Selective Voltage-Gated Sodium Channel Peptide Toxins from Animal

Nov 21, 2017 - 6 δ-conotoxins. DIV S3−S4 prolonged inactivation (subsite of site 3). 124. 7 pyrethroids. DIII S6 inhibition of inactivation, shift ...
1 downloads 9 Views 487KB Size
Subscriber access provided by READING UNIV

Review

Selective voltage-gated sodium channel peptide toxins from animal venom: pharmacological probes and analgesic drug development Ying Wu, Hui Ma, Fan Zhang, Chun-Lei Zhang, Xiaohan Zou, and Zhengyu Cao ACS Chem. Neurosci., Just Accepted Manuscript • DOI: 10.1021/acschemneuro.7b00406 • Publication Date (Web): 21 Nov 2017 Downloaded from http://pubs.acs.org on November 24, 2017

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Chemical Neuroscience is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Neuroscience

1

Selective voltage-gated sodium channel peptide toxins from animal

2

venom: pharmacological probes and analgesic drug development

3

Ying Wu1, Hui Ma1, Fan Zhang, Chunlei Zhang, Xiaohan Zou, and Zhengyu Cao

4 5

Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational

6

Development, China Pharmaceutical University, Nanjing 211198, China

7

1

Equally contributed



Corresponding author:

8 9 10

E-mail addresses: [email protected] (F. Zhang), [email protected]

11

(Z. Cao); Tel.: +86-25-8618-5955 (F.Z. & Z.C.)

12 13

Abstract:

14

Voltage-gated sodium channels (Navs) play critical roles in action potential generation

15

and propagation. Nav channelopathy as well as pathological sensitization contribute

16

to allodynia and hyperalgesia. Recent evidence has demonstrated the significant roles

17

of Nav subtypes (Nav1.3, 1.7, 1.8 and 1.9) in nociceptive transduction and therefore

18

these Navs may represent attractive targets for analgesic drug discovery. Animal

19

toxins are structurally diverse peptides that are highly potent yet selective on ion

20

channel subtypes and therefore representing valuable probes to elucidate the

21

structures, gating properties and cellular functions of ion channels. In this review, we

22

summarized recent advance of peptide toxins from animal venom that selectively

23

target Nav1.3, 1.7, 1.8, and 1.9, along with their potentials in analgesic drug

24

discovery.

25 26

Keywords: voltage-gated sodium channels; pain; animal toxins; peptide therapeutic

27 28 29 1

ACS Paragon Plus Environment

ACS Chemical Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

30

1. Voltage-gated sodium channel structure and function

31

2. Navs involved in pain

32

3. Animal toxins targeting Nav subtypes associated with pain

33

3.1 Nav1.3 and animal toxins

34

3.2 Nav1.7 and animal toxins

35

3.3 Nav1.8 and animal toxins

36

3.4 Nav1.9 and animal toxins

37

4. Prospects of animal toxins in analgesic drug discovery

38 39

Abbreviations:

40

AP

Action potential

41

CIP

Congenital indifference to pain

42

CNS

Central nervous system

43

DRG

Dorsal root ganglion

44

GEFS+ Genetic epilepsy with febrile seizures plus

45

IEM

Inherited erythromelalgia

46

Na+

Sodium ion

47

Navs

Voltage-gated sodium channels

48

PEPD

Paroxysmal extreme pain disorder

49

PNS

Peripheral nervous system

50

SFN

Small fiber neuralgia

51

SNI

spinal nerve injury

52

STX

Saxitoxin

53

TTX

Tetrodotoxin

54

TTX-R TTX-resistant

55

TTX-S TTX-sensitive

56 57 58 59 2

ACS Paragon Plus Environment

Page 2 of 31

Page 3 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Neuroscience

60

1. Voltage-gated sodium channel structure and function

61

Voltage-gated sodium channels (Navs) are transmembrane proteins that conduct

62

sodium ion (Na+) into cytosol upon activation. Navs play a central role for action

63

potential (AP) generation and propagation in excitable cells, including cardiac

64

myocytes, skeletal muscle cells, and neurons.1,2 Navs are also marginally expressed in

65

non-excitable cells, involved in noncanonical roles in regulating multiple

66

pathophysiological functions.1,3

67

An Nav comprises a highly sequence-conserved α-subunit (220-260 kDa) and

68

one or two auxiliary β-subunits (30-40 kDa).4,5 The Nav α-subunit consists of four

69

homologous domains (DI-DIV), each containing six transmembrane α-helixes (S1-S6)

