Roles of Secondary Metabolism of Wood Rotting Fungi in

of the secondary metabolic pathway originating from L-phenylalanine (6-. 9), are not fully .... HC/LN culture was 8-fold greater than that of the HC/H...
1 downloads 0 Views 1MB Size
Chapter 30

Roles of Secondary Metabolism of Wood Rotting Fungi in Biodegradation of Lignocellulosic Materials 1

2

1

1

Mikio Shimada , Akira Ohta , Hiroshi Kurosaka , Takefumi Hattori , Takayoshi Higuchi , and Munezoh Takahashi 1

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

1

1

W o o d Research Institute, Kyoto University, Uji, Kyoto 611, Japan 2

Shiga Forest Research Center, Yasu, Shiga 520—23, Japan

The brown-rot fungus Lentinus lepideus produces 5 dif­ ferent phenylpropanoids and methyl p-anisate as sec­ ondary metabolites in both high and low nitrogen nutri­ ent-containing cultures. A new metabolite, p-methoxy­ phenylpropanol, was also identified. The white-rot fun­ gus Phanerochaete chrysosporium produces veratrylglyc­ erol and veratryl alcohol as secondary metabolites in the extracellular culture fraction. The "ligninase" of this white-rot fungus catalyzes Cα-Cβ cleavage of vera­ trylglycerol, yielding glycolaldehyde and veratraldehyde. Both a synthetic lignin model substrate and the natu­ ral metabolites of the white-rot fungus were oxidized by this extracellular peroxidase. The possible roles of this nitrogen recycling system and the cinnamate pathway, which are involved in the secondary metabolism of L­ -phenylalaninein brown-rot and white-rot fungi, are dis­ cussed in relation to wood decay processes. It is t i m e l y t o a t t e m p t t o f o r w a r d a n u n i f y i n g hypothesis for the processes of: (i) l i g n i n biosynthesis i n higher p l a n t s a n d l i g n i n biodégradation b y w h i t e - r o t f u n g i ; (ii) cellulose a n d l i g n i n d e g r a d a t i o n b y w h i t e - r o t f u n g i ; ( i i i ) the d e g r a d a t i o n o f p l a n t l i g n i n s a n d m o n o m e r i c f u n g a l m e t a b o l i t e s d u r i n g w o o d decay; a n d ( i v ) differences i n L - p h e n y l a l a n i n e - c i n n a m a t e p a t h w a y s between w h i t e - r o t a n d b r o w n - r o t f u n g i . A s F i g u r e 1 depicts, p h e n y l a l a n i n e a m m o n i a - l y a s e ( P A L ) , w h i c h occurs u b i q u i t o u s l y i n higher plants a n d the w o o d - r o t t i n g B a s i d i o m y c e t e s (1-3), seems t o play a c o m m o n c e n t r a l role i n the conversion o f p h e n y l a l a n i n e ( b y d e a m i n a t i o n ) t o a w i d e v a r i e t y o f secondary m e t a b o l i t e s . These i n c l u d e lignins i n higher plants (4), v e r a t r y l a l c o h o l i n the w h i t e - r o t fungus Phanerochaete chrysosporium (4a), a n d m e t h y l p-anisate i n the b r o w n - r o t fungus 0097-6156/89/0399-0412$06.00/0 © 1989 American Chemical Society

30.

SHIMADA ET AL.

