SALINE WATER CONVERSION

T h u s a n y pressure differential i n excess of the 25-atm. osmotic pressure should produce ... (17) present Stefan's equation for the diffusion of ...
0 downloads 0 Views 1MB Size
Osmosis through α Vapor Gap Supported by Capillarity

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch019

GERALD L. HASSLER and J . W. McCUTCHAN Department of Engineering, University of California, Los Angeles, Calif.

The semipermeable membrane proposed for the demineralization of sea water is based on H. L. Cal­ endar's theory that osmosis takes place through the membrane as vapor, condensing at the opposite membrane surface. The actual membrane being used consists of two sheets of untreated cellophane separated by a water-repellent powder, such as a silicone-coated pumice powder. The vapor gap is maintained by an air pressure in excess of the pres­ sure on the sea water and the cellophane sheets support the capillary surfaces, which will withstand pressures up to 1500 p.s.i. A number of successful experiments are reported with over 95% desalinization. The present effort is directed toward obtain­ ing reproducible experimental results and better methods of fabricating the vapor gap.

T h e t e r m " o s m o s i s " i s u s e d t o describe s p o n t a n e o u s flow of w a t e r i n t o a s o l u t i o n , o r f r o m a more dilute t o a more concentrated solution, separated f r o m each other b y a s u i t a b l e m e m b r a n e . T o o b t a i n f r e s h w a t e r f r o m s e a w a t e r , t h e flow m u s t b e r e ­ v e r s e d , f r o m t h e s o l u t i o n i n t o a f r e s h w a t e r s t r e a m . H e n c e t h e t e r m u s e d t o describe t h i s process is " r e v e r s e o s m o s i s . " C e r t a i n e x p e r i m e n t s (16) a s s o c i a t e d w i t h t h e t h e o r e t i c a l ideas o f C a l l e n d a r (2) s h o w t h a t , i n some i n s t a n c e s a t least, osmosis t a k e s p l a c e t h r o u g h e v a p o r a t i o n of t h e w a t e r a t one m e m b r a n e s u r f a c e , passage t h r o u g h t h e m e m b r a n e as v a p o r , a n d c o n d e n ­ s a t i o n a g a i n a t t h e o p p o s i t e m e m b r a n e s u r f a c e . T h e e x p e r i m e n t s r e p o r t e d here h a v e b e e n b a s e d e n t i r e l y o n t h i s t y p e o f osmosis. I t seems p r o b a b l e t h a t i n o t h e r i n s t a n c e s , w h e n c e r t a i n t y p e s o f m e m b r a n e s are u s e d , osmosis t a k e s p l a c e w i t h o u t a change of p h a s e . F o r e x a m p l e , t h e f r e s h w a t e r ions m a y pass t h r o u g h c h a n n e l s i n t h e m e m b r a n e s too s m a l l t o p e r m i t passage of t h e solute i o n s , o r a g a i n , t h e w a t e r m a y d i s s o l v e i n t h e m e m b r a n e ( a n d p o s s i b l y p a r t o f t h e m e m b r a n e also dissolves i n w a t e r ) , w h i l e t h e s o l u t e does n o t so d i s s o l v e a n d does n o t pass. T h i s d i s t i n c t i o n i s d e v e l o p e d b y M c B a i n (10) a n d G l a s s t o n e (4). T h e o s m o t i c p r e s s u r e o f a s o l u t i o n i s defined b y G l a s s t o n e (4) as t h e excess p r e s ­ s u r e w h i c h m u s t b e a p p l i e d t o a s o l u t i o n t o p r e v e n t t h e passage i n t o i t o f s o l v e n t w h e n t h e y are s e p a r a t e d b y a p e r f e c t l y s e m i p e r m e a b l e m e m b r a n e . A c t u a l l y n o m e m b r a n e i s 192

In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.

