Scale Deposition on a Heated Surface J. T. BANCHERO and KENNETH F. GORDON 1
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch012
Department of Chemical and Metallurgical Engineering, University of Michigan, Ann Arbor, Mich.
Scale formation was followed visually in an appa ratus which approximated conditions in evaporators producing potable water. The time required for appearance of scale was investigated with and with out boiling under a variety of solution and surface temperatures, concentrations, and flow rates.
Re
sults with aqueous solutions of lithium carbonate, calcium sulfate, calcium hydroxide, and sodium sul fate, all of which possess inverted solubility curves, gave gentle curves when plotted as per cent supersaturation against the logarithm of the time for scale to appear with a parameter of concentration. For a given supersaturation a lower concentration (and necessarily higher wall temperature) resulted in more rapid formation of scale than a higher con centration. The time for scale formation was inde pendent of liquid velocity between 2 and 10 feet per second and ranged from 2 to 360 minutes with supersaturations from 90 down to 5%.
Ο ne of t h e s i m p l e s t m e t h o d s of r e c o v e r i n g p o t a b l e w a t e r f r o m sea w a t e r is d i s t i l l a t i o n . T h e t e c h n o l o g y i s w e l l u n d e r s t o o d , w i t h m u c h experience a v a i l a b l e f r o m b o t h c i v i l i a n a n d a r m e d service a p p l i c a t i o n s . T h e f o r m a t i o n of a t e n a c i o u s scale w h i c h decreases t h e h e a t flux b y p r o v i d i n g a n a d d i t i o n a l t h e r m a l resistance reduces t h e e c o n o m i c a t t r a c t i o n of sea w a t e r d i s t i l l a t i o n . T h e u n d e s i r a b l e scale is r e m o v e d a n d c o n t r o l l e d b y a w k w a r d a n d e x p e n s i v e c h e m i c a l o r m e c h a n i c a l m e a n s . T h i s m a y w e l l b e c o m e a serious f a c t o r i n t h e l a r g e scale p r o d u c t i o n of p o t a b l e w a t e r f r o m t h e sea. A c o n t a c t s t a b i l i z a t i o n m e t h o d has b e e n u s e d (2) w h e r e m u c h of t h e scale i s d e p o s i t e d i n a b e d o f c o n t a c t m a t e r i a l o u t s i d e r a t h e r t h a n i n s i d e t h e e v a p o r a t o r . T h e c i r c u l a t i o n of a s u s p e n s i o n o f seed c r y s t a l s of t h e s c a l e - f o r m i n g c o n s t i t u e n t t h r o u g h t h e sea w a t e r e v a p o r a t o r , so t h a t t h e scale w o u l d b e d e p o s i t e d o n these c r y s t a l s r a t h e r t h a n o n t h e h e a t i n g s u r f a c e , w a s suggested b y B a d g e r a n d B a n chero (1) a n d a p p l i c a t i o n of t h i s t e c h n i q u e h a s b e e n c h e c k e d e x p e r i m e n t a l l y b y S t a n d i f o r d , S i n e k , a n d B j o r k (6). T h e costs o f c o n t r o l o f c a l c i u m c a r b o n a t e a n d m a g n e s i u m h y d r o x i d e scale h a v e b e e n r e p o r t e d as 4 0 cents p e r t h o u s a n d g a l l o n s w i t h c i t r i c a c i d (8) Present address, D e p a r t m e n t of C h e m i c a l E n g i n e e r i n g , U n i v e r s i t y of N o t r e Notre Dame, Ind. 1
105
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
Dame,
106
ADVANCES IN CHEMISTRY SERIES
a n d 12 cents w i t h f e r r i c c h l o r i d e (5). W i t h s u l f u r i c a c i d t h e cost m i g h t d r o p t o 3 c e n t s p e r t h o u s a n d gallons. T h e d e s i r e d t o t a l cost f o r p o t a b l e w a t e r d e l i v e r e d a t a l a r g e p l a n t w o u l d b e a b o u t 5 0 cents p e r t h o u s a n d g a l l o n s . T h e S y m p o s i u m o n S a l i n e W a t e r C o n v e r s i o n (4) p r o v i d e s b a c k g r o u n d i n f o r m a t i o n . N e v i l l e - J o n e s ( 5 ) a n d B a d g e r a n d B a n c h e r o (1) c o v e r scale p r e v e n t i o n k n o w l e d g e a n d p r a c t i c e w i t h m a n y references t o t h e l i t e r a t u r e .