70

and a short membrane reentry loop between S5 and S6. The α-subunit comprises

71

multiple domains, which are involved in pore-forming, voltage-sensing and Na+

72

selectivity.6 The S4 transmembrane segment in each domain contains four to seven

73

positively charged tri-amino acid repeats, in each of which an arginine or lysine is

74

commonly followed by two hydrophobic amino acids. This positively charged motif

75

in the S4 segment serves as the voltage sensor that moves outward to the extracellular

76

part in a sliding-helix model upon depolarization.7 The movement of the S4 results in

77

conformational change of the channel to an open state.6,7 Three hydrophobic amino

78

acid residues, IFM, situated between transmembrane DIII-S6 and DIV-S1 form the

79

inactivation gate which quickly plugs into the pore and prevents additional Na+

80

influx.8,9 Four amino acids, DEKA, located between S5 and S6 form the selectivity

81

filter for Na+ ions.9

82

A variety of toxins have been found to target Navs. Combined with radioligand

83

binding, electrophysiological approach and site-directed mutagenesis, at least seven

84

distinct neurotoxin binding sites have been recognized in the Nav α-subunit (Table

85

1).10 According to their electrophysiological properties and binding sites, generally,

86

Nav toxins can be classified into three groups: (1) pore-blocking toxins which block

87

Na+ conductance by interacting with neurotoxin site 1, including tetrodotoxin (TTX),

88

µ-conotoxins, and saxitoxin (STX); (2) toxins negatively shift the activation voltage

89

and produce a persistent activation by binding to membrane-embedded neurotoxin site 3

ACS Paragon Plus Environment

ACS Chemical Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

90

2 (such as veratridine, grayanotoxin, and batrachotoxin), or 5 (such as ciguatoxin and

91

brevetoxin). These toxins prefer to interact with the open state of channel; (3) toxins

92

delay inactivation by binding to extracellular neurotoxin site 3, such as sea-anemone

93

toxins and α-scorpion toxins. In addition to these well characterized toxins, some

94

other toxins have distinct modes of action and/or neurotoxin binding sites. Spider

95

toxins and β-scorpion toxins shift activation voltage to either depolarized or

96

hyperpolarized direction by interacting with neurotoxin site 4. Delta-conotoxin

97

prolongs channel inactivation similar to that of α-scorpion toxins, by binding to

98

neurotoxin site 6. Although the neurotoxin binding sites are topologically distinct,

99

allosteric coupling has been demonstrated between sites 3 and 6 and between sites 2

100

and 5.11,12

101

In mammals, four β-subunits (β1-β4; encoded by SCN1B-4B genes) have been

102

discovered. The β-subunits are type I transmembrane proteins, containing an

103

extracellular signal peptide in the N-terminus, a transmembrane segment and an

104

immunoglobulin domain.9,13 Both excitable and non-excitable cells have considerable

105

amounts of β-subunit expression which plays critical roles in modulating the

106

localization, kinetics, and gating of Nav α-subunits.1,11,13,14

107

Based on similarity of their amino acid sequences, Navs can be classified into

108

nine subtypes, Nav1.1-Nav1.9, encoded by genes SCN1A-5A and SCN8A-11A in

109

mammals (Table 2).1,14 In addition to sequence homology which is greater than 50%

110

in identify, different subtypes of Navs display distinct gating kinetics. The nine

111

subtypes can be categorized to be tetrodotoxin-sensitive (TTX-S, Nav1.1-1.4, Nav1.6

112

and 1.7) and tetrodotoxin-resistant (TTX-R, Nav1.5, 1.8 and 1.9) according to their

113

sensitivities to TTX blocking. Nav expressions are tissue and development

114

dependent.2,11,15 Navs1.1-1.3 and 1.6 are primarily expressed in central nervous

115

system (CNS). Navs1.4-1.5 are predominately expressed in skeletal and cardiac

116

muscles, respectively. Navs1.7-1.9 are the major subtypes in peripheral nervous

117

system (PNS).2

118

2. Navs involved in pain

119

Chronic pain affects approximately 20% of people worldwide.16 In general, 4

ACS Paragon Plus Environment

Page 4 of 31

Page 5 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Neuroscience

120

chronic pain is categorized as neuropathic and nociceptive (nociceptor sensitization).