Roles of Secondary Metabolism of Fungi

413

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

Lentinus lepideus (5). Interestingly, P A L is absent f r o m b o t h b a c t e r i a l a n d animal kingdoms. T h e t r u e b i o c h e m i c a l significance o f t h i s d e a m i n a t i o n , a n d t h e f u n c t i o n o f t h e secondary m e t a b o l i c p a t h w a y o r i g i n a t i n g f r o m L - p h e n y l a l a n i n e (69), are n o t f u l l y u n d e r s t o o d . It i s , t h o u g h , n o t e w o r t h y t h a t w o o d - r o t t i n g Basidiomycetes preferentially attack nitrogen-poor wood substrates i n their n a t u r a l e n v i r o n m e n t s . [Note t h a t the average C / N r a t i o s for h a r d w o o d s a n d softwoods are 300 a n d 1000, respectively (10).] T h i s preference is s u r p r i s i n g since t h e a v a i l a b i l i t y o f n i t r o g e n is c r u c i a l for the g r o w t h o f w o o d - d e s t r o y i n g m i c r o o r g a n i s m s . T h i s fact, together w i t h t h e a b u n d a n t a c c u m u l a t i o n o f nitrogen-free secondary m e t a b o l i t e s i n b o t h p l a n t s a n d w o o d - r o t t i n g f u n g i , attracts our attention to the phenylalanine-cinnamate pathway i n relation to carbon and nitrogen economy during growth. C o n s e q u e n t l y , t h i s review p r i n c i p a l l y focuses o n three p o i n t s : (i) a p o s s i b l e f u n c t i o n o f n i t r o g e n r e c y c l i n g , i n w h i c h P A L p l a y s a c o m m o n role for L - p h e n y l a l a n i n e - c i n n a m a t e p a t h w a y s , i n b o t h t h e b r o w n - r o t (L. lepideus) a n d t h e w h i t e - r o t (P. chrysosporium) f u n g i ; ( i i ) possible m e t a b o l i c connections between l i g n i n biodégradation a n d v e r a t r y l a l c o h o l b i o s y n t h e sis c a r r i e d o u t b y t h e same w h i t e - r o t f u n g i ; a n d ( i i i ) t h e means w h e r e b y secondary m e t a b o l i c p a t h w a y s f u n c t i o n t o s u p p o r t l i g n i n d e g r a d a t i o n . Comparison of the Phenylalanine-Cinnamate Pathway in B r o w n Rot and White-Rot Fungi Brown-Rot Fungi. T h e b r o w n - r o t fungus L. lepideus was chosen as a m o d e l m i c r o o r g a n i s m , since i t has l o n g received a t t e n t i o n as a p i n e t i m b e r - d e g r a d e r (11). F r o m L - p h e n y l a l a n i n e , i t p r o d u c e s m e t h y l pm e t h o x y c i n n a m a t e a n d p - m e t h o x y b e n z o a t e (p-anisate) esters as m a j o r m e t a b o l i t e s (11-13). T h e p h e n y l a l a n i n e - c i n n a m a t e p a t h w a y o f t h i s f u n gus has been e s t a b l i s h e d , as s h o w n i n F i g u r e 2, b y S h i m a z o n o et ai (13) a n d Towers (14). T h e r e l a t i o n s h i p , i f any, between t h e secondary m e t a b o l i s m o f L p h e n y l a l a n i n e a n d c a r b o h y d r a t e d e g r a d a t i o n d u r i n g b r o w n - r o t w o o d decay processes has n o t yet been d e t e r m i n e d . However, we suspect t h a t t h e seco n d a r y m e t a b o l i s m o f t h i s a r o m a t i c a m i n o - a c i d plays a n i m p o r t a n t role i n c o n v e r t i n g m o n o m e r i c sugars t o nitrogen-free m e t a b o l i t e s ( S h i m a d a , M . , a n d T a k a h a s h i , M . , I n Handbook of Wood and Cellulosic Materials; H o n , D . N . S. a n d S h i r a i s h i , N . , E d s . ; M a r c e l D e k k e r , i n press). T a b l e I shows t h e a m o u n t s o f secondary m e t a b o l i t e s f o r m e d o n d a y s 11 a n d 33 ( d u r i n g a n i n c u b a t i o n o f 63 days) for b o t h n i t r o g e n - p o o r ( H C / L N ) a n d n i t r o g e n - r i c h ( H C / H N ) cultures (15). T h e i n i t i a l C / N r a t i o s o f the t w o c u l t u r e s were 240 a n d 24, respectively. F i g u r e 3 shows t h e v a r i a t i o n s i n t h e t o t a l a m o u n t s o f t h e secondary m e t a b o l i t e s p r o d u c e d , t h e weights o f t h e f u n g a l m y c e l i u m , a n d t h e n i t r o g e n a n d glucose c o n c e n t r a t i o n s r e m a i n i n g i n the H C - L N c u l t u r e m e d i a d u r i n g the i n c u b a t i o n p e r i o d s h o w n . T h e m a j o r m e t a b o l i t e s f o r m e d i n the H C / L N a n d H C / H N c u l t u r e s were m e t h y l p - m e t h o x y c i n n a m a t e (11), m e t h y l p - m e t h o x y b e n z o a t e (11),

414

PLANT C E L L W A L L P O L Y M E R S

CH OH

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

2

CH

COOMe

OMe

OMe ( L. lepideus )

F i g u r e 1. P h e n y l a l a n i n e a m m o n i a - l y a s e ( P A L ) involvement i n t h e b i o s y n thesis o f p h e n y l p r o p a n o i d - d e r i v e d secondary m e t a b o l i t e s i n p l a n t s a n d B a sidiomycetes.

COOH I CHNH I

2

COOH I CH II

COOH I CH II

COOMe I CH II

COOMe I CH II

F i g u r e 2. T h e p h e n y l a l a n i n e - c i n n a m a t e p a t h w a y i n t h e b r o w n - r o t fungus Lentinus lepideus.

F i g u r e 3. R e l a t i o n s h i p between secondary m e t a b o l i t e p r o d u c t i o n , c o n s u m p t i o n o f n i t r o g e n a n d c a r b o n sources, a n d g r o w t h of the b r o w n - r o t fungus Lentinus lepideus ( H C - L N m e d i u m ) .

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

416

PLANT C E L L W A L L P O L Y M E R S

T a b l e I. Secondary M e t a b o l i t e s P r o d u c e d by the B r o w n - R o t F u n g u s nus lepideus (15)

Lenti-

A m o u n t s ( m g / 1 0 m l culture) HC-LN

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

Metabolites

HC-HN

a

b

a

b

M e t h y l p-methoxybenzoate trans-Methyl p-methoxycinnamate cis-Methyl p-methoxycinnamate M e t h y l iso-ferulate M e t h y l p-coumarate p-Methoxyphenylpropanol

