Selective Cross-Coupling of 2-Naphthol and 2-Naphthylamine

Products 11 - 18 - 1994,59, 2156-2163. Selective Cross-Coupling of 2-Naphthol and 2-Naphthylamine. Derivatives. A Facile Synthesis of 2,2,,3-Trisubsti...
1 downloads 0 Views 1MB Size
J. Org. Chem. 1994,59, 2156-2163

2166

Selective Cross-Coupling of %-Naphtholand 2-Naphthylamine Derivatives. A Facile Synthesis of 2,2',3-Trisubstituted and 2,2',3,3'-Tetrasubstituted 1,l'-Binaphthyls Martin SmrCina,'vtJ & & p hVyskoEi1,t Bohumil M&ca,+Miroslav Polaekj Thomas A. Claxton,l Andrew P. Abbott,l and Pave1 KoEovskq**l Department of Organic Chemistry, Charles University, 128 40 Prague 2, Czech Republic, The J. Heyrovsk4 Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague 8, Czech Republic, and Department of Chemistry, University of Leicester, Leicester LE1 7RH, England Received November 15,19930

The novel 1,l'-binaphthyls with OH and/or NHR (R = H or Ph) groups in the 2,2'-positions and with additional methoxycarbonylgroup(s) in the 3- or 3,3'-poaitions (13-18) have been synthesized from their respective precursors 1-5 by the CuCld t-BuNH2-mediated oxidative crow-coupling. In most cases, the chemoselectivity was good, and the cross-coupled products 11-18 were obtained in fair to excellent yields. Binaphthyls 6-10, resulting from the self-coupling,and carbazoles 19-23 have been identified as bmroducts. Ab initio calculations and electrochemical measurements have been employed to acibunt for the observed selectivity.

Introduction Oxidative coupling of 2-naphthol and ita derivatives is a simple and efficient method for the preparation of symmetrically substituted binaphthyls as documentedby numerous examples in the literature.' Thus, for instance, two molecules of a-naphthol(1) can be coupled by means of Cu(II)z-4or other mild oxidants" to produce binaphthol (6) in high yield. Similarly, 2-naphthylamine (2) gives diamine 78 while 4 affords 9.2 By contrast, selective crosscoupling of two different molecules is rare:a1o among the handful of examples is the Cu(I1)-mediatedcoupling 1 + 2 producing 118 and 1 + 4 furnishing 12.1° The symmetrically 2,2'-disubstituted 1,l'-binaphthyls, such as 6 and 7,11have been extremely successful as C2-

mxa;oc 2

1. x = o H 2, X - N h 3, X = NHPh

6, X-OH NH,

7, X

7 Charles University.

Current address: Department of Chemistry, Baker Laboratory, Comell University, Ithaca, NY 14853. 1 The J. Heyrove& Institute. * University of Leicester. *Abstract published in Advance ACS Abstracts, March 15,1994. (1) (a) F m e , R. Bull. SOC.Chim.Fr. 1898,19,610. (b) Pummerer, R.; Rieche, A.; Prell, E. Chem. Ber. 1926,59,2159. (c) Toda, F.; Tanaka, K.; Iwata, S. J. Org. Chem. 1989,54,3007. (d) Dewar, M. J. S.; Nakaya, T. J. Am. Chem. SOC.1968,90,7134. (e) Yamamoto, K.; Fukushima, H.; Okamoto, Y.; Hatada, K.; Nakazaki, M. J. Chem. SOC.,Chem. Commun. 1984,1111. (0Feringa, B.; Wynberg, H. J. Org. Chem. 1981,462547. Forarecentreview,see: (9) Roeini,C.;Franzini,L.;Raffaelli, A.;Salvadori, P. Synthesis 1992, 503. (2) Feringa, B.; Wynberg, H. Bioorg. Chem. 1978, 7,397. (3) Ysmamoto,K.;Fukushima,H.;Nakazaki,M. J. Chem.Soc.,Chem. Commun. 1984,1490. (4) Bruasee, J.; Groenendijk, J. L. G.; te Koppele, J. M.; Jansen, A. C. A. Tetrahedron 1985, 41, 3313. (5) Other metals have alsobeen exploredby other investigators,namely Fe(II1)S and Mn(III),? but to date, Cu(I1) has been the most successful oxidantF (6) Toda, F.; Tanaka, K.; Iwata, 5. J. Org. Chem. 1989,54, 3007 and references cited therein. (7) (a) Yamamoto, H.; Fukushima, H.; Okamoto, Y.; Hatada, K.; Nakazaki, M. J. Chem. SOC.,Chem. Commun. 1984,1111. (b) Diederich, F.; Heater, M. R.; Uyeki, M. A. Angew. Chem., Znt. Ed. Engl. 1988,27, 1705.

(8)(a) SmrEia, M.; Lorenc, M.; Hand, V.; KoEovsH, P. Synlett 1991, 231. (b) SmrEina,M.; Lorenc, M.; Hand, V.; Sedmera, P.; KoEovskg, P. J. Org. Chem. 1992,57,1917. (c) SmrEina, M.; PolBkovB, J.; VyekoEil, KoEovskf, P. J . Org. Chem. 1993,58,4634. (9) Yamamoto,K.;Yumioka,H.;Okamoto,Y.;Chikamatau,H. J.Chem. SOC.,Chem. Commun. 1987,168. (10) (a) Hovorka,M.; GtinterovB,J.;Zdvada, J. TetrahedronLett. 1990, 31,413. (b) Hovorka, M.; Zgvada, J. Org. Prep. R o c . Znt. 1991,23,200. (c) Hovorka, M.; &gel, R.; GtinterovB, J.; Tichg, M.; Zgvada, J. Tetrahedron 1992,48,9503. (d) Hovorka, M.; Zdvada, J. Tetrahedron

s.;

1992,48,9517.