121

Neuropathic pain, as a debilitating chronic pain condition, is often followed by nerve

122

injury or malfunction derived from diseases such as cancer, diabetes mellitus,

123

infection, autoimmune disease, and trauma. Clinical symptoms of neuropathic pain

124

are characterized by hyperalgesia (increased pain perception of noxious stimuli), and

125

mechanical allodynia (pain hypersensitivity to normally innocuous stimuli).17

126

The molecular basis of chronic pain is complicated. Sensitization or changes in

127

expression levels of ion channels, including Navs contribute to chronic pain. Several

128

sodium channel subtypes such as Navs1.3, 1.7, 1.8, and 1.9 are preferentially

129

expressed in nociceptors where they propagate electric signals. These Nav subtypes

130

play pivotal roles in the pathobiological progression of pain.18 Navs channelopathies

131

derived from gene mutations are associated with many painful disorders.19 Local

132

anesthetics such as lidocaine20 and anti-epileptic drugs such as carbamazepine21

133

targeting Navs have been used for pain relief. However, these drugs provide limited

134

analgesic efficacy in most cases due to lack of selectivity at inhibiting Navs including

135

those expressed in brain and heart.22,23 Therefore, discovering Nav subtype selective

136

inhibitors may provide promising analgesics with less side effects.

137

3. Animal toxins targeting Nav subtypes associated with pain

138

Venoms from deadly venomous animal are a complex mixture containing a

139

variety of peptides for defense and prey capture. Due to the critical roles of ion

140

channels in the regulation of heart beating and neuronal excitability,24 many peptide

141

toxins from animal venoms have been demonstrated to modulate ion channel

142

(including but not limited to sodium, potassium, and calcium channels) activities,

143

often with exquisite potency and selectivity.25

144

3.1 Nav1.3 and animal toxins

145

The expression of TTX-S Nav1.3 depends on the development stage. While

146

Nav1.3 expression level is significant in embryonic or neonatal dorsal root ganglion

147

(DRG) neurons, adult sensory neurons have very low expression.26 Nav1.3 displays

148

fast activation and inactivation kinetics and quick recovery from inactivation at

149

membrane potentials < −80 mV, suggesting the roles of Nav1.3 in repetitive firing. 5

ACS Paragon Plus Environment

ACS Chemical Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 31

150

Upon slow ramp depolarization, Nav 1.3 produces large ramp currents.27 Nav1.3

151

contributes to accelerated repriming of TTX-S sodium currents within axotomized

152

DRG neurons. This unique electrophysiological property may contribute to neuron

153

development and altered neuronal excitability in injured neurons.18,27

154

In human injured neurons and painful neuromas, Nav1.3 expression, however, is

155

significantly up-regulated.28,29,30 Antisense knock-down of Nav1.3 in nerve-injured

156

rats attenuates neuropathic pain.31 However, controversy exists. Deletion of Nav1.3

157

either specifically from nociceptors or globally did not affect the abnormal discharges

158

in injured nerves, nor did it alter the threshold of mechanical stimuli in neuropathic

159

pain model suggesting a possible compensation mechanism in Nav1.3 knock-out

160

mice.32

161

Although controversy exists, Nav1.3 selective inhibitors are likely to be useful

162

analgesics. Several Nav1.3 gating modifiers have been identified from animal venoms

163

(Table 3). A peptide termed µ-conotoxin BuIIIB (µ-BuIIIB), discovered from the cone

164

snail Conus bullatus, potently blocks Nav1.3 (IC50 = 0.2 µM),33 while another two

165

structurally similar peptides, µ-KIIIA and µ-SIIIA are less potent (IC50 = 8 and 11 µM,

166

respectively).34 Structure-activity relationship studies of µ-BuIIIB revealed the critical

167

roles of C-terminal residues (Trp16, Arg18 and His20) for Nav inhibition.33 In addition

168

to the C-terminal, the E3 to A replacement in the N-terminus of µ-BuIIIB significantly

169

increased its potency. Another analog, ddSecBuIIIB, has been proven to display

170

enhanced blockade to Nav1.3.33 However, whether the blockade of Nav1.3 by

171

mutated µ-BuIIIB is useful in pain management needs further exploration. Indeed,

172

ddSecBuIIIB also suppressed Nav1.4 activity which is responsible for the initiation of

173

excitation-contraction coupling in skeletal muscle cells.