0.72 0.98 0.40 0.00 0.00 0.00

0.23 1.98 0.20 0.03 0.00 0.01

1.38 0.93 0.05 0.15 0.08 0.51

0.18 0.00 0.03 0.00 0.00 0.00

T o t a l amounts

2.20

2.45

3.10

0.21

a a n d b i n d i c a t e the 11-day-old a n d 3 3 - d a y - o l d cultures used, respectively, for analyses. H C - L N = high carbondow nitrogen ratio. H C - H N = high carbomhigh nitrogen ratio. a n d p - m e t h o x y p h e n y l p r o p a n o l ; the l a t t e r was a p r e v i o u s l y u n k n o w n seco n d a r y m e t a b o l i t e f r o m this source, a n d was p r o d u c e d i n even greater a m o u n t s i n H C / H N c u l t u r e . W h i l e the t o t a l a m o u n t of these secondary m e t a b o l i t e s f o r m e d i n H C / H N c u l t u r e was s l i g h t l y greater t h a n t h a t observed for the H C / L N c u l t u r e , the relative a m o u n t per n i t r o g e n u n i t i n the H C / L N c u l t u r e was 8-fold greater t h a n t h a t o f the H C / H N c u l t u r e . T h e results ( F i g u r e 3) i n d i c a t e t h a t j u s t before complete c o n s u m p t i o n of n i t r o g e n , the q u a n t i t y of secondary metabolites increases, r e a c h i n g a first m a x i m u m o n day 11. A second m a x i m u m then appears o n d a y 33, at a b o u t the t i m e of 6 0 % glucose c o n s u m p t i o n . A l t h o u g h the reason for the appearance of two m a x i m a is not clear, these results were r e p r o d u c i b l e . It is n o t e w o r t h y , t h o u g h , t h a t n i t r o g e n s t a r v a t i o n accelerates the b i o s y n t h e sis of m e t a b o l i t e s derived f r o m L - p h e n y l a l a n i n e i n H C / L N c u l t u r e . T h u s , P A L m a y c o n t r i b u t e to secondary m e t a b o l i t e a c c u m u l a t i o n under n i t r o g e n l i m i t i n g c o n d i t i o n s , perhaps i n a n effort to economize the use of a v a i l a b l e nitrogen. White-Rot Fungi. T h e w h i t e - r o t fungus P. chrysosporium was chosen for c o m p a r i s o n , since i t has been extensively investigated for l i g n i n biodégrad a t i o n d u r i n g t h i s decade. V e r a t r y l a l c o h o l was first r e p o r t e d (16) to be b i o s y n t h e s i z e d f r o m p h e n y l a l a n i n e as a secondary m e t a b o l i t e i n the l i g n i n o l y t i c c u l t u r e of t h i s w h i t e - r o t fungus. Recently, other w h i t e - r o t f u n g i have been r e p o r t e d to produce the same secondary m e t a b o l i t e (17). H o w ever, the b i o c h e m i c a l significance of v e r a t r y l alcohol has r e m a i n e d unclear for some t i m e (18). T h e p r e v i o u s l y proposed m e t a b o l i s m of L - p h e n y l a l a n i n e to v e r a t r y l a l cohol (19-22) is now s l i g h t l y m o d i f i e d , as s h o w n i n F i g u r e 4. T h i s p a t h w a y

30.

Roles ofSecondary Metabolism of Fungi

SHIMADA E T A L

Glucose

417

L - Methionine

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

4 (SAM) COOH

COOH

!

CΗ·Ν Η

x

11

2

-

J CH

COOH

I

I

CH

CH

II

HC

2

HC

OH

A

-ΟH

. OH

OMe

^OMe

OMe

OMe

OMe

OMe OMe

1 CH OH 2

ii ,011 COOH

C -ί unit

COOH

il

OMe

CHO I

CHOH

I CHOH

OMe

OMe

OMe

πιο

OMe

^OMe OMe

0 CH OH

0 Η

2

Η

OMe

MeO \ 0

OMe Ό

OMe OMe

F i g u r e 4. T h e L - p h e n y l a l a n i n e - c i n n a m a t e p a t h w a y for b i o s y n t h e s i s a n d biodégradation of v e r a t r y l a l c o h o l i n the w h i t e - r o t fungus Phanerochaete chrysosporium.

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

418

PLANT C E L L W A L L POLYMERS

i n d i c a t e s t h a t p h e n y l a l a n i n e serves as a p r i m a r y a m i n o a c i d precursor, bei n g converted t o the a c c u m u l a t i n g m e t a b o l i t e v e r a t r y l a l c o h o l v i a caffeic a c i d , ferulic a c i d , 3 , 4 - d i m e t h o x y c i n n a m i c a c i d , 3 , 4 - d i m e t h o x y c i n n a m y l a l c o h o l , a n d v e r a t r y l g l y c e r o l intermediates. V e r a t r y l a l c o h o l t h e n seems t o be degraded, v i a v a n i l l i c a c i d or r i n g cleavage p r o d u c t s (23,24). T h e two m e t h o x y l carbons of v e r a t r y l a l c o h o l are p r o b a b l y derived f r o m m e t h i o nine v i a S - a d e n o s y l m e t h i o n i n e ( S A M ) (19), w h i c h is also i n v o l v e d i n the biosynthesis of p - m e t h o x y c i n n a m a t e i n L. lepideus (25,26). Interestingly, the f u n g a l h y d r o x y c i n n a m a t e p a t h w a y s i n b o t h the b r o w n - r o t a n d w h i t e rot f u n g i r e m i n d s us o f the h y d r o x y c i n n a m a t e p a t h w a y s i n the biosynthesis of p l a n t l i g n i n s (27). T a b l e II shows (28) a c o r r e l a t i o n between the biosynthesis of v e r a t r y l a l c o h o l a n d P A L a c t i v i t i e s , b o t h of w h i c h are affected b y i n i t i a l glucose a n d a m m o n i u m salt levels. T h e H C - L N c u l t u r e w i t h a C / N r a t i o of 240, w h i c h is a l m o s t c o m p a r a b l e to t h a t of w o o d , shows the greatest a m o u n t of v e r a t r y l a l c o h o l biosynthesis a n d , therefore, the highest P A L a c t i v i t y . A s can be seen, d e p e n d i n g u p o n the C : N balance of the m e d i a used, the a m o u n t s of secondary m e t a b o l i t e s formed a n d P A L activités c a n v a r y g r e a t l y (Tables I a n d II). T a b l e I I . P A L A c t i v i t y of the W h i t e - R o t F u n g u s P. chrysosporium i n the Different C u l t u r e M e d i a (28)

