Article pubs.acs.org/est
Sedimentological Control on Mn, and Other Trace Elements, In Groundwater of the Bengal Delta J. M. McArthur,†,* P. K. Sikdar,‡ B. Nath,§ N. Grassineau,∥ J. D. Marshall,⊥ and D. M. Banerjee# †
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom Department of Environment Management, Indian Institute of Social Welfare and Business Management, College Square, Kolkata 700073 § School of Environmental Systems Engineering, The University of Western Australia, MO15, 35 Stirling Highway, Crawley, WA 6009, Australia ∥ Department of Geology, RHUL, Egham, Surrey TW20 0EX, United Kingdom ⊥ School of Environmental Science, University of Liverpool, Brownlow Street, Liverpool L69 3GP # Department of Geology, Delhi University, Chattra Marg, Delhi 110007 ‡
S Supporting Information *
ABSTRACT: To reveal what controls the concentration and distribution of possibly hazardous (Mn, U, Se, Cd, Bi, Pb) and nonhazardous (Fe, V, Mo, PO4) trace elements in groundwater of the Bengal delta, we mapped their concentrations in shallow groundwater (2 mg/L (n = 3313; data from refs 11 and 12), with a maximum of 10 mg/L. For southern West Bengal, the figures are 47%, 11%, and 6 mg/L, respectively (527 wells 2 mg/L of Mn. Migration of extreme concentrations of Mn into palaeo673
dx.doi.org/10.1021/es202673n | Environ. Sci. Technol. 2012, 46, 669−676
Environmental Science & Technology
Article
palaeo-interfluvial aquifers were exceptionally easy to locate using the color differences between palaeo-channel wells, which yield Fe-rich water that stains red, and palaeo-interfluvial wells, which yield Mn-rich water that stains black. The reason for that ease is now clear. It is because the margins of palaeo-interfluvial aquifers are the locus of focused Fe- and Mn-reduction fronts, so wells at the palaeo-interfluvial margins tap water that is especially rich in either Mn or Fe. The juxtaposition of the reduction fronts heightens the contrast between the two colors of stain developed from each type of water. Marginal wells tapping the Mn-front stain more strongly black than do wells in the palaeo-interfluvial interiors where Mn concentrations are lower. Marginal wells tapping the Fe-front stain more strongly red that do most of those in palaeo-channel settings. The intensity of stain can, therefore, provide confirmation that a well is located at the Mn-reduction front or Fe-reduction front, which, today, means at the palaeo-interfluvial margin.
interfluvial interiors has yet to occur, and is limited by sorption of Mn to, or its reaction with, marginal sediments of the palaeointerfluvial aquifer. Concentrations of Mn in groundwater from palaeo-interfluvial interiors will therefore remain low for decades-to-centuries, as in the case of As.22 When retardation factors for Mn migration are known, this conclusion can be refined. Data of others6,11,12 show that Mn is widely distributed in groundwater of the Bengal delta at concentrations that may be hazardous in the light of modern epidemiological study.1−8 Nevertheless, in 2011, soon after these studies appear in print, WHO10 abandoned its Guideline Value for Mn in Drinking Water. Its stated reason for doing is that 0.4 mg/L of Mn is “well above concentrations of manganese normally found in drinking-water”.10 This statement is plainly wrong. This report, and further studies of Mn in groundwater, should provide the evidence needed to reverse that decision, if only as a precautionary measure to protect human health while epidemiological studies advance to the point of being definitive on this risk. Concentrations of U in the groundwater of our area do not exceed the WHO GV of 30 μg/L (and rarely exceed the previous GV of 15 μg/L). Concentrations >5 μg/L are found confined to palaeo-interfluvial groundwaters. Concentrations of V are typically 1−2 μg/L in palaeo-interfluvial groundwater, and nil in palaeo-channel groundwater. Concentrations of Sb, Se, Cd, Pb, and Bi, (Supporting Information Table S1) are mostly undetectable (2 mg/L) and Fe (>15 mg/L?) in groundwater may mark the presence of strip-interfaces at the margins of buried palaeointerfluves. If so, palaeo-interfluvial margins will be identifiable using the criteria of well-color that has proven successful in the Bengal delta.22 Despite the operation of regional variations governed by geological and climatic setting, the context of palaeo-channels and palaeo-interfluves may provide a unifying concept to assist development of deltaic aquifers and explain the distribution of Fe, Mn, Mo, V, PO4, U, and other dissolved constituents and pollutants, in deltaic aquifers worldwide.