193

HASSLER AND McCUTCHAN—OSMOSIS THROUGH VAPOR GAP

p e r f e c t i n t h i s respect, b u t c o p p e r f e r r o c y a n i d e , C u F e ( C N ) , h a s b e e n f o u n d t o b e most selective. D a t a collected w i t h membranes of this t y p e p l a y e d a n i m p o r t a n t p a r t i n t h e f o r m u l a t i o n o f p r e s e n t - d a y s o l u t i o n t h e o r y — s o m u c h so t h a t t h e a u t h o r s h a v e u s e d t h i s t h e o r y w i t h o u t h e s i t a t i o n t o c o m p u t e o s m o t i c pressures of s o l u t i o n s w h o s e o s m o t i c pressures h a v e n e v e r b e e n p r e c i s e l y m e a s u r e d . S u c h a s o l u t i o n i s sea w a t e r . T h e copper ferrocyanide m e m b r a n e is " l e a k y " t o solutions of strong electrolytes. Some d a t a h a v e b e e n o b t a i n e d o n w e a k s o l u t i o n s of s t r o n g e l e c t r o l y t e s b y t h e T o w n e n d m e t h o d (16), b u t n o one has m a d e precise m e a s u r e m e n t s o n t h e o s m o t i c p r e s s u r e o f sea w a t e r .

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch019

2

6

R e c e n t w o r k b y R e i d (18), B r e t o n (1), a n d L o e b (9) shows p r o m i s e t h a t c e l l u ­ lose acetate m a y b e u s e d f o r s u c h o s m o t i c m e a s u r e m e n t s . H o w e v e r , t h e i r o b j e c t i v e w a s t o s t u d y t h e d e s a l i n i z a t i o n process a n d n o t t h e e q u i l i b r i u m m e a s u r e m e n t o f osmotic pressure. T h e o s m o t i c p r e s s u r e ( O P ) of s o l u t i o n s expressed i n a t m o s p h e r e s i s u s u a l l y c a l ­ c u l a t e d f r o m t h e f r e e z i n g - p o i n t d e p r e s s i o n , AT, i n degrees C e n t i g r a d e , i n a c c o r d a n c e with the relation OP

= 12.06ΔΓ -

0.021(Ar)

2

w h e r e AT i s o b t a i n e d f r o m t h e I n t e r n a t i o n a l C r i t i c a l T a b l e s (8). B y t a k i n g a v e r a g e c o n c e n t r a t i o n s o f t h e v a r i o u s salts i n sea w a t e r , t h e o s m o t i c p r e s s u r e is c a l c u l a t e d t o be a p p r o x i m a t e l y 2 5 a t m . ( 3 7 0 p . s . i . ) .

Proposed Osmotic Membrane for Sea Water T h e s e m i p e r m e a b l e m e m b r a n e p r o p o s e d a t U C L A i n 1950 (7) i s b a s e d o n C a l ­ e n d a r ' s t h e o r y t h a t osmosis t a k e s place t h r o u g h e v a p o r a t i o n o f t h e w a t e r a t one m e m ­ b r a n e s u r f a c e , passage t h r o u g h t h e m e m b r a n e as v a p o r , a n d c o n d e n s a t i o n a t t h e o p p o ­ site m e m b r a n e s u r f a c e : T h e scheme i s F r e s h water channel •— — * Diffusion gap Salt water channel

„ -u ι C a p i l l a r y membrane C a p i l l a r y membrane

Pi

:

T )

P P

2 3

ft > Λ » Λ P m u s t b e > P , i n o r d e r t h a t w a t e r c o n t a i n i n g s a l t w i l l n o t flow t h r o u g h t h e m e m b r a n e b u t , r a t h e r , p u r e w a t e r w i l l e v a p o r a t e f r o m t h e t o p o f t h e c a p i l l a r y surfaces. I f P — P = o s m o t i c pressure o f t h e s a l t s o l u t i o n , n o flow b y d i f f u s i o n w i l l o c c u r across t h e g a p . F o r p r e s s u r e differences less t h a n t h i s , Δ Ρ < ( P — Pi), n o r m a l o s m o t i c flow w o u l d o c c u r f r o m t h e f r e s h w a t e r s t r e a m i n t o t h e s a l t w a t e r . T h u s , i f w e are t o reverse t h i s process, Δ Ρ m u s t be g r e a t e r t h a n ( P — P ), i n o r d e r t h a t w a t e r w i l l d i s t i l l f r o m t h e s a l t w a t e r side t o t h e f r e s h w a t e r side. B e f o r e e q u i p m e n t c a n b e designed, a d e c i s i o n m u s t b e m a d e c o n c e r n i n g pressures l*i J Τ*2> d P . T h r e e pressure a r r a n g e m e n t s h a v e b e e n c o n s i d e r e d b a s e d o n t h e a s s u m p t i o n t h a t t h e o s m o t i c pressure of sea w a t e r is 2 5 a t m . ( T a b l e I ) . 2