Types of Scale
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch012
C a l c i u m s u l f a t e , w h i c h exists i n sea w a t e r i n i o n i c f o r m , has a reverse o r i n v e r t e d s o l u b i l i t y c u r v e a b o v e a b o u t 3 7 ° C . — t h a t i s , s o l u b i l i t y decreases w i t h i n c r e a s i n g t e m perature. I n d i s t i l l a t i o n t h e w a t e r closest t o t h e h e a t i n g s u r f a c e i s h o t t e s t a n d i t i s t h e r e t h a t c a l c i u m s u l f a t e i s least s o l u b l e . T h u s , c a l c i u m s u l f a t e d e p o s i t s , f o r m i n g a n a d h e r i n g f i l m t h a t increases t h e t h e r m a l resistance a n d decreases t h e heat flux. T h e scale i s c o n t i n u o u s l y d e p o s i t e d u n t i l t h e t u b e s are c l e a n e d o r b e c o m e p l u g g e d . F o r scale d e p o s i t i o n t h e l o c a l c o n c e n t r a t i o n m u s t b e a t least s a t u r a t e d i n c a l c i u m s u l f a t e . A t 100° C . t h i s o c c u r s i n c o n c e n t r a t e d sea w a t e r a t a c o n c e n t r a t i o n 3.1 t i m e s t h a t of o r d i n a r y sea water. A p l a n t h a s been successfully operated continuously w i t h o u t calcium sulfate d e p o s i t i o n b y t a k i n g o n l y p a r t o f t h e a v a i l a b l e w a t e r f r o m t h e sea w a t e r , so t h a t t h e l i q u i d i n t h e e v a p o r a t o r i s n e v e r m o r e t h a n 1.8 t i m e s t h e c o n c e n t r a t i o n of sea w a t e r a n d t h e w a l l t e m p e r a t u r e i s b e l o w a b o u t 2 5 0 ° F . (6). T h i s i m p o s e s t e c h n i c a l a n d e c o n o m i c limitations o n distillation plants. S i m i l a r considerations h o l d f o r plants distilling brackish water containing calcium sulfate. W h i l e t h e reverse s o l u b i l i t y c u r v e of c a l c i u m s u l f a t e i s o f t e n t h e m a i n reason f o r scale d e p o s i t i o n i n f r e s h w a t e r b o i l e r s a n d i n b r a c k i s h w a t e r d i s t i l l a t i o n , w h e n t h e sea w a t e r i s n o t c h e m i c a l l y t r e a t e d t h e cause i s c h e m i c a l r a t h e r t h a n p h y s i c a l . Sea w a t e r c o n t a i n s b i c a r b o n a t e i o n . O n h e a t i n g , t h e b i c a r b o n a t e i o n reacts w i t h w a t e r t o f o r m c a r b o n a t e i o n p l u s c a r b o n d i o x i d e , w h i c h t e n d s t o b e e v o l v e d as a gas as s h o w n i n t h e equations 2 H C 0 - -> C 0 ~ 3
Ca H 0 2
3
+
Mg+2
3
CO3+
2
+ C0 f + H 0
2
+ C0 "
+ 2
—
2
2
2
— CaC0 J 3
20H-
+
C0
2
f
2 O H - -> Mg(OH) J 2
T h e i n c r e a s e d a m o u n t of c a r b o n a t e i o n p r e s e n t causes t h e s u p e r s a t u r a t i o n of c a l c i u m c a r b o n a t e , w h i c h comes o u t of t h e s o l u t i o n . A s t h e c a r b o n d i o x i d e i s l e a s t s o l u b l e a t t h e t e m p e r a t u r e o f t h e h o t m e t a l s u r f a c e , t h e c a l c i u m c a r b o n a t e h a s i t s greatest supersaturation a t the surface a n d therefore tends t o deposit there. I