■
ASSOCIATED CONTENT
S Supporting Information *
Table S1 shows concentrations of dissolved species in well water and well depth and includes GPS coordinates to WGS84 datum. This material is available free of charge via the Internet at http://pubs.acs.org.
■ ■
AUTHOR INFORMATION Corresponding Author *Phone 0044 (0)20 7679 2376; e-mail:
[email protected]. ACKNOWLEDGMENTS This work was funded by the Department of Earth Science at UCL, by the University of Western Australia (B.N.) and by NERC grant NE/G/016879/1 (J.M.McA. and P.K.S.), and the University of Liverpool. We thank J.D. Ball, of the Lifer Laboratory at Liverpool University, for the isotopic analysis, Elliot Harper for separating and identifying magnetite from sediments cored in West Bengal, and Jim Davy for driving the EDAX-SEM.
■
REFERENCES
(1) Kondakis, X. G.; Makris, N.; Leotsinidis, M.; Prino, M.; Papapetropoulos, T. Possible health effects of high manganese
674
dx.doi.org/10.1021/es202673n | Environ. Sci. Technol. 2012, 46, 669−676
Environmental Science & Technology
Article
concentration in drinking water. Arch. Environ. Health 1989, 44, 175− 178. (2) Wasserman G. A., Liu X., Parvez F., Ahsan H., Levy D., FactorLitvak P., Kline J., van Geen A., Slavkovich V., LoIacono N. J., Cheng Z.; Zheng Y.; Graziano J. H. 2006. Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ. Health Perspect., 2006, 114, 124 − 129. (3) Spangler, A. H.; Spangler, J. G. Groundwater manganese and infant mortality rate by county in North Carolina: An ecological analysis. Ecohealth 2009, 6, 596−600. (4) Wasserman G. A., Liu X., Parvez F., Factor-Litvak P., Ahsand H., Levy D., Kline J., van Geen A., Mey J., Slavkovich V., Siddique A. B., Islam T., Graziano J. H. 2011. Arsenic and manganese exposure and children’s intellectual function. Neurotoxicology, 2011, 32, 450−457. (5) Hafeman, D.; Factor-Litvak, P.; Cheng, Z.; van Geen, A.; Ahsan, H. Association between manganese exposure through drinking water and infant mortality in Bangladesh. Environ. Health Perspect. 2007, 115, 1107−1112. (6) van Geen, A.; Cheng, Z.; Jia, Q.; Seddique, A. A.; Rahman, M. W.; Rahman, M. M.; Ahmed, K. M. Monitoring 51 community wells in Araihazar, Bangladesh for up to 5 years: Implications for arsenic migration. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 2007, 42, 1729−1740. (7) Bouchard, M.; Laforest, F.; Vandelac, L.; Bellinger, D.; Mergler, D. Hair manganese and hyperactive behaviors: Pilot study of schoolage children exposed through tap water. Environ. Health Perspect. 2007, 115, 122−127. (8) Bouchard, M. F.; Sauve, S.; Barbeau, B.; Legrand, M.; Brodeur, M. E.; Bouffard, T.; Limoges, E.; Bellinger, D. C.; Mergler, D. Intellectual impairment in school-age children exposed to manganese from drinking water. Environ. Health Perspect. 2011, 119, 138−143. (9) Ljung, K.; Vahter, M. Time to re-evaluate the guideline value for manganese in drinking water? Environ. Health Perspect. 2007, 15, 1533−1538. (10) WHO. Guidelines for Drinking-Water Quality, 4rd ed.; Geneva: World Health Organization, 2011. (11) DPHE. Groundwater Studies for Arsenic Contamination in Bangladesh. Final Report, Rapid Investigation Phase, (6 vols); Department of Public Health Engineering, Government of Bangladesh. Mott MacDonald and British Geological Survey: Dhaka, 1999 (12) DPHE. Arsenic Contamination of Groundwater in Bangladesh, BGS Technical Report WC/00/19 (4 vols); Department of Public Health Engineering, British Geological Survey and Mott MacDonald: Dhaka, 2001 (13) Welch, R. M.; Allaway, W. H.; House, W. A.; Kubota, J. Geographic distribution of problem areas. In Micronutrients in Agriculture, 2nd ed.; Mortvedt, J. J., Cox, F. R., Shuman, L. N., Welch, R. M., Eds.; Soil Science Society of America: Madison, WI, 1991; pp 96−99. (14) El-Jaoual, T.; Cox, D. A. Manganese toxicity in plants. J. Plant Nutr. 1998, 21, 353−386. (15) Ayers, R. S.; Westcot, D. W. Water Quality for Agriculture, FAO Irrigation and Drainage Paper 29, Rev. 1; Food and Agriculture Organization of the United Nations, 1994; M-56, ISBN 92-5-1022631. (16) Frisbie, S. H.; Ortega, R.; Maynard, D. M.; Sarkar, B. The concentration of arsenic and other toxic elements in Bangladesh’s drinking water. Environ. Health Perspect. 2002, 110, 1147−1153. (17) Sherman, H. M.; Gierke, J. S.; Anderson, C. P. Controls on spatial variability of uranium in sandstone aquifers. Ground Water Monit. Rem. 2007, 27, 106−118. (18) Ayotte, J. D.; Szabo, Z.; Focazio, M. J.; Eberts, S. M. Effects of human-induced alteration of groundwater flow on concentrations of naturally-occurring trace elements at water-supply wells. Appl. Geochem. 2011, 26, 747−762. (19) Smith, A. H.; Lingas, E. O.; Rahman, M. Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bull. W. H. O. 2000, 78, 1093−1103.
(20) Argos, M.; Kalra, T.; Rathouz, P. J.; Chen, Y.; Pierce, B.; Parvez, F.; Islam, T.; Ahmed, A.; Rakibuz-Zaman, M.; Hasan, R.; et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): A prospective cohort study. Lancet 2010, 376, 252−258. (21) McArthur, J. M.; Ravenscroft, P.; Banerjee, D. M.; Milsom, J.; Hudson-Edwards, K. A.; Sengupta, S.; Bristow, C.; Sarkar, A.; Tonkin, S.; Purohit, R. How paleosols influence groundwater flow and arsenic pollution: A model from the Bengal Basin and its worldwide implication. Water Resour. Res. 2008, 44, W11411 DOI: 10.1029/ 2007WR006552. (22) McArthur, J. M.; Nath, B.; Banerjee, D. M.; Purohit, R.; Grassineau, N. Palaeosol control on groundwater flow and pollutant distribution: The example of arsenic. Environ. Sci. Technol. 2011a, 45, 1376−1383, dx.doi.org/10.1021/es1032376. (23) Umitsu, M. Late Quaternary sedimentary environments and landforms in the Ganges Delta. Sediment. Geol. 1993, 83, 177−186. (24) Goodbred, S. L. Jr.; Kuehl, S. A. The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges-Brahmaputra delta. Sediment. Geol. 2000, 133, 227−248. (25) Allison, M. A.; Khan, S. R.; Goodbred, S. L. Jr.; Kuehl, S. A. Stratigraphic evolution of the late Holocene Ganges-Brahamaputra lower delta plain. Sediment. Geol. 2003, 155, 317−342. (26) Goodbred, S. L. Jr.; Kuehl, S. A.; Steckler, M. S.; Sarkar, M. H. Controls on facies distribution and stratigraphic preservation in the Ganges-Brahmaputra delta sequence. Sediment. Geol. 2003, 155, 301− 316. (27) Uddin, A; Shamsudduha, M.; Saunders, J. A.; Lee, M.-K.; Ahmed, K. M.; Chowdhury, M. T. Mineralogical profiling of alluvial sediments from arsenic-affected Ganges−Brahmaputra floodplain in central Bangladesh. Appl. Geochem. 2011, 26, 470−483. (28) Pal, T.; Mukherjee, P. K.; Sengupta, S. Nature of arsenic pollutants in groundwater of Bengal basin − A case study from Baruipur area, West Bengal, India. Curr. Sci. 2002, 82, 554−561. (29) McArthur, J. M.; Banerjee, D. M.; Hudson-Edwards, K. A.; Mishra, R.; Purohit, R.; Ravenscroft, P.; Cronin, A.; Howarth, R. J.; Chatterjee, A.; Talukder, T.; Lowry, D.; Houghton, S.; Chadha, D. K. Natural organic matter in sedimentary basins and its relation arsenic in anoxic ground water: The example of West Bengal and its worldwide implications. Appl. Geochem. 