3

1

3

3

3

a

R

x

3

Table I. Condition F r e s h water Gap Sea water

Pressure Data A

-25 0.01 + 0.01

Pressure, Atmospheres Β -24 1 + 1

C 1 25 + 25

T h u s a n y pressure d i f f e r e n t i a l i n excess of t h e 2 5 - a t m . o s m o t i c p r e s s u r e s h o u l d p r o d u c e some y i e l d o f f r e s h w a t e r . T h e q u e s t i o n t h e n b e c o m e s one o f r a t e o f p r o ­ d u c t i o n . A n a n a l y s i s m a d e as follows shows t h a t t h e l i m i t i n g f a c t o r , so f a r as r a t e i s

In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.

194

ADVANCES IN CHEMISTRY SERIES

c o n c e r n e d i n a w e l l designed s y s t e m , w i l l b e t h e d i f f u s i o n o f t h e w a t e r v a p o r across t h e g a p . W a l k e r et al. (17) p r e s e n t S t e f a n ' s e q u a t i o n f o r t h e d i f f u s i o n o f v a p o r t h r o u g h a gas f i l m . W h e n t h e r e i s n o d i f f u s i o n o f a i r , t h e e q u a t i o n b e c o m e s : ^ 4

dA

-D dP P dZ m

A

B

T h i s e q u a t i o n shows u s t h a t t h e p r a c t i c a l p r o b l e m i s t o d e s i g n a n a r r o w g a p , t h u s m a k i n g Ζ s m a l l , o r t o decrease t h e a i r p r e s s u r e i n t h e g a p , P ( T o w n e n d ' s a p p r o a c h ) , w h i c h necessitates a p a r t i a l v a c u u m i n t h e g a p a n d p u l l i n g t e n s i o n o n t h e f r e s h w a t e r column i n the equipment.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch019

B

T h e o r e t i c a l l y t h i s i s possible, a n d — 1 5 0 - a t m . t e n s i o n has been d e m o n s t r a t e d e x ­ p e r i m e n t a l l y o n w a t e r i n B e r t h e l o t (3) t u b e s . H o w e v e r , n e g a t i v e pressures i n T o w n end's e x p e r i m e n t s w i t h d i l u t e s o l u t i o n were less t h a n 1 a t m . a n d i t i s felt t h a t m o r e b a s i c r e s e a r c h o n l i q u i d tensions i s necessary b e f o r e schemes A a n d Β of T a b l e I c a n be c o n s i d e r e d f o r s o l u t i o n s as c o n c e n t r a t e d as s e a w a t e r . T o w n e n d m e a s u r e d o n l y e q u i l i b r i u m a n d h a d n o need f o r r a p i d v a p o r t r a n s f e r . T h i s leaves a r r a n g e m e n t C , T a b l e I , i n w h i c h t h e n a r r o w a i r g a p f u n c t i o n s as a s e m i p e r m e a b l e m e m b r a n e , as t h e m o s t p r o m i s i n g . T h e choice o f m a t e r i a l w i t h c a p i l l a r i e s s m a l l e n o u g h t o s u p p o r t t h e p r e s s u r e necessary f o r reverse osmosis o f sea water is a research project i n itself. T h e d e s i r a b l e p r o p e r t i e s f o r t h e a u t h o r s ' e q u i p m e n t are a i r e n t r y pressures g r e a t e r t h a n 7 5 0 p.s.i., s t a b i l i t y ( m a n y p l a s t i c f i l m s d e t e r i o r a t e w i t h t i m e ) , l o w a i r p e r ­ m e a b i l i t y o f t h e w e t t e d f i l m , a v a i l a b i l i t y , a n d l o w cost. C e l l o p h a n e seems t o c o m e closest t o s a t i s f y i n g these r e q u i r e m e n t s . T h e d e c i s i o n t o u s e c e l l o p h a n e w a s b a s e d o n t h e w o r k o f R i c h a r d s (15). whose classic studies o n h i g h v a l u e s o f v a p o r p r e s s u r e a n d l o w s a t u r a t i o n s i n soils l e d h i m t o test m a n y p l a s t i c sheets before d e c i d i n g t o u s e V i s k i n g c a s i n g i n h i s h i g h p r e s s u r e equipment.