n t u r n , the carbonate ion reacts w i t h water t o f o r m hydroxide i o n a n d m o r e carbon d i o x i d e i s e v o l v e d . T h e i n c r e a s e d c o n c e n t r a t i o n of h y d r o x i d e i o n m a k e s t h e s o l u t i o n s u p e r s a t u r a t e d w i t h respect t o m a g n e s i u m h y d r o x i d e . T h e m a g n e s i u m h y d r o x i d e w i l l h a v e t h e greatest s u p e r s a t u r a t i o n a t t h e t e m p e r a t u r e of t h e h o t m e t a l , w h e r e i t t o o w i l l d e p o s i t . B y s u i t a b l y a l t e r i n g t h e c o n c e n t r a t i o n f a c t o r o r t h e t e m p e r a t u r e of t h e sea water being distilled, either magnesium hydroxide o r calcium carbonate can be made t o b e t h e m a i n c o n s t i t u e n t of t h e scale. W h i l e o t h e r m a t e r i a l s are d e p o s i t e d , these t w o c a n m a k e u p 9 8 % of t h e scale (#), a n d c a n b e p r e v e n t e d f r o m d e p o s i t i n g b y c o n t r o l l i n g the p H w i t h acidic materials. C i t r i c acid a n d ferric chloride have been used successfully. S u l f u r i c a c i d h a s b e e n u s e d i n t h e W r i g h t s v i l l e B e a c h , N . C , sea w a t e r d i s t i l l a t i o n p i l o t p l a n t o p e r a t e d b y W . L . B a d g e r A s s o c i a t e s . T h e same p i l o t p l a n t has s h o w n t h a t t h e seed r e c y c l e t e c h n i q u e c o u l d p r e v e n t c a l c i u m c a r b o n a t e a n d m a g n e s i u m h y d r o x i d e scale (6). I t h a s n o t y e t b e e n a p p l i e d s u c c e s s f u l l y t o t h e p r e v e n t i o n of c a l c i u m s u l f a t e i n t h a t pilot plant. T h e o b j e c t i v e of t h e p r e s e n t c o n t i n u i n g i n v e s t i g a t i o n i s t o o b t a i n a b e t t e r k n o w l edge o f t h e m e c h a n i s m a n d l i m i t s of scale f o r m a t i o n o n a h e a t e d s u r f a c e t o p r o v i d e a s o u n d basis f o r d e v e l o p i n g m e t h o d s of scale p r e v e n t i o n .
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
BANCHERO AND GORDON—SCALE DEPOSITION ON HEATED SURFACES
107
E x p e r i e n c e i n d i c a t e d t h a t results f r o m l a b o r a t o r y b e n c h e x p e r i m e n t s m i g h t n o t b e d i r e c t l y c o m p a r a b l e t o those of p r o d u c t i o n p l a n t s . I t w a s necessary t o d e s i g n a n e x p e r i m e n t a l s y s t e m r e s e m b l i n g tubes of a n o p e r a t i o n a l e v a p o r a t o r . I t is hoped that future w o r k w i l l allow a n acceptable correlation between simpler l a b o r a t o r y bench runs a n d the experimental system used.
Apparatus
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch012
Scale d e p o s i t i o n w a s i n v e s t i g a t e d w i t h a n d w i t h o u t b o i l i n g i n a n a p p a r a t u s d e s i g n e d t o a p p r o x i m a t e t o some e x t e n t c o n d i t i o n s i n c o m m e r c i a l e v a p o r a t o r t u b e s , y e t i n w h i c h o b s e r v a t i o n of scale f o r m a t i o n i s possible.