Grown

Veratryl alcohol ( n m o l e s / 1 0 m l culture) Culture" HC-LN HC-HN LC-HN LC-LN α

b

C/N Ratio 240 24 6 60

7 days

14 days

PAL Activity

1786 0 250 1595

7142 294 0 857

131,529 19,176 20,450 35,496

4

% 100 15 16 27

H C a n d L C i n d i c a t e 2 % a n d 0 . 5 % glucose c o n t a i n e d i n the m e d i u m , respectively. H N a n d L N i n c i d a t e 24 m M a n d 2.4 m M a m m o n i u m salt n i t r o g e n , respectively, used for the cultures. P A L a c t i v i t i e s / 6 - d a y o l d c u l t u r e (20 m l ) are expressed as r a d i o a c ­ t i v i t i e s ( d p m ) of c i n n a m a t e formed f r o m L - p h e n y l a l a n i n e - U - C (2 n m o l e s / μΟΊ). 1 4

B i o c h e m i c a l Significance o f t h e P h e n y l a l a n i n e - C i n n a m a t e way i n P l a n t s a n d F u n g i i

Path­

W o o d y p l a n t s c a n synthesize anywhere f r o m 15-30% of a l l biomass as l i g n i n . H e n c e , equivalent a m o u n t s of p h e n y l a l a n i n e are required at some p o i n t , i.e., d u r i n g l i g n i n f o r m a t i o n , large a m o u n t s of a m m o n i a are recycled as a conse­ quence of P A L a c t i v i t y . W h i l e p l a n t s have no serious p r o b l e m s i n o b t a i n i n g glucose as a c a r b o n source, s u p p l i e d a b u n d a n t l y t h r o u g h photosynthesis,

30.

SHIMADA ET AL.

Roles of Secondary Metabolism of Fungi

419

the same c a n n o t be s a i d for n i t r o g e n n u t r i e n t a v a i l a b i l i t y . T h i s underscores the i m p o r t a n c e o f a m m o n i u m r e c y c l i n g d u r i n g l i g n i n f o r m a t i o n . A s i m i l a r a n a l o g y c a n be a p p l i e d t o the r a t i o n a l i z a t i o n o f the b i o s y n ­ thesis o f secondary m e t a b o l i t e s p r o d u c e d b y w o o d - r o t t i n g f u n g i i . T h e B a sidiomycetes i n h a b i t i n g w o o d hosts have no t r o u b l e o b t a i n i n g glucose, b u t have p r o b l e m s i n o b t a i n i n g significant a m o u n t s o f n i t r o g e n - c o n t a i n i n g n u ­ trients.

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

Nitrogen Recycling with P A L T h e t o t a l a m o u n t of m e t a b o l i t e s synthesized b y the b r o w n - r o t fungus after 33 d a y s ( F i g u r e 3, second m a x i m u m ) is a b o u t 1 0 % of the d r y weight of m y c e l i a p r o d u c e d . However, the a c t u a l percentage is m u c h h i g h e r , since m e t a b o l i c t u r n o v e r occurs d u r i n g f u n g a l g r o w t h . C u l t u r e s of Phanerochaete chrysosporium gave s i m i l a r r e s u l t s , since the a m o u n t o f v e r a t r y l a l c o h o l p r o d u c e d was a b o u t 1 0 % o f the d r y weight of the m y c e l i a . T h i s value m u s t be h i g h e r , since v e r a t r y l a l c o h o l t u r n o v e r also occurs (4a). It c a n therefore be reasoned t h a t the a m o u n t s o f f u n g a l m e t a b o l i t e s p r o d u c e d a p p r o x i m a t e those of l i g n i n i n w o o d y p l a n t s . T h e r e f o r e , a s i m i l a r level o f n i t r o g e n r e c y c l i n g ( u s i n g P A L ) operates i n b o t h p l a n t s a n d the w o o d r o t t i n g B a s i d i o m y c e t e s (see F i g u r e 1). I n contrast to l i g n i n s , the b i o l o g i c a l f o r m a t i o n of the B a s i d i o m y c e t e s secondary m e t a b o l i t e s is not clearly u n d e r s t o o d . H o w e v e r , we propose t h a t there m a y be some b i o l o g i c a l significance i n the conversion of n u t r i t i o n a l l y v a l u a b l e glucose a n d a m i n o acids to secondary m e t a b o l i t e s w i t h l i t t l e n u ­ t r i t i o n a l value t o other o r g a n i s m s s h a r i n g the same ecosystems. I n other w o r d s , the a c c u m u l a t i o n o f m o n o m e r i c sugars, p r o d u c e d b y the e n z y m a t i c h y d r o l y s i s of cellulose a n d hemicelluloses, w o u l d j e o p a r d i z e t h e i r h a b i t a ­ t i o n b y a t t r a c t i n g i n t r u d e r s . T h u s , the u n i q u e n u t r i t i o n a l e n v i r o n m e n t o f w o o d s u b s t r a t e s w i t h h i g h C / N r a t i o s (i.e., n i t r o g e n - p o o r ) m a y have forced the B a s i d i o m y c e t e s t o create a c o m m o n c i n n a m a t e p a t h w a y . T h i s is one possible e x p l a n a t i o n for the u b i q u i t o u s occurrence o f P A L i n the w o o d destroying Basidiomycetes. C o r r e l a t i o n b e t w e e n V e r a t r y l A l c o h o l Synthesis a n d L i g n i n D e ­ gradation in White-rot Fungi Aromatic Ring and Οα-Οβ Bond Cleavage. L e t us now t u r n o u r a t t e n ­ t i o n t o a r o m a t i c r i n g cleavage of v e r a t r y l a l c o h o l , a n d the C a - C / ? b o n d cleavage o f v e r a t r y l g l y c e r o l , w h i c h are b o t h f o r m e d f r o m p h e n y l a l a n i n e as s h o w n i n F i g u r e 4. B o t h cleavage reactions m a y be r e l a t e d to the corre­ s p o n d i n g d e g r a d a t i o n reactions of l i g n i n (29). Indeed, v e r a t r y l a l c o h o l is c o m m o n l y used as a s u b s t r a t e for a n assay o f " l i g n i n a s e " a c t i v i t y (30), b y m e a s u r e m e n t o f the absorbance due to v e r a t r a l d e h y d e f o r m e d . [However, s m a l l a m o u n t s of 7 - ( 5 - m e m b e r e d ) (23) a n d ^ ( 6 - m e m b e r e d ) lactones (24) are also p r o d u c e d f r o m v e r a t r y l a l c o h o l as r i n g cleavage p r o d u c t s ( F i g u r e 5).] A s c a n also be seen, v e r a t r y l g l y c e r o l undergoes Co>C/? b o n d cleavage, y i e l d i n g v e r a t r a l d e h y d e a n d g l y c o l a l d e h y d e i n the presence o f " l i g n i n a s e "