2004, 19, 1255−1293. (30) von Gunten, H. R.; Kull, T. P. Infiltration of inorganic compounds from the Glatt River, Switzerland, into a groundwater aquifer. Water, Air, Soil Pollut. 1986, 29, 333−346. (31) Petrunic, B. M.; MacQuarrie, K. T. B.; Al, T. A. Reductive dissolution of Mn oxides in river-recharged aquifers: A laboratory column study. J. Hydrol. 2005, 301, 163−181. (32) Farnsworth, C. E.; Hering, J. G. Inorganic geochemistry and redox dynamics in bank filtration settings. Environ. Sci. Technol. 2011, 45, 5079−5087. (33) Oren, O.; Gavrielli, I.; Burg, A.; Guttman, J.; Lazar, B. Manganese mobilization and enrichment during soil aquifer treatment (SAT) of effluents, the Dan Region sewage reclamation project (Shafdan), Israel. Environ. Sci. Technol. 2007, 41, 766−772. (34) O’Brien, D. M.; Wooller, M. J. Tracking human travel using stable oxygen and hydrogen isotope analyses of hair and urine. Rapid Commun. Mass Spectrom. 2007, 21, 2422−2430. (35) Harvey, C. F.; Swartz, C. H.; Badruzzaman, A. B. M.; KeonBlute, N.; Yu, W.; Ali, M. A.; Jay, J; Beckie, R.; Niedan, V.; Brabander, D.; Oates, P. M.; Ashfaque, K. N.; Islam, S.; Hemond, H. F.; Ahmed, M. F. Arsenic mobility and groundwater extraction in Bangladesh. Science 2002, 298, 1602−1606. (36) Shamsudduha, M.; Taylor, R.; Ahmed, K.; Zahid, A. The impact of extensive groundwater abstraction on recharge to a shallow regional aquifer system: Evidence from Bangladesh. Hydrogeol. Jour. 2011, 19, 901−916. (37) Burdige, D. J.; Nealson, K. H. Microbial manganese reduction by enrichment cultures from coastal marine sediments. Appl. Environ. Microbiol. 1985, 50, 491−497. 675
dx.doi.org/10.1021/es202673n | Environ. Sci. Technol. 2012, 46, 669−676
Environmental Science & Technology
Article
(38) Myers, C. R.; Nealson, K. H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 1988, 240, 1319−1321. (39) Lovley, D. R.; Phillips, E. J. P. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 1988, 54, 1472−1480. (40) Nealson, K. H. Sediment bacteria: Who’s there, what are they doing, and what’s new? Annual Reviews in Earth Planet. Sci. 1997, 25, 403−434. (41) Lovley, D. R. Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol. Rev. 1997, 30, 305−313. (42) Chapelle, F. H. The significance of microbial processes in hydrogeology and geochemistry. Hydrogeol. J. 2000, 8, 41−46. (43) Lovley, D. R.; Anderson, R. T. Influence of dissimilatory metal reduction on the fate of organic and metal contaminants in the subsurface. Hydrogeol. J. 2000, 8, 77−88. (44) Postma, D. Concentration of Mn and separation from Fe in sediments - I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C. Geochim. Cosmochim. Acta 1985, 49, 1023−1033. (45) Nealson, K. H.; Myers, C. R. Microbial reduction of manganese and iron - New approaches to carbon cycling. Appl. Environ. Microbiol. 1992, 58, 439−443. (46) Postma, D.; Appelo, C. A. J. Reduction of Mn-oxides by ferrous iron in a flow system: Column experiment and reactive transport modeling. Geochim. Cosmochim. Acta 2000, 64, 1237−1247. (47) Ravenscroft, P.; McArthur, J. M.; Hoque, B. Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. In Arsenic Exposure and Health Effects IV; Chappell, , W. R., Abernathy, , C. O., Calderon, , R., Eds.; Elsevier Science Ltd.: Oxford, 2001; pp 53−77. (48) Mladenov, N.; Zheng, Y.; Miller, M. P.; Nemergut, D.; Legg, T.; Simone, B.; Hageman, C.; Moshiurrahaman, M.; Ahmed, K. M.; McNight, D. Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. Environ. Sci. Technol. 