Figure I. A s seen i n diameter, surface. O n the solution Appropriate that shown. the / - i n c h 1
4
Test section
i n F i g u r e s 1 a n d 2, t h e e q u i p m e n t consists o f a c o p p e r c y l i n d e r 3.8 i n c h e s i n w h i c h a quarter-inch-diameter helical groove was c u t o n t h e external t h e o u t s i d e , t h e r e i s a c l o s e - f i t t i n g p r e c i s i o n - b o r e glass t u b e , t h r o u g h w h i c h flowing i n t h e g r o o v e c a n b e seen a n d t h e scale d e p o s i t i o n f o l l o w e d v i s u a l l y . s a f e t y s h i e l d i n g o f steel p l a t e a n d s a f e t y p l a t e glass i s u s e d r a t h e r t h a n A n inflated spiral gasket, resting i n a / X / i n c h groove parallel t o s o l u t i o n g r o o v e , m a i n t a i n s t h e s o l u t i o n flow i n i t s h e l i c a l p a t h , p r e v e n t i n g 3
1
6
3
1
6
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch012
108
ADVANCES IN CHEMISTRY SERIES
Figure 2.
Calcium sulfate scale deposited on hot upper end of groove
s h o r t c i r c u i t i n g o r b y p a s s i n g . B y m e a n s of a n i n t e r n a l h e l i x ( n o t s h o w n ) a c o u n t e r c u r r e n t s t r e a m of h o t w a t e r u n d e r p r e s s u r e heats t h e s o l u t i o n b e i n g i n v e s t i g a t e d . T h e i n t e r n a l h e l i x i s a q u a r t e r - i n c h , s e m i c i r c u l a r g r o o v e c u t o n t h e o u t s i d e of a 3 . 1 - i n c h diameter copper hollow cylinder w h i c h is shrunk-fit inside the 3.8-inch cylinder. T h e i n t e r n a l , h o t - w a t e r h e l i x g r o o v e rests d i r e c t l y u n d e r t h e i n f l a t a b l e gasket g r o o v e , so t h a t 18 t h e r m o c o u p l e w e l l s of / - i n c h d i a m e t e r c o u l d b e c u t t o t h e surface of t h e s c a l i n g s o l u t i o n g r o o v e a n d sealed w i t h / - i n c h - l o n g p l u g s s h r u n k - f i t a n d finished t o g i v e a s m o o t h s u r f a c e . T h e s u r f a c e t e m p e r a t u r e of t h e h o t - w a t e r g r o o v e i s o b t a i n e d t h r o u g h e i g h t t h e r m o c o u p l e wells c u t i n the i n t e r n a l c y l i n d e r . T h e r m o c o u p l e s l e d t h r o u g h t h e h o l l o w i n t e r n a l c y l i n d e r a l l o w m e a s u r e m e n t of t h e a p p r o p r i a t e c o p p e r s u r f a c e t e m p e r a t u r e s a l o n g t h e w h o l e p a t h l e n g t h of e a c h g r o o v e . T h e s o l u t i o n u n d e r s t u d y flows i n a 3 7 - f o o t - l o n g h e l i c a l p a t h of s e m i c i r c u l a r cross s e c t i o n w h i c h has a c o p p e r c i r c u l a r edge a n d a s t r a i g h t edge of glass. Thermocouples i n t h e w a l l a n d t h e flowing s t r e a m a l l o w g o o d m e a s u r e m e n t of the v a r i o u s t e m p e r a t u r e s . T h e s o l u t i o n of i n t e r e s t flows u p w a r d s i n t h e e x t e r n a l h e l i c a l g r o o v e , w h i l e t h e h o t w a t e r flowing c o u n t e r c u r r e n t l y a n d i n t e r n a l l y s u p p l i e s t h e heat t o t h e s o l u t i o n . T h u s t h e s o l u t i o n enters c o l d a t t h e b o t t o m a n d leaves h o t a t t h e t o p . I t s e x i t t e m p e r a t u r e is fixed b y t h e i n l e t h o t w a t e r t e m p e r a t u r e a n d r e l a t i v e flow r a t e s . T h e h o t w a t e r also d e t e r m i n e s t h e t e m p e r a t u r e a t t h e m e t a l w a l l of t h e s o l u t i o n h e l i x a n d , hence, t h e s u p e r saturation there. 1