420

PLANT C E L L WALL POLYMERS

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

CHO

OMe

F i g u r e 5. T h e e n z y m a t i c o x i d a t i o n of a s y n t h e t i c β-Ο-4 l i g n i n m o d e l s u b ­ strate a n d f u n g a l secondary metabolites. B o t h undergo C a - C / ? b o n d a n d a r o m a t i c r i n g cleavages i n reactions c a t a l y z e d by the same " l i g n i n a s e " i n the presence of H 2 O 2 .

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

30.

SHIMADAETAL.

Roles of Secondary Metabolism of Fungi

421

a n d h y d r o g e n peroxide (31). [Isolation of g l y c o l a l d e h y d e f r o m the e n z y m i c r e a c t i o n m i x t u r e as its 2 , 4 - d i n i t r o p h e n y l h y d r a z o n e d e r i v a t i v e was achieved b y t r e a t m e n t of the m i x t u r e w i t h 2 , 4 - d i n i t r o p h e n y l h y d r a z i n e at 3 0 ° C for 30 m i n . ] O x i d a t i v e d e g r a d a t i o n of the β-Ο-4 l i g n i n s u b s t r u c t u r e m o d e l c o m ­ p o u n d (32), c a t a l y z e d b y " l i g n i n a s e " / H 2 O 2 , consists of two types of cleav­ age reactions (routes b l a n d b2) (see F i g . 5). These correspond to C a - C / ? b o n d cleavage (see route a) of v e r a t r y l g l y c e r o l a n d a r o m a t i c r i n g o p e n i n g (see route c) of v e r a t r y l a l c o h o l . T h u s , " l i g n i n a s e " is shared b y the three substrates of different o r i g i n : the s y n t h e t i c l i g n i n m o d e l substrate a n d the two n a t u r a l m e t a b o l i t e s of f u n g a l o r i g i n . It can therefore be proposed t h a t the b i o s y n t h e t i c p a t h w a y of v e r a t r y l a l c o h o l ( F i g u r e 4) is l i n k e d to l i g n i n d e g r a d a t i o n . Hydrogen Peroxide-Generating System. A n o t h e r i m p o r t a n t feature of t h i s secondary m e t a b o l i c p a t h w a y is the fact t h a t g l y c o l a l d e h y d e is a required substrate for g l y o x a l oxidase (33), p r o d u c e d e x t r a c e l l u l a r l y b y the same fungus to generate h y d r o g e n peroxide required for l i g n i n d e g r a d a t i o n (route d i n F i g . 5). Interestingly, b o t h v e r a t r y l g l y c e r o l a n d v e r a t r y l a l c o h o l o c c u r e x c l u s i v e l y i n the e x t r a c e l l u l a r fluid of the f u n g a l c u l t u r e . F u r t h e r m o r e , f o r m a t i o n of g l y o x a l , w h i c h is also f o u n d i n the e x t r a c e l l u l a r f r a c t i o n of the c u l t u r e , is a secondary m e t a b o l i c event (33). W e therefore suspect t h a t g l y o x a l m i g h t be p r o d u c e d f r o m g l y c o l a l d e h y d e , w i t h the l a t t e r b e i n g f o r m e d b y s i d e - c h a i n cleavage of b o t h "endogenous" v e r a t r y l g l y c e r o l a n d "exogenous" l i g n i n substrates. C o n s e q u e n t l y , the e x t r a c e l l u l a r o x i d a t i o n of g l y c o l a l d e h y d e , d e r i v e d f r o m either the c i n n a m a t e p a t h w a y or s i d e - c h a i n cleavage of l i g n i n , m a y f u n c t i o n t o s u p p o r t l i g n i n d e g r a d a t i o n by p r o d u c i n g H 2 O 2 , (route d i n F i g . 5). T h i s w o u l d t h e n act i n concert w i t h other h y d r o g e n p e r o x i d e p r o d u c i n g systems such as: (i) g l y o x a l / g l y o x a l a s e (33), (ii) g l u c o s e / g l u c o s e oxidase (34), ( i i i ) N A D ( P ) H / p e r o x i d a s e (35), a n d (iv) f a t t y a c y l - c o e n z y m e A oxidase (36). Physiological a n d Biochemical Relationships between L i g n i n B i o degradation a n d V e r a t r y l A l c o h o l Biosynthesis P a r a l l e l p h y s i o l o g i c a l a n d b i o c h e m i c a l r e l a t i o n s h i p s between l i g n i n biodég r a d a t i o n a n d v e r a t r y l a l c o h o l biosynthesis are s u m m a r i z e d below: 1. B o t h l i g n i n biodégradation a n d v e r a t r y l a l c o h o l biosynthesis are seco n d a r y m e t a b o l i c events affected b y several c o m m o n p h y s i o l o g i c a l factors, such as o x y g e n tension, a g i t a t i o n , a n d n i t r o g e n content (16,3739). These C - , N - , a n d S - s t a r v a t i o n s are i m p o r t a n t triggers for i n " l i g n i n a s e " i n d u c t i o n (37-39), since " l i g n i n a s e " is p r o d u c e d c o n s t i t u t i v e l y regardless of the presence or absence of l i g n i n as s u b s t r a t e . 2. B o t h processes are repressed b y a d d i t i o n i n t o the c u l t u r e of n i t r o g e n n u t r i e n t s such as a m m o n i u m salts a n d L - g l u t a m a t e (16, 37-39). 3. T h e level of c y c l i c A M P ( c A M P ) is increased b y n i t r o g e n s t a r v a t i o n ; t h i s triggers expression of l i g n i n o l y t i c a c t i v i t y a n d v e r a t r y l a l c o h o l biosynthesis (40).

