r v e s as c a t a l y s t . A f t e r d e f i n i t e t i m e s , p o l y m e r i z a t i o n was quenched by the a d d i t o n o f some b a s i c aluminium o x i d e o r t r i e t h y l a m i n e and the

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

RING-OPENING POLYMERIZATION

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

Polymer



s

ο Figure 5. H-NMR spectra of tri­ oxocane /!/ and its polymer

5voV«u> 4 . ο " " 3

T a b l e I I I . H-NMR s i g n a l s o f t r i e t h y l e n e g l y c o l f o r m a l (M^), the polymer (P) and the oligomers o f the g e n e r a l formula/7/ -0-CH -02

-0-CH - CH -02

2

4.79

3.63

4.75

3.72

3.68

4.75

370

3.67

4.75

3.69

3.67



4.74

3.69

3.66

**6

4.74

3.69

3.66

M

4.75

3.69

3.66

"e

474

3fiB

3.67

Ρ

4.72

3.67

3.6S

7

3.69

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

6.

SCHULZ ET AL.

Polymerization

of

Macrocyclic

Acetals

87

c o m p o s i t i o n o f the r e a c t i o n m i x t u r e was a n a l i z e d by h i g h p r e s s u r e g e l p e r m e a t i o n chromatography (HP-GPC) (Waters ALC/GPC 2ol w i t h Ri d e t e c t o r R 401; Stationary phase: S t y r a g e l ; 100 X + 500 X mobile phase: methylene c h l o r i d e ) . I t appears t h a t under the a p p l i e d r e a c t i o n con­ d i t i o n s not o n l y polymers (with m o l e c u l a r weights from 10,000 to 80,000) are formed, but a l s o n o t i c e a b l e amounts o f s e v e r a l o l i g o m e r s ( l a b e l l e d as M2 t o M± see F i g . 6 ) . I f the consumption o f monomer M, the f o r ­ mation o f o l i g o m e r M 2 , and the t o t a l o f a l l h i g h e r o l i g o m e r s and polymers are p l o t t e d as a f u n c t i o n o f t i m e , t i m e - c o n v e r s i o n c u r v e s r e s u l t as shown i n F i g . 7 . One can see, t h a t a f t e r about 3o minutes a f i n a l s t a t e i s r e a c h e d w i t h about 3,51 r e s i d u a l monomer and about 9% M. I f pure polymer i s t r e a t e d w i t h trifluoromethane s u l p h o n i c a c i d under the same c o n d i t i o n s , e v e n t u a l l y e x a c t l y the same f i n a l s t a t e ( r e f e r r i n g t o type and amount o f monomer, o l i g o m e r and polymer) i s r e a c h e d (see F i g . 8 ) . Hence i t i s s u r e l y a m a t t e r o f a thermo­ dynamic e q u i l i b r i u m p o l y m e r i z a t i o n . W i t h i n a range o f i n i t i a l monomer c o n c e n t r a t i o n between 0,2 to 0,5 Mol/1 the e q u i l i b r i u m monomer c o n c e n t r a t i o n i s c o n s t a n t and amounts at 0°C t o (0,0146 ± 0,0016) Mol/1. The equili­ b r i u m c o n c e n t r a t i o n o f the dimer a t 0°C i s (0,0236 0,0013) Mol/1. The temperature dependence o f t h e s e c o n c e n t r a t i o n s was s t u d i e d f o r the p o l y m e r i z a t i o n i n methylene c h l o r i d e between -25°C and + 30°C w i t h t r i fluoromethane s u l p h o n i c a c i d as c a t a l y s t . A D a i n t o n p l o t o f the r e s u l t s i s shown i n F i g . 9 . We c a l c u l a t e d from the s l o p e and the i n t e r c e p t ^ H s s = (-1,9 * 0,2) k c a l / M o l = (-7,95 0,8)kJ/Mol and Δ S g = (+1,5 0,5) c a l / M o l * K = (+6,24 * 2,1) J/Mol*K. The s m a l l and p o s i t i v e entropy i s noticeable.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

9

2

±

±

s

C y c l i c o l i g o m e r s o f the

t r i e t h y l e n e g l y c o l formal

From the above mentioned r e s u l t s , i t f o l l o w s t h a t the o b s e r v e d o l i g o m e r s are not b y - p r o d u c t s , but are a l l p r e s e n t i n a r e v e r s i b l e e q u i l i b r i u m w i t h the monomer and the polymer. T h e r e f o r e i t i s i m p o r t a n t to know t h e i r s t r u c t u r e and - i f p o s s i b l e - the way o f f o r m a t i o n . We succeeded i n i s o l a t i n g and i d e n t i f y i n g the f i r s t 8 members o f the homologous s e r i e s o f o l i g o m e r s by p r e p a r a t i v e GPC. R e c e n t l y a d e t a i l e d d e s c r i p t i o n has been p u b l i s h e d by us (51). The s u b s t a n c e c a l l e d M~

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

RING-OPENING POLYMERIZATION

Table IV. C-NMR s i g n a l s o f t r i e t h y l e n e g l y c o l f o r m a l (M^), the polymer (P) and the oligomers o f the g e n e r a l formula / ? / -0-CI1 -CH -0-

-C-CH -0-

2

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

2

2

67.8

70A

96.2

70.6

M

95.1

70.8

70.6

C6A

"3

95.3

70A

702

C6.6

953

70/,

66.6

%

95.4

70A

66.7

M

95,6

70.5

66J9

95.6

70.6

66#

"a

95.6

70.5

6Ô.9

P

95A

70A

66.8

2

6

S 10

1

15

19 mÎ

/M,/ « 0.5MotII; CH&i 0°C 0

Figure 6. HP-GPC curves of the reaction mixture during the polymerization of triethylene glycol formal /3/

[CF S0 H1 = 0.1 Mol-% 3

3

μ-εί/ΓΟ&δΟΟλ +100Ai 1.0 ml CH a lmin 2

2

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

SCHULZ ET AL.