1 6
1
1 6
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch012
BANCHERO AND GORDON—SCALE DEPOSITION ON HEATED SURFACES
109
T h e e q u i p m e n t c o n t a i n s t h r e e s e p a r a t e fluid s y s t e m s : t h e s c a l i n g s o l u t i o n c i r c u l a tion system, the heating water circulation system, a n d the constant temperature c i r c u l a t i o n s y s t e m . T h e s o l u t i o n i s p r e p a r e d i n a 5 0 0 - g a l l o n stainless steel t a n k w i t h a h e a t i n g j a c k e t . I t i s p u m p e d b y a v a r i a b l e speed, M o y n o , stainless steel s l u r r y p u m p t h r o u g h a stainless steel C u n o A u t o c l e a n filter, t h e n t h r o u g h a r o t a m e t e r t o t h e h e l i x test s e c t i o n . A needle v a l v e a f t e r t h e h e l i x test s e c t i o n a l l o w s c o n t r o l of t h e p r e s s u r e i n t h e test s e c t i o n . F r o m t h e test s e c t i o n , t h e s o l u t i o n goes t h r o u g h a cooler t o t h e spent solution t a n k a n d either is discarded o r returned t o t h e 500-gallon t a n k . A 5 5 g a l l o n stainless steel t a n k of d i s t i l l e d w a t e r w h o s e t e m p e r a t u r e i s c o n t r o l l e d b y a h e a t i n g c o o l i n g c o i l i s c o n n e c t e d t o t h e i n l e t of t h e s l u r r y p u m p , so t h a t t h e test s e c t i o n m a y be b r o u g h t t o t h e r m a l e q u i l i b r i u m b e f o r e t h e s a l t s o l u t i o n i s r u n t h r o u g h i t . A f t e r a r u n , t h i s d i s t i l l e d w a t e r c a n b e u s e d t o d i s s o l v e t h e scale i n t h e test s e c t i o n i f necessary. T h e c o n s t a n t t e m p e r a t u r e c i r c u l a t i o n s y s t e m consists of a n o t h e r 5 5 - g a l l o n d r u m o f water m a i n t a i n e d a t tho desired temperature b y a thermostat. W a t e r is p u m p e d f r o m t h e d r u m t h r o u g h t h e j a c k e t of t h e l a r g e s o l u t i o n t a n k a n d t h e test s e c t i o n . T h i s a l l o w s close t e m p e r a t u r e c o n t r o l of t h e s o l u t i o n e n t e r i n g t h e test s e c t i o n . T h e h o t w a t e r u s e d t o c o n t r o l t h e t e m p e r a t u r e i n t h e h e l i c a l test s e c t i o n i s h e a t e d b y steam i n a shell a n d coil heat exchanger. T h e h o t water temperature i n the exc h a n g e r o u t l e t l i n e c o n t r o l s t h e s t e a m flow. F r o m t h e e x c h a n g e r t h e h o t w a t e r flows t o a 1 2 - g a l l o n h i g h p r e s s u r e surge t a n k , w h e r e t h e fine c o n t r o l of t h e t e m p e r a t u r e i s o b t a i n e d b y e l e c t r i c a l h e a t e r s . T h e w a t e r i s t h e n p u m p e d t o t h e h e l i x test s e c t i o n through a rotameter a n d returned to the heater.