422

PLANT C E L L W A L L P O L Y M E R S

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

4. Interestingly, peroxidase-less ( P O ) m u t a n t s , w h i c h cannot decompose l i g n i n nor biosynthesize v e r a t r y l a l c o h o l (41,42), l a c k P A L a c t i v i t y (28). H o w e v e r , there are two articles w h i c h report evidence against these r e l a t i o n s h i p s between biosynthesis of t h i s secondary m e t a b o l i t e a n d l i g n i n d e c o m p o s i t i o n (43,44). F o r e x a m p l e , a m u t a n t of P. chrysosporium, which does not produce v e r a t r y l a l c o h o l , has l i g n i n o l y t i c a c t i v i t y (43). A n o t h e r m u t a n t , w h i c h lacks glucose oxidase, is u n a b l e to decompose l i g n i n to C O 2 a n d therefore is "ligninase"-less. It is, however, able to produce a b o u t 3 0 % of the a m o u n t of v e r a t r y l a l c o h o l n o r m a l l y f o u n d i n the fungus (44). T h e s e findings m u s t be carefully i n t e r p r e t e d . T h e v e r a t r y l a l c o h o l negative m u t a n t w h i c h has " l i g n i n a s e " lacks P A L a c t i v i t y . C o n s e q u e n t l y , v e r a t r y l a l c o h o l biosynthesis is shut d o w n ( F i g . 4). H o w e v e r , i f v e r a t r y l a l c o h o l or r e l a t e d a r o m a t i c c o m p o u n d s are a d d e d t o the c u l t u r e , they are d e c o m posed to C O 2 b y the P A L - l e s s m u t a n t (42). F o r the glucose oxidase negative m u t a n t , i t m a y be t h a t the m u t a n t loses " l i g n i n a s e " at the same t i m e , a n d produces v e r a t r y l a l c o h o l (to 3 0 % of n o r m a l c o n c e n t r a t i o n ) b y a n a l t e r n a tive p a t h w a y , e.g., b y / ? - o x i d a t i o n of 3 , 4 - d i m e t h o x y c i n n a m i c a c i d to v e r a t r i c a c i d , w h i c h is t h e n subsequently reduced to v e r a t r y l a l c o h o l . U n f o r t u n a t e l y , those a u t h o r s d i d not e x a m i n e the p o s s i b i l i t y of the absence of " l i g n i n a s e " i n the g o x " m u t a n t . T h e "ligninase"-less a n d P A L - l e s s m u t a n t is , t h o u g h , capable of c o n v e r t i n g exogenously added 3 , 4 - d i m e t h o x y c i n n a m i c a c i d a n d v e r a t r i c a c i d to v e r a t r y l a l c o h o l (28). T h i s suggests t h a t there is another route for the biosynthesis of v e r a t r y l a l c o h o l , i n a d d i t i o n to the v e r a t r y l g l y c e r o l cleavage p a t h w a y already discussed ( F i g . 4). T a k i n g these findings together, w i t h the above-described p a r a l l e l i s m a n d a p p a r e n t c o n t r a d i c t i o n s , the f o l l o w i n g hypothesis is p r o p o s e d . W e s u g gest t h a t the same key e n z y m e s y s t e m , or " l i g n i n a s e " , couples the b i o s y n thesis of v e r a t r y l a l c o h o l a n d the biodégradation of l i g n i n . It is also notew o r t h y t h a t " l i g n i n a s e " u t i l i z e s not o n l y l i g n i n , b u t a w i d e variety o f x e n o b i o t i c c o m p o u n d s regardless of their c h e m i c a l s t r u c t u r e s . T h e i r i o n i z a t i o n p o t e n t i a l s are r a t h e r i m p o r t a n t for e n z y m a t i c o x i d a t i o n (45). T h i s is the reason w h y c o m p o u n d s such as benzo(a)pyrene (46), d i o x i n (47) a n d a - k e t o 7 - m e t h y l t h i o b u t y r i c a c i d a n d dyes (48) are also o x i d i z e d by " l i g n i n a s e . " C o n c l u d i n g R e m a r k s a n d Perspectives In c o n c l u s i o n , f o c u s i n g o n the s i m i l a r i t i e s a n d differences between w h i t e - r o t a n d b r o w n - r o t f u n g i , these seemingly different b i o l o g i c a l processes can be e x p l a i n e d as follows. 1. B o t h w h i t e - r o t a n d b r o w n - r o t f u n g i have a c o m m o n c i n n a m a t e p a t h way, i n i t i a t e d b y P A L , w h i c h plays a key role i n the biosynthesis of p h e n y l p r o p a n o i d s i n b a s i d i o m y c e t o u s f u n g i . T h e s e f u n g i are able to convert glucose i n t o "scavenged" m e t a b o l i t e s under n i t r o g e n - l i m i t i n g conditions. 2. T h e p h e n y l a l a n i n e - c i n n a m a t e p a t h w a y of the w h i t e - r o t fungus P. chrysosporium is l i n k e d to l i g n i n biodégradation b y two reactions, i.e., b y b o t h C a - C / ? b o n d a n d a r o m a t i c r i n g cleavages. These represent the

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

30.