Polymerization

of Macrocyclic

Acetals

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

υ

20

min 10

Figure 7. Time-conversion curve for the consumption of monomer (M ), formation of polymer (P), and dimer (M ) during the polymerization of triethylene glycolformal /3/* (deter­ mined by HP-GPC) t

Γ

3$0 H

J

CF

3

t Ch^C^O^

2

0.5 Mol It ; 0,1Mol-%

startg. soin

•Ο

equilibrium

8 10 15 iSml tPlos [M^ 0.31Molll CH C^ o lCF S0 Hj=Q1Mol-% μ-Styragel 500A* 100 A Wm/CH q2/min s

3

:

2

3

;

2

:0

C

Figure 8. HP-GPC curves of the reaction mixture dur­ ing depolymerization of a polymer of triethylene gly­ colformal /3/

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

90

RING-OPENING POLYMERIZATION

i n HP-GPC t u r n e d out t o be the c y c l i c dimer o f compound /3/. The dimer i s p o l y m e r i z a b l e under the same c o n d i t i o n s as /3/ and a f t e r r e a c h i n g the e q u i l i b r i u m i t l e a d s t o the same o l i g o m e r d i s t r i b u t i o n as the monomer and the polymer (see F i g . l o ) . A l l o l i g o m e r s a r e c o l o u r l e s s c r y s t a l l i n e compounds.The m e l t i n g p o i n t s (see T a b l e V) o f the o l i g o mers w i t h even-numbered m u l t i p l e s o f t h e monomers a r e always h i g h e r than the odd-numbered ( 4 7 ) . The H-NMRs p e c t r a a r e n e a r l y i d e n t i c a l f o r a l l o l i g o m e r s and l e a d t o the c o n c l u s i o n , t h a t a l l have analogous s t r u c t u r e (compare T a b l e s I I I and I V ) . I n d i c a t i o n s o f endgroups a r e n o t a v a i l a b l e e i t h e r i n t h e NMR- o r i n the IR-spectra, v e r i f y i n g that i t i s a matter o f c y c l i c o l i g o m e r s . The mass s p e c t r a o f the dimer ( M 2 ) and the t r i m e r ( M 3 ) gave the e x p e c t e d m o l e c u l a r i o n s . The g e l c h r o m a t o g r a p h i c e l u t i o n volumes f o r a l l o l i g o m e r s a r e on a common curve which i s , however, c l e a r l y d i f f e r e n t from the curve f o r open c h a i n e t h y l e n e g l y c o l o l i g o mers ( F i g . 1 1 ) . T h i s p r o v e s , t h a t the o l i g o m e r s occur i n g a t the p o l y m e r i z a t i o n o f /3/ ( c a t a l y z e d by t r i fluoromethane s u l p h o n i c a c i d ) have the f o l l o w i n g g e n e r a l s t r u c t u r e 111.

7

Whether a l s o the h i g h polymers have r i n g s t r u c t u r e , has h i t h e r t o n o t y e t been d e f i n i t e l y p r o v e d o r d i s proved. The f o r m a t i o n o f c y c l i c o l i g o m e r s can be exp l a i n e d by two d i f f e r e n t mechanisms: a) a s t e p w i s e r i n g e x t e n s i o n takes p l a c e by i n s e r t i o n a t the f o r m a l bond w i t h o u t f o r m a t i o n o f l i n e a r i n t e r m e d i a t e s ( 2 7 ) ; ( 5 2 ) ( s e e Scheme 1) b) the c h a i n growth proceeds by open c h a i n c a r b o x onium-ions ( p o s s i b l y i n e q u i l i b r i u m w i t h e s t e r g r o u p s ) ( 5 3 ) ; ( 5 4 ) and the c y c l i c o l i g o m e r s a r i s e by back-ïïTting (see Scheme 2 ) . From our r e s u l t s we cannot d e c i d e , which mechanism p r e v a i l s . F i n a l l y i t s h o u l d be mentioned t h a t d u r i n g s e v e r a l o t h e r p o l y c o n d e n s a t i o n s and i o n i c p o l y m e r i z a t i o n s , the

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

6.

Polymerization

SCHULZ E T A L .

à H

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

d S

of Macrocyclic

91

Acetals

- - 7,β5 ± 0,0 Κ J/Mol

s s

SS

a

*

6

i

2 4

± >* 7

J

/

K

M

o

1

e

•-25 C

4

M

- 1 0 ^

Figure 9. Monomer concentration at equilibrium in the polymerization of Methylene glycol formal /3/

5 70 2

19ml

/5

IM J

0.23 Mollh CH CI ; 0°C

Qs

2

2

[CF S0 H] = 0.18 Mol-% 3

3

μ-Styragel 500Â Wml Chimin :

Figure 10. HP-GPC curves of the reaction mixture during the polymerization of the aimer of Methylene glycol formal (M ) g

In Ring-Opening Polymerization; Saegusa, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

RING-OPENING POLYMERIZATION

Table V.

Melting points of c y c l i c

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 10, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0059.ch006

oligomers o f the general

s t r u c t u r e /7/

Degree

number

melting

o f polym.

of ring

point

x

atoms

°C

Μ

χ

1

11

27

M

2

2

22

88

M

3

3

33

27

M

4

4

44

56

M

5

5

55

19

M

6

6

66

38

M

?

7

77

23

Μ

Λ

8

88

28

loçMW\MW 3.3 PEG1500l\

Ma

•1C00 RING •562

PEG60o\