Procedure T o e s t a b l i s h t h e final s t e a d y - s t a t e t e m p e r a t u r e s , a r u n w a s s t a r t e d b y h a v i n g d i s t i l l e d w a t e r a t t h e t e m p e r a t u r e o f t h e i n l e t s o l u t i o n flowing t h r o u g h t h e o u t e r g r o o v e s w i t h h e a t i n g w a t e r p a s s i n g t h r o u g h t h e i n t e r n a l h e l i x . A t t i m e zero t h e d i s t i l l e d w a t e r w a s t u r n e d off a n d t h e s o l u t i o n of k n o w n c o n c e n t r a t i o n t u r n e d o n a t t h e s a m e t e m p e r a t u r e a n d flow r a t e as t h e d i s t i l l e d w a t e r . B y o b s e r v a t i o n t h e e l a p s e d t i m e u n t i l t h e b e g i n n i n g o f scale f o r m a t i o n w a s n o t e d . W i t h t e m p e r a t u r e s a n d c o n c e n t r a t i o n s k n o w n , the per cent s u p e r s a t u r a t i o n a t the exit e n d of the helix could b e calculated a n d , as t h e scale a l w a y s o c c u r r e d a t t h e e x i t e n d , i t w a s t a k e n t o b e t h e p e r c e n t s u p e r s a t u r a tion for the r u n . A t y p i c a l d e p o s i t o f c a l c i u m s u l f a t e c a n b e seen i n F i g u r e 2 . O n c o n t i n u i n g t h e r u n t h e scale d e p o s i t i n c r e a s e d , c a u s i n g v e r y h i g h p r e s s u r e d r o p s , a n d i n s o m e cases t h e e q u i p m e n t b e c a m e p l u g g e d w i t h scale. T h e i n i t i a l s t e p w a s t o s t u d y s y s t e m s w i t h reverse s o l u b i l i t y c u r v e s t o l e a r n t h e g e n e r a l p a t t e r n o f t h e onset o f s c a l i n g w h i c h w o u l d b e o f v a l u e f o r u n d e r s t a n d i n g t h e sea w a t e r s y s t e m . C a l c i u m s u l f a t e , l i t h i u m c a r b o n a t e , s o d i u m s u l f a t e , a n d c a l c i u m h y d r o x i d e h a v e reverse s o l u b i l i t y c u r v e s i n w a t e r , a r e r e a d i l y a v a i l a b l e , a n d a r e s o l u b l e t o a n e x t e n t t h a t n e i t h e r v i s u a l o b s e r v a t i o n o f scale n o r c h e m i c a l a n a l y s i s w o u l d b e a problem. T h e b e h a v i o r of s o l u t i o n s of e a c h s u b s t a n c e w a s e x p l o r e d i n t h e h e l i x , l i t h i u m c a r b o n a t e s o l u t i o n b e i n g t h e l a s t u s e d . T h e effect o f c o n c e n t r a t i o n l e v e l w a s t h e n e x amined w i t h the solution i n the equipment, l i t h i u m carbonate. I t was discarded a n d replaced w i t h calcium sulfate, w h i c h is being studied more intensely. I t is hoped t h a t t h e r e s u l t s of these r u n s w i l l b e c o r r e l a t e d w i t h those f r o m p i l o t p l a n t s a n d o p e r a t i o n a l p l a n t s d i s t i l l i n g sea w a t e r .
Analyses T h e l i t h i u m c a r b o n a t e c o n c e n t r a t i o n w a s m e a s u r e d b y acidimétrie t i t r a t i o n w i t h m e t h y l orange indicator. T h e c a l c i u m sulfate a n d c a l c i u m h y d r o x i d e concentrations were determined b y t i t r a t i o n w i t h d i s o d i u m dihydrogen Versenate [the disodium salt of ( e t h y l e n e d i n i t r i l o ) t e t r a a c e t i c a c i d ] , w i t h a d d e d m a g n e s i u m c h l o r i d e . A buffer of a m m o n i u m chloride i n a m m o n i u m hydroxide was employed. T h e indicator was E r i o chrome B l a c k T . A special high p u r i t y calcium carbonate i n hydrochloric acid was u s e d as a s t a n d a r d . B e c a u s e o f t h e h i g h c o n c e n t r a t i o n o f s o d i u m s u l f a t e i t w a s c o n -
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
110
ADVANCES IN CHEMISTRY SERIES
venient to analyze b y evaporation, ignition, and weighing, all w i t h appropriate precau tions.