0022-3263/94/1959-2156$04.50/0

3

4, x=OH 5, XrNH2

9, x-OH 10, XmNH2

8, X = NHPh

symmetric chiral ligands in asymmetric synthesis, with >90% ee achieved being more the rule rather than the exception. Additional substituents at positions 3 and 3' have been recognized to impose further steric interactions, an effect which often results in the remarkable increase of asymmetricinduction.12 In contrast to the wide use of (11) For reviews, see, e.g., ref l g and (a) Morrison, J. D. Asymmetric Synthesis; Academic: New York, 1983-1985; Vola. 1-5. (b) KoEovs&, P.; TureEek, F.; HBjlbk, J. Synthesis of Natural Products: Problem of Regioselectiuity;CRC Boca Raton, FL, 1986, Vola. I and II. (c) Jacquea, J.; Fouquey, C. Org.Synth. 1988,67,2. (d) Narasaka, K. Synthesis 1991, 1. (e) Trost, B. M. Pure Appl. Chem. 1992,64,315. (0Kagan, H. B.; Riant, 0.Chem.Rev. 1992,92,1007. (g)Mikami, K.; Terada, M.; Nariaawa, S.; Nakai, T. Synlett 1992,255. (h) Mikami, K.; Shimizu, M. Chem.Rev. 1992,92, 1021. (i) Hattori, K.; Yamamoto, H. J. Org. Chem. 1992,57, 3264 and references cited therein. c j ) Parker, D. Chem. Rev. 1991,91, 1441. (k) Noyori,R.;Takaya,H. Ace. Chem.Res. 1990,23,345. (1) Takaya, H.; Ohta, T.; Mashima, K.; Noyori, R. Pure Appl. Chem. 1990,62,1135. (m) Hayashi, T.; Kubo, A.; Ozawa, F. Pure Appl. Chem. 1992,64,421. (n) Rossiter, B. E.; Swingle,N. M. Chem.Rev. 1992,92,771. (0)Duthaler, R. 0.;Hafner, A. Chem. Rev. 1992,92,807. (p) Blaaer, H.-U. Chem. Rev. 1992,92,936. (4)Zaseinovich, G.; Meetroni, G.; Gladiali, S. Chem. Rev. 1992, 92, 1051. (r) Burgees, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179. For recent examples, see: (e) S k r & I.; S W , I.; Uvada, J. Tetrahedron: Asymmetry 1992,3,1365. (t)Star&, I.; St&, I.; Zdvada, J. J . Org. Chem. 1992,57,6966. (u) Chong, J. M.; MacDonald, G. K.; Park, S. B.; Wilkinson, S. H. J. Org. Chem. 1993,58,1266. (v) Febbri, D.; Delogu, G.; De Lucchi, 0. J. Org. Chem. 1993,58,1784. (w) Hattori, K.; Yamamoto, H. J. Org. Chem. 1992,57,3264. (x) Hattori, K.; Miyata, M.; Yamamoto, H. J. Am. Chem. SOC. 1993,115,1151. Q Mikami, K.; Matauka, S.; J. Am. Chem. SOC.1993,115,7039. (2) Keck, G. E.;Tarbet, K. H.; Geraci, L. S.J. Am. Chem. SOC.1993,115,8467.

0 1994 American Chemical Society

2-Naphthol and 2-Naphthylamine Derivatives

J. Org. Chem., Vol. 59, No. 8, 1994 2157

Table 1. Copper(I1)-Mediated Oxidative Coupling of Naphthyl Derivatives 1-5

entry 1 2 3 4 5 6 7 8 9 10

time (h) 48 3 48 36 48 72 72 72 72 72

substrates 1+2 1+4 1+5 2+4 2+5 3+4 3+5 4+5 3+3 5+5

cross-coupling product (yield, %)a 11 (85)* 12 (81)d 13 (32) 14 (71)* 15 (13) 16 (40)g 17 (9) 18 (50)

self-coupling product (yield, % )

carbazole (yield, %)

6 (6); 7 6 (4); 9 (7)' 6 (27)p 10 (16)' 7 (11); 9 (13)c 7 (201,' io (11)4 8 (11),4 9 (28)' 8 (15): 10 (20)" 9 (18): 10 (9)O 8 (45)' 10 (26)'~~

19 (-1)e 21 (12)' 19 (-1)C 21 (10),4J22 (9)' 20 (-1)' 21 (18)p 22 (-5)''' 21 (8)' 20 (3)"i 21 (21)'

*

0 Isolated by chromatography. Yields obtained with CuClz/PhCH(NH2)CHa (see ref 8); with CuCldt-BuNH2 the yields were as follows: 11 (65%),6(2%),7(5%),and19(-1%). GCyield. Seereflo. e Canbeisolatedfromthemixturebycrystallizationfromtoluene.f Formation of 19 (-1%) was detected by GC. 8 From the crude reaction mixture, 16 can be isolated by single crystallization from acetone as a yellow clathrate (see also ref 30). h Formation of carbazoles 20 (2%) and 23 (