SHIMADA ET AL.

Roles of Secondary Metabolism of Fungi

423

p r e d o m i n a n t features o f l i g n i n biodégradation, a n d therefore operate as p a r t o f the secondary m e t a b o l i s m o f p h e n y l a l a n i n e . T h u s , d u r i n g t h e i r b i o c h e m i c a l e v o l u t i o n , t h e w h i t e - r o t f u n g i have succeeded i n a d a p t i n g e x t r a c e l l u l a r peroxidases t o l i g n i n b r e a k d o w n , whereas t h e b r o w n - r o t f u n g i f a i l e d t o develop s u c h a b i o c a t a l y s t o r m e t a b o l i c p a t h w a y . I n c o n t r a s t , higher p l a n t s m i g h t have created peroxidases for p o l y m e r i z i n g h y d r o x y c i n n a m y l alcohols t o l i g n i n s d u r i n g t h e i r b i o c h e m i c a l e v o l u t i o n . I n c l o s i n g , t h e recent advances i n l i g n i n biodégradation research are r e m a r k a b l e a n d are r e c e i v i n g w i d e s p r e a d interest f r o m m a n y fields (49,50). A t present, " l i g n i n a s e " is k n o w n t o c a t a l y z e a w i d e v a r i e t y o f one-electron o x i d a t i o n s , b u t i t s t i l l cannot d e p o l y m e r i z e t h e l i g n i n i n vitro (51,52). O n the o t h e r h a n d , t h e w h i t e - r o t f u n g i c a r r y o u t a n a l m o s t c o m p l e t e d e c o m p o s i t i o n o f l i g n i n i n w o o d i n t h e i r n a t u r a l e n v i r o n m e n t . T h u s , there m a y be a n o t h e r e n z y m e (or system) i n v o l v e d f u n c t i o n i n g as a d e p o l y m e r i z i n g fact o r c o u p l e d t o l i g n i n d e g r a d a t i o n . F u r t h e r f u n d a m e n t a l research is needed i n order t o e l u c i d a t e t h e m e c h a n i s m o f whole w o o d decay processes, i n c l u d i n g t h e n i t r o g e n r e c y c l i n g o f a m i n o acids i n v o l v e d i n f u n g a l secondary m e t a b o l i s m . F u r t h e r m o r e , b i o m i m e t i c systems based o n o u r u n d e r s t a n d i n g of the b i o c h e m i s t r y o f p l a n t s a n d f u n g i (53,54) m a y be m o r e a p p l i c a b l e for conversion o f l i g n o c e l l u l o s i c m a t e r i a l s . Literature Cited

1. Power, D. M.; Towers, G. H. N.; Neish, A. C. Can. J. Biochem. 1965, 43, 1397. 2. Bandoni, R. J.; Moore, K.; Subba Rao, P. V.; Towers, G. H. N. Phytochemistry 1968, 7, 205. 3. Vance, C. P.; Bandoni, R. J.; Towers, G. H. N. Phytochemistry 1975, 14, 1513. 4. Hanson, K. R.; Havir, E. A. In The Biochemistry of Plants; Conn., E. E. Ed.; 1981, 7, p. 577. 4a. Lundquist, K.; Kirk, T. K. Phytochemistry 1978, 17, 1676. 5. Towers, G. H. N. Phytochemistry, 1973, 12, 961. 6. Luckner, M. Secondary Metabolism in Microorganisms, Plants, and Animals; Springer-Verlag: Berlin, 1984, p. 407. 7. Wat, C.-K.; Towers, G. H. N. In Recent Advances in Phytochemistry; Swain, T.; Harborne, J. B.; Van Sumere, C. F., Eds.; Plenum: New York, 1979, 12, 371. 8. Kirk, T. K.; Shimada, M. In Biosynthesis and Biodegradation of Wood Components; Higuchi, T., Ed.; Academic Press: Tokyo, 1985, p. 579. 9. Zahner, H.; Anke, H.; Anke, T. In Secondary Metabolism and Differentiation in Fungi; Bennet, J.; Ciegler, W., Eds.; Marcel Dekker: New York, 1983, p. 153. 10. Cowling, Ε. B.; Merrill, W. Can. J. Bot. 1966, 44, 1539. 11. Birkinshaw, J. H.; Findlay, W. P. K. Biochem. J.; 1940, 34, 82. 12. Wat, C. K.; Towers, G. H. N. Phytochemistry 1977, 16, 290. 13. Shimazono, H.; Schmidt, W. J.; Nord, F. J. Am. Chem. Soc. 1958, 80, 1992-94.