Results A c o n v e n i e n t c o r r e l a t i o n of t h e h e l i x d a t a i s o n a p l o t of s u p e r s a t u r a t i o n a g a i n s t t h e l o g a r i t h m of t h e t i m e f o r s c a l i n g . F r o m t h e i n i t i a l r e s u l t s ( F i g u r e s 3 t o 6) i t i s seen t h a t , f o r a g i v e n c o n c e n t r a t i o n , t h e d a t a c o u l d b e r e p r e s e n t e d as a gentle c u r v e or a s t r a i g h t l i n e . A n a r r o w i n d i c a t e s a r u n s t o p p e d b e f o r e s c a l i n g . 100,
,
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch012
90 LITHIUM CARBONATE helix runs
80
ζο
A • • •
70
1.21 g. L i C 0 / I O O m l . soin. 1.09 0.93 0.73 2
3
1 60 3 I< CO
S so Ο CO
t-
2
υ et
40
LJ CL
30,
20
10 J
0 I
1
I
I I I I
I
I
I
JO 100 TIME FOR SCALE, MINUTES
Figure 3 .
1
I
1 1 I 1
1,000
Data for lithium carbonate
L i t h i u m C a r b o n a t e . U s i n g the h e l i x , 77 r u n s were m a d e w i t h t h e l i t h i u m c a r b o n ate s y s t e m i n w a t e r , y i e l d i n g t h e results s h o w n i n F i g u r e 3. D u r i n g a r u n a l l t e m p e r a t u r e s were h e l d c o n s t a n t , b u t were v a r i e d f r o m r u n t o r u n , w i t h t h e w a l l t e m p e r a t u r e c o v e r i n g t h e r a n g e 158° t o 2 6 1 ° F . C o n c e n t r a t i o n has a definite effect o n t h e t i m e f o r s c a l i n g , w h e n t h e d a t a are c o r r e l a t e d b y u s i n g p e r cent s u p e r s a t u r a t i o n . W i t h a l o w concentration a higher temperature is required for a given supersaturation t h a n at a h i g h e r c o n c e n t r a t i o n . T h e r e s u l t s f o r the l o w c o n c e n t r a t i o n r u n s m i g h t b e s h o w i n g t h e effect of t h e h i g h e r t e m p e r a t u r e a n d l o w e r v i s c o s i t y o f t h e s o l u t i o n . T h e d e v i a t i o n o f t h e p o i n t s a t 7 8 t o 9 0 % s u p e r s a t u r a t i o n a n d v e r y s h o r t t i m e s c o u l d b e a reflection of a t i m e l a g i n t h e s y s t e m . T h e p o i n t s a t 4 5 % s u p e r s a t u r a t i o n are t a k e n t o d e t e r m i n e t h e effect of v e l o c i t y . F o u r t e e n r u n s m a d e u n d e r a p p a r e n t l y i d e n t i c a l c o n d i t i o n s ( e x c e p t f o r v e l o c i t y ) s h o w t h a t v e l o c i t y has n o effect ( F i g u r e 7 ) . T h e s c a t t e r i s p r o b a b l y d u e to u n c o n t r o l l e d v a r i a t i o n i n t h e c o p p e r s u r f a c e . I n F i g u r e 3 t h e o p e n s y m b o l s are f o r r u n s i n w h i c h t h e r e was a c t i v e b o i l i n g , w h i l e t h e s o l i d s y m b o l s are f o r those w h e r e b o i l i n g w a s p r e v e n t e d b y m a i n t a i n i n g a n a p p r o priate back pressure o n the system. A l t h o u g h the data scatter, i t is s u r p r i s i n g t h a t n o effect of b o i l i n g i s a p p a r e n t . T h i s m a y b e m i s l e a d i n g , f o r t h e v a p o r b u b b l e s c o u l d p r e v e n t a n y s m a l l p a r t i c l e s of scale f o r m e d b y