174

BmK AS, a long-chain neurotoxic polypeptide purified from scorpion Buthus

175

martensi Karsch,35 has been reported to suppress Nav1.3 peak currents at nanomolar

176

concentrations

177

hyperpolarized direction by modulating neurotoxin site 4.36 In rodent pain models,

178

BmK AS produced significant analgesic effects on both inflammation-induced

179

spontaneous pain and mechanical hyperalgesia.37

and

shift

the

voltage-dependent

6

ACS Paragon Plus Environment

activation/inactivation

to

Page 7 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Neuroscience

180

Although several toxins have been reported to be Nav1.3 selective, little in vivo

181

information was available in the literature. The role of Nav1.3 on pain maintenance

182

and/or progression remains unclear. Nevertheless, these discovered Nav1.3 selective

183

peptide inhibitors may represent valuable tools to evaluate whether Nav1.3 can serve

184

as a drug target for chronic pain management.

185

3.2 Nav1.7 and animal toxins

186

TTX-S Nav1.7 expression is mainly found in the peripheral nociceptors.15,22 The

187

kinetics of Nav1.7 activation and inactivation are quick and the closed-state

188

inactivation is slow allowing it to amplify subthreshold depolarizations.18 Nav1.7 is

189

therefore considered to be a threshold channel producing substantial ramp currents for

190

firing APs.38 Nav1.7 also produces resurgent currents upon repolarization following a

191

strong depolarization.39 The expression profile, together with its unique property in

192

the actin potential generation, suggested that Nav1.7 may serve as a promising drug

193

target for pain drug development.18,39

194

Genetic evidences have further demonstrated the roles of Nav1.7 in pain onset

195

and maintenance in humans and other mammals.39 In humans, gain-of-function

196

mutations of Nav1.7 have been demonstrated to be the etiology of several painful

197

disorders such as paroxysmal extreme pain disorder (PEPD),21 small fiber neuralgia

198

(SFN),15 and inherited erythromelalgia (IEM).40 These mutated Nav1.7 displayed

199

enhanced Na+ currents, lowered threshold for activation which resulted in increased

200

firing frequency in response to graded supra-threshold stimuli,39 thereby enhancing

201

hyperexcitability in DRG neurons. By contrast, Nav1.7 loss-of-function mutations are

202

associated with congenital indifference to pain (CIP).41 Importantly, CIP patients has

203

no aberrant cognitive and motor development.39 In addition, manipulation of Nav1.7

204

expression in rodent models also supports the notion. Globally knock-down of mouse

205

Nav1.7 ameliorated diabetic pain42 and thermal hyperalgesia induced by complete

206

Freund’s adjuvant administration.43 Conditional knock-out of Nav1.7 in DRG neurons

207

normalized inflammatory pain and thermal hyperalgesia induced by burn injury,

208

without affecting neuropathic pain.39,44 DRG neurons from Nav1.7 knock-out mice

209

displayed similar peak amplitude of AP, however, the rising phase was slowed. A 7

ACS Paragon Plus Environment

ACS Chemical Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

210

population of 30% of DRG neurons from Nav1.7 knock-out animals failed to generate

211

APs.45 Therefore, Nav1.7 is one of the promising drug targets for analgesic

212

development with broad interests.15,46

213

Many selective Nav1.7 toxins have been reported (Table 4). Mu-SLPTX-Ssm6a,

214

a peptide containing 46 amino acid residues with three disulfide bonds has been

215

isolated from the centipede Scolopendra subspinipes mutilans. Mu-SLPTX-Ssm6a

216

potently inhibited Nav1.7 (IC50 = 25 nM) by shifting voltage-dependent activation to

217

more depolarized potentials which is 150-fold more potent than its effect on other

218

Navs except for Nav1.2 which is 32-fold.47 In thermal- and acid-induced pain models,

219

µ-SLPTX-Ssm6a produced comparable analgesic effect with morphine without

220

adverse effects on cardiovascular system and CNS.15,47

221

In addition to centipede toxin, several spider toxins have been identified to

222

potently and selectively inhibit Nav1.7.15 The best-known example is protoxin II

223

(ProTx-II), isolated from Thrixopelma pruriens. The IC50 value (0.3 nM) for ProTx-II

224

inhibiting Nav1.7 was ~100-fold more potent than that on other Nav subtypes.48

225

ProTx-II inhibited Nav1.7 peak current by shifting the activation potentials to

226

depolarized direction. It is interesting that local or systematic administrations of

227

ProTx-II failed to produce analgesic effect in an inflammatory pain model. The

228

explanation that ProTxII lacks analgesic effect is due to its inability to penetrate blood

229

brain barrier48 is unlikely to be true since Nav1.7 is predominantly expressed in

230

peripheral nociceptors. Nevertheless, the selectivity on Nav1.7 of this peptide does