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

424

PLANT C E L L W A L L POLYMERS

14. Towers, G. H. N. In Perspectives in Phytochemistry; Harborne, J. B.; Swain, T., Eds.; Academic: London, 1969; p. 179. 15. Ohta, Α.; Shimada, M.; Hattori, T.; Higuchi, T.; Takahashi, M. Proc. 38th Meet. J. Wood Res. Soc. 1988; p. 200. 16. Shimada, M., Nakatsubo, F.; Kirk, T. K.; Higuchi, T. Arch. Microbiol. 1981, 129, 321. 17. Kawai, S.; Umezawa, T.; Higuchi, T.; Wood Research 1984, 73, 18. 18. Kirk, T. K. In Lignin Biodegradation: Microbiology, Chemistry, and Potential Applications; Kirk, T. K.; Higuchi, T. K.; Chang, H.-M., Eds.; CRC Press: Boca Raton, 1980; p. 51. 19. Shimada, M.; Nakatsubo, F.; Higuchi, T.; Kirk, T. K. Proc. ISWPC (Ekman days) 1981, p. 91. 20. Buswell, J. Α.; Ander, P.; Petersson, B.; Eriksson, K.E. FEBS Lett. 1979, 103, 98. 21. Yajima, Y.; Enoki, Α.; Gold, M. H. Arch. Microbiol. 1979, 123, 319. 22. Ander, P.; Hatakka, Α.; Eriksson, Κ. E. Arch. Microbiol. 1980, 125, 189. 23. Leisola, M. S. Α.; Schmidt, B.; Thaney-Wyss, U.; Fiechter, A. FEBS Lett. 1985, 189, 267. 24. Shimada, M.; Hattori, T.; Umezawa, T.; Higuchi, T., Uzura, K. FEBS Lett. 1987, 221, 327. 25. Shimazono, H. Arch. Biochem. Biophys. 1959, 83, 206. 26. Wat, C.-H.; Towers, G. H. N. Phytochemistry 1975, 14, 663. 27. Higuchi, T. Biosynthesis and Biodegradation of Wood Components; Academic: New York, 1985; p. 141. 28. Shimada, M. Wood Res. Tech. Notes 1983, 17, 21. 29. Tai, D.; Terazawa, M.; Chen, C. L.; Chang, H. M.; Kirk, T. K. In Recent Advances in Lignin Biodegradation; Higuchi, T.; Chang, H.-M.; Kirk, T. K., Eds.; Uni: Tokyo, 1983; p. 44. 30. Tien, M.; Kirk, T. K.; Bull, C.; Fee, J. A. J. Biol. Chem. 1986, 261, 1687. 31. Shimada, M.; Kurosaka, H.; Hattori, T.; Higuchi, T. Proc. 38th Ann. Meet. Wood Res. Soc. Japan; 1988, p. 100. 32. Umezawa, T.; Shimada, M.; Higuchi, T.; Kusai, K. FEBS Lett. 1986, 205, 287. 33. Kersten, P. J.; Kirk, T. K. J. Bacteriol. 1987, 169, 2195. 34. Kelley, R. L.; Reddy, C. A. Arch. Microbiol. 1986, 144, 248. 35. Kuwahara, M.; Ishida, Y.; Miyagawa, Y.; Kawakami, C. F. Ferment. Technol. 1984, 62, 237. 36. Green, R.; Gould, J. M. Biochem. Biophys. Res. Commun. 1984, 118, 437. 37. Kirk, T. K. Proc. ISWPC (Ekman Days) 1981, 3, 67. 38. Fenn, D.; Kirk, T. K. Arch. Microbiol. 1981, 130, 59. 39. Fenn, D.; Kirk, T. K. Arch. Microbiol. 1981, 130, 65. 40. MacDonald, M. J.; Paterson, Α.; Broda, P. J. Bacteriol. 1984, 160, 470.

Plant Cell Wall Polymers Downloaded from pubs.acs.org by UNIV LAVAL on 11/07/15. For personal use only.

30.

S H I M A D A ET A L .

Roles of Secondary Metabolism of Fungi

425

41. Ander, P.; Hatakka, Α.; Eriksson, Κ. E. Arch. Microbiol. 1980, 125, 189. 42. Gold, M. H.; Mayfield, M. B.; Cheng, T. M.; Krisnangkura, K.; Shi­ mada, M.; Enoki, A. Arch. Microbiol. 1982, 132, 115. 43. Liwicki, R.; Patterson, Α.; MacDonald, M. J.; Broda, P. J. Bacteriol. 1985, 162, 641. 44. Ramasamy, K.; Kelley, R.L.; Reddy, C.A. Biochem. Biophys. Res. Commun. 1985, 131, 436. 45. Kersten, P. J.; Kalyanaraman, B.; Hammel, Κ. E.; Kirk, T. K. In Lignin Enzymic and Microbial Degradation; Odier, E., Ed.; INRA Publ., 1987; p. 75. 46. Haemmerli, S. D.; Leisola, M. S. Α.; Sanglard, D.; Fiechter, A. J. Biol. Chem. 1986, 261, 6903. 47. Hammel, Κ. E.; Kalyanaraman, B.; Kirk, T. K. J. Biol. Chem. 1986, 261, 16948. 48. Gold, M. H.; Glenn, J. K.; Mayfield, M. B.; Morgan, Μ. Α.; Kutsuki, H. In Recent Advances in Lignin Biodegradation; Higuchi, T.; Kirk, T. K.; Chang, H.-M., Eds.; Uni: Tokyo, 1983; p. 219. 49. Odier, E. Lignin Enzymic and Microbial Degradation; INRA, 1987. 50. Buswell, J. Α.; Odier, E. CRC Crit. Rev. Biotechnol. 1987, 6, 1. 51. Haemmerli, S. D.; Leisola, M. S. Α.; Fiechter, A. FEMS Microbiol. Lett. 1986, 35, 33. 52. Kirk, T. K. Proceedings Tappi Res. Dev. 1986, p. 73. 53. Shimada, M.; Habe, T.; Higuchi, T.; Okamoto, T.; Panijpan, B. Holz­ forschung 1987, 41, 277. 54. Paszcynski, R.; Crawford, R. L.; Blanchette, R. A. Appl. Environ. Mi­ crobiol. 1988, 54, 62. RECEIVED May 19, 1989