Prediction Equation T h e process o f p r e s s u r e d i s t i l l a t i o n t h r o u g h a h o m o g e n e o u s m e m b r a n e i s b a s e d first o n t h e c o m m o n f a c t t h a t t h e v a p o r p r e s s u r e of a n y l i q u i d c a n b e i n c r e a s e d b y c o m p r e s s i n g i t o r decreased b y p l a c i n g i t u n d e r s u c t i o n , a n d second o n t h e e q u a l l y c o m m o n f a c t t h a t o n l y p u r e w a t e r v a p o r escapes f r o m w a t e r i n t o v a p o r o r a i r , l e a v i n g n o n v o l a t i l e salts b e h i n d t h e phase b o u n d a r y . I n o p e r a t i n g t h e processes o f v a p o r i z a t i o n — h e a t t r a n s f e r a n d d i f f u s i o n across a n e x t r e m e l y t h i n g a p — n o n e w p h e n o m e n a o r n e w p r o p e r t i e s o f m a t e r i a l s are r e q u i r e d . H o w e v e r , t h e n o v e l c o m b i n a ­ t i o n o f c a p i l l a r y surfaces, p r e s s u r e , a n d e x t r e m e l y s h o r t p a t h s f o r h e a t a n d d i f f u s i o n offers a n o p p o r t u n i t y f o r i m p r o v e m e n t s i n film p r o p e r t i e s a n d m e t h o d s o f c o n s t r u c t i o n not k n o w n before. T h e f o l l o w i n g c a l c u l a t i o n as m a d e f o r t h e S a l i n e W a t e r P r o j e c t (6) shows t h e r e l a ­ t i o n b e t w e e n p r e s s u r e a p p l i e d a n d p r o d u c t i o n r a t e . T h e d o m i n a n t f a c t o r s a r e : (1) t h e s a l t s o l u t i o n w h o s e o s m o t i c p r e s s u r e m u s t b e o v e r c o m e , (2) t h e p r e s s u r e , as a n e n e r g y source, (3) t h e d i f f u s i o n of heat a n d (4) v a p o r as resistance f a c t o r s , a n d (5) v i s c o u s losses w i t h i n t h e c e l l o p h a n e c a p i l l a r i e s . T h e v a p o r d e n s i t y , l i k e t h e v a p o r p r e s s u r e , c a n b e u s e d as a t h e r m o d y n a m i c p o ­ t e n t i a l whose t o t a l change a r o u n d a closed p a t h i s zero. A c c o r d i n g t o t h i s a r g u m e n t , t h e effect of t h e a b o v e five f a c t o r s o n v a p o r d e n s i t y c a n b e m a t h e m a t i c a l l y expressed a n d s u m m e d t o zero. B e g i n n i n g a t t h e p r o d u c t w a t e r o u t l e t , m o v e t o s a l t w a t e r b y a d d i n g M, c o m p r e s s t h e s a l t w a t e r t o p r e s s u r e p , a n d s u b j e c t i t t o t h e t h e r m a l loss o f l a t e n t h e a t t r a n s f e r , t h e d i f f u s i o n loss o f m a s s t r a n s f e r , a n d t h e v i s c o u s loss o f p r e s s u r e i n c e l l o p h a n e a n d m a n i f o l d passages. T h i s r e t u r n s t h e p a t h t o f r e s h w a t e r a n d a closed circuit.

In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.