2010, 44, 123−128. (49) Rowland, H. A. L.; Polya, D. A.; Lloyd, J. R.; Pancost, R. D. Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Org. Geochem. 2006, 37, 1101−1114. (50) Sengupta, S; McArthur, J. M.; Sarkar, A.; Leng, M. J.; Ravenscroft, P.; Howarth, R. J.; Banerjee, D. M. Do ponds cause arsenic-pollution of groundwater in the Bengal Basin? An answer from West Bengal. Environ. Sci. Technol. 2008, 42, 5156−5164. (51) McArthur, J. M.; Ravenscroft, P.; Srecek, O. Aquifer arsenic source. Nat. Geosci. 2011b, 4, 655−656. (52) Datta, S.; Neal, A. W.; Mohajerin, T. J.; Ocheltree, T.; Rosenheim, B. E.; White, C. D.; Johannesson, K. H. Perennial ponds are not an important source of water or dissolved organic matter to groundwaters with high arsenic concentrations in West Bengal, India. J. Geophys Res. 2011, 38, L20404. (53) Sarkar, A.; Sengupta, S.; McArthur, J. M.; Ravenscroft, P.; Bera, M. K.; Bhushan, R.; Samanta, A.; Agrawal, S. Evolution of Ganges− Brahmaputra western delta plain: Clues from sedimentology and carbon isotopes. Quat. Sci. Rev. 2009, 28, 2564−2581. (54) Ravenscroft, P.; Burgess, W. G.; Ahmed, K. M.; Burren, M.; Perrin, J. Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations and hydrogeological setting. Hydrogeol. J. 2005, 13, 727−751. (55) Hunter, K. S.; Wang, Y.; Van Cappellen, P. Kinetic modeling of microbially-driven redox chemistry of subsurface environments: Coupling transport, microbial metabolism and geochemistry. J. Hydrol. 1998, 209, 53−80. (56) Fredrickson, J. K.; Zachara, J. M.; Kennedy, D. W.; Dong, H.; Onstott, T. C.; Hinman, N. W.; Li, S.-M. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 1998, 62, 3239− 3257.
(57) Randall S. R.; Sherman D. M.; Ragnarsdottir V. 2001. Sorption of As(V) on green rust (Fe4(II)Fe2(III)(OH)12SO4 z 3H2O) and lepidocrocite (g-FeOOH): Surface complexes from EXAFS spectroscopy. Geochim. Cosmochim. Acta 2001, 65, 1015 − 1023. (58) Horneman, A.; van Geen, A.; Kent, D. V.; Mathe, P. E.; Zheng, Y.; Dhar, R. K.; O’Connel, S.; Hoque, M. A.; Aziz, Z.; Shamsudduha, M.; et al. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part I: Evidence from sediment profiles. Geochim. Cosmochim. Acta 2004, 18, 3459−3473. (59) Wan, J; Tokunaga, T. K.; Kim, Y.; Brodie, E.; Daly, R.; Hazen, T. C.; Firestone, M. K. Effect of organic carbon supply on uranium mobility in a previously bioreduced contaminated sediment. Environ. Sci. Technol. 2008, 42, 7573−7579. (60) Wan, J; Tokunaga, T. K.; Kim, Y.; Brodie, E.; Daly, R.; Hazen, T. C.; Firestone, M. K. Effect of organic carbon supply on uranium mobility in a previously bioreduced contaminated sediment. Environ. Sci. Technol. 2005, 42, 7573−7579. (61) Brammer, H. The Geography of the Soils of Bangladesh; University Press Limited: Dhaka, 1996. (62) Sparrow, L. A.; Uren, N. C. The role of manganese toxicity in crop yellowing on seasonally waterlogged and strongly acidic soils in northeastern Victoria. Aust. J. Exp. Agric. 1987, 27, 303−307. (63) Wang, Y. X.; Wu, P.; Wu, Y. R.; Yan, X. L. Molecular marker analysis of manganese toxicity tolerance in rice under greenhouse conditions. Plant Soil 2002, 238, 227−233. (64) Armstrong, W. The oxidising activity of roots in waterlogged soils. Physiol. Plantarum 1967, 20, 920−926. (65) Liu, W. -J.; Zhu, Y. -G.; Smith, F. A. Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant Soil 2005, 277, 127−138. (66) Brinkman, R. Ferrolysis, a hydromorphic soil forming process. Geoderma 1970, 3, 199−206.
676
dx.doi.org/10.1021/es202673n | Environ. Sci. Technol. 2012, 46, 669−676