b o i l i n g f r o m b e i n g seen, t h e scale b e i n g a p p a r e n t t o t h e eye o n l y a f t e r i t h a s d e p o s i t e d i n m o d e s t a m o u n t s . T h e p e r c e n t s u p e r s a t u r a t i o n w a s c a l c u l a t e d o n t h e b a s i s of t h e c o n c e n t r a t i o n of t h e feed s o l u t i o n , w i t h o u t a t t e m p t i n g t o a c c o u n t f o r a n y change d u e t o b o i l i n g . I t i s n o t possible t o e s t i m a t e t h e l o c a l c o n c e n t r a t i o n a n d s u p e r s a t u r a t i o n a n d j u d g e i f t h e i r use w o u l d raise t h e p o i n t s
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
111
BANCHERO AND GORDON—SCALE DEPOSITION ON HEATED SURFACES
CALCIUM S U L F A T E helix runs
• 0.216 g. Co S0 /100 ml. soin • 0.17 4
•
A
0.1 16 Open points are for boiling runs Velocity ZO-IO.Oft./sec. Wall temperature
208-285°F
•
-
\
\
ο
•
0216 ς./100 ml
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch012
•
•
_
>v \v
A
A
ill
A \ .
A A
ITV-
V .
0.17
0.116 •Α*
ι
1
ι
ι
ι ι ι
10
I
I
I
ι
ι
ι ι ι I
100
TIME FOR SCALE, MINUTES
Figure 4.
Data for calcium sulfate
for b o i l i n g sufficiently t o i n d i c a t e a difference b e t w e e n b o i l i n g a n d n o n b o i l i n g r u n s . S u c h a difference w o u l d s h o w b o i l i n g r u n s d e p o s i t i n g scale m o r e s l o w l y t h a n n o n b o i l i n g runs a t t h e same local p e r cent supersaturation. C a l c i u m S u l f a t e . T h e results o f t h e 65 runs f o r this system (Figure 4 ) show a s i m i l a r p a t t e r n — n a m e l y , a gentle c u r v e w i t h t h e c o o r d i n a t e s u s e d , s c a t t e r o f d a t a giving a b a n d rather t h a n a line, deviation f r o m a straight line at v e r y high supersatu r a t i o n s , a p p a r e n t l y n o great difference b e t w e e n b o i l i n g a n d n o n b o i l i n g r u n s , a n d a n effect of c o n c e n t r a t i o n w i t h t h e l o w e r c o n c e n t r a t i o n ( a n d h i g h e r t e m p e r a t u r e ) g i v i n g a l o w e r t i m e f o r scale f o r m a t i o n . H e r e t h e s u p e r s a t u r a t i o n w a s c a l c u l a t e d w i t h r e s p e c t to the h e m i h y d r a t e . T h e w a l l t e m p e r a t u r e c o v e r e d t h e r a n g e 2 0 8 ° t o 2 8 5 ° F .
SODIUM S U L F A T E helix runs 32.2-33.8 g. Na S0 /IOOml.solri| 2
•
2 ft/sec
A
6 ft/sec
•
9 ft/sec
4
Wall temperature 145-265 ° F
A
àA
10
+
A A
100
1,000
TIME FOR SCALE, MINUTES
Figure 5.
Data for sodium sulfate
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
ADVANCES IN CHEMISTRY SERIES
112
CALCIUM HYDROXIDB helix runs 1.08-1.13 g. Co(OH) /IOO ml. soin. Velocity 6.5 ft/sec. Woll temperoture l68-238 F. 2
Downloaded by UNIV OF NEW SOUTH WALES on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch012
e
—I
I
!
I I I I 1 I 10
Figure 6. 50
_J I I I I 100 TIME FOR SCALE, MINUTES
_l
I
I I I I 1
I
Data for calcium hydroxide
Δ Δ
Lithium
Carbonate
Effect of Solution Velocity
CO "401
1.18-1.21 g. Li C03/IOOg. solution 2
Woll temperature 179.8 - I80.5 F 9
UJ30