HASSLER AND McCUTCHAN—OSMOSIS THROUGH VAPOR GAP

195

Salt. T h e d e p a r t u r e f r o m s t a n d a r d v a p o r d e n s i t y , Δ ρ , w i l l b e g i v e n b y — A — X 1 0 M g r a m p e r cc. Pressure. T h e effect o f p r e s s u r e i s ( b y a s t r a i g h t - l i n e a p p r o x i m a t i o n o f t h e K e l v i n equation) P

ν

0.61

v

_ e

- f Δρί, = 1.31 X 10 " ρ grams per cc.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch019

8

D i f f u s i o n of H e a t . I n d y n a m i c e q u i l i b r i u m , a transfer of v a p o r f r o m l i q u i d t h r o u g h a v a p o r phase t o a second l i q u i d ( t h e t w o l i q u i d s b e i n g t h e r m a l l y c o n n e c t e d o n l y across t h e t h i n g a p ) w i l l r e q u i r e reverse t r a n s f e r o f t h e h e a t o f v a p o r i z a t i o n . T h i s w i l l a c c o m p a n y a t e m p e r a t u r e difference d e t e r m i n e d b y t h e r a t i o o f h e a t flow t o t h e t h e r m a l conductance of t h e t w o heat paths. These t w o a r e t h e diffusion v a p o r g a p a n d t h e series o f s a l t w a t e r a n d p l a s t i c films. F o r t h e d i f f u s i o n g a p t h e c.g.s. a i r v a l u e 5.7 X I O i s c h o s e n f o r t h e t h e r m a l c o n d u c t i v i t y ( n e g l e c t i n g t h e s e p a r a t i n g p o w d e r ) , w h i l e f o r t h e series p o l y e t h y l e n e ( 5 0 Χ 1 0 c m . t h i c k ) , w e t c e l l o p h a n e ( 5 0 X 1 0 c m . t h i c k ) , a n d water (200 Χ 1 0 c m . t h i c k ) t h e respective t h e r m a l conductivities a r e 3.5 X I O " , 4 X I O " , a n d 14 X 1 0 " . - 5

- 4

- 4

- 4

4

4

Δ0

4

= \Z/gap

ΑΘ =

V / disk

585w 5.7 X 10 ~* 50 X 10 ~ 3.5 X 1 0 ~ 585w 0.57 + 0.0244

ΑΘ

, 50 X 10 " 200 X 10 ~ 4 X 1 0 " - " 14 X 1 0 ~

4

4

4

f

4

585w 5.7 X 1 0 - *

+

0

Q

2

4

1

4

4

4

S u c h a t e m p e r a t u r e difference w i l l cause a f u r t h e r d e p a r t u r e f r o m s t a n d a r d v a p o r density given b y -A

P

= - 1 . 0 2 X 10-e ΑΘ = - ,

v

5

g r a m per cc.

t°^-}°~

4W

7

7

X

1

+ 0.0244

0

ζ

Diffusion of V a p o r . across t h e g a p i s

T h e difference i n v a p o r d e n s i t y needed t o cause diffusion w — Ap

Χ

=

v

ζ

w h e r e t h e d i f f u s i o n coefficient, D, f o r w a t e r v a p o r t h r o u g h a i r is a f u n c t i o n o f p r e s s u r e . η = °· D

A sq. c m . per second

2 0 8

[See t h e G i l l i l a n d e q u a t i o n (12).] V i s c o u s P r e s s u r e L o s s . T h e v i s c o u s p r e s s u r e loss as d e s c r i b e d b y t h e m e a s u r e d p e r m e a b i l i t y o f c e l l o p h a n e (IS) i s AP

=

W lo.o X 1U

(one sheet of cellophane)

β

T h i s p r e s s u r e d r o p w i l l b e reflected i n t h e d e n s i t y o f v a p o r i n e q u i l i b r i u m w i t h w a t e r . S u b s t i t u t i n g t h e a b o v e a n d i n c l u d i n g t w o sheets o f c e l l o p h a n e : 1

- A

P

v

Q1

* 1.31 X 10-» ρ -

ν

1Ω~8

W

6 9 χ 10-*

=

L

9

X

1 0

~

3

W

N o w s e t t i n g t h e s u m of these five t e r m s e q u a l t o z e r o : ΔρββΗ + ΔρρΓβββιΐΓβ + Apthermal loss + Ap^Uius^jn + Δρ ί