231

provide a valuable tool to study the cellular function of Nav1.7.45,48

232

GpTx-1, a 34-residue, C-terminal amidated peptide toxin with three-disulfide

233

bounds, was reported to inhibit Nav 1.7 with less selectivity. Using multi-attribute

234

positional scan analoging, an engineered GpTx-1 analog was reported to inhibit

235

Nav1.7 with IC50 values of ~1.6 nM, which was over 1000-fold more potent than that

236

on Nav1.4 and Nav1.5.49,50 Local administration of GpTx-1 significantly reduced the

237

pain behavior induced by scorpion toxin OD1. However, systematically delivered

238

GpTx-1 had no efficacy on rodent pain models.51

239

Recently, Shcherbatko et al. engineered a potent and selective Nav1.7 inhibitor 8

ACS Paragon Plus Environment

Page 8 of 31

Page 9 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Neuroscience

240

using the template, tarantula ceratotoxin-1 (CcoTx1), an Nav toxin isolated from

241

Ceratogyrus cornuatus. The CcoTx1 was further modified to achieve more potent and

242

selective microproteins using semirational approaches. The microprotein suppressed

243

Nav1.7 with an IC50 value of 2.5 nM, over 1000-fold selectivity on Nav1.4 and

244

Nav1.5, 80- and 20-fold selectivity on Nav1.2 and Nav1.6, respectively.52 However,

245

no in vivo data were available regarding the efficacy of the microprotein on pain

246

models.

247

Huwentoxin (HWTX)-IV, a 35-residue peptide purified from the spider

248

Selenocosmia huwena, containing three disulfide bridges, was reported to inhibit

249

hNav1.7 (IC50 = 17±2 nM) without effects on Nav1.5 even at a concentration of 10

250

µM. HWTX-IV bound to neurotoxin site 4 of hNav1.7 in the closed state and trapped

251

the voltage sensor in its inward position. A triple mutant, E1G, E4G, Y33W-HwTx-IV,

252

displayed a 42-fold (IC50 = 0.4±0.1 nM) selectivity of Nav 1.7 over other Navs.53,54

253

HWTX-IV showed anti-nociceptive effects in murine neuropathic pain models. The

254

analgesic effect of HWTX-IV in spinal nerve injury (SNI) model lasted longer and

255

displayed higher efficacy than Mexiletine.55

256

Hainantoxin (HNTX)-IV (also termed β-TRTX-Hn2a), a typical cystine knot

257

peptide purified from Ornithoctonus hainana, selectively inhibited TTX-S, but not

258

TTX-R Na+ currents.56,57 HNTX-IV preferentially blocked hNav1.7 (IC50 ~ 21 nM)

259

with little effect on rNav1.4 and hNav1.5. HNTX-IV also blocked the rNav1.2 and

260

rNav1.3 (IC50 = 36 and 375 nM, respectively).58 HNTX-IV modification of Nav1.7

261

was dependent on depolarization potentials. At depolarization potentials below +70

262

mV, HNTX-IV suppressed Nav1.7 activity. However, partial agonism was observed at

263

the depolarization potentials above +70 mV.58 Nevertheless, in physiological and

264

pathological conditions, no evidence shows that the membrane potential can reach

265

+70 mV. HNTX-IV administration alleviated acute inflammatory pain and

266

SNI-induced neuropathic pain.59 HNTX-III, another toxin from the spider

267

Ornithoctonus hainana, inhibited Nav1.7, Nav1.2 and Nav1.3 with similar potency

268

although the selectivity against Nav1.4 and 1.5 was over 100-fold. Although it was

269

bound to neurotoxin site 4, the mode of action of HNTX-III was distinct from 9

ACS Paragon Plus Environment

ACS Chemical Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

270

β-scorpion toxins and other β-spider toxins. HNTX-III trapped the domain II voltage

271

sensor in the closed state therefore suppressed the Nav1.7 Na+ current.60 The in vivo

272

analgesic data of HNTX-III are not available.

273

Novel peptides µ-TRTX-Phlo1a, -Phlo1b and -Phlo2a, from Australian Phlogius

274

sp. tarantula, modified hNav1.7 at concentrations ranged from high nanomolar to

275

sub-micromolar. Phlo1a and Phlo1b both contain 35 amino acid residues with only

276

one residue difference. Phlo1a and Phlo1b belong to NaSpTx family 2 with marginal

277

inhibition on Nav1.2 and Nav1.5 therefore are selective Nav1.7 inhibitors. Phlo2a was

278

less selective, as it robustly inhibited rNav1.2 and hNav1.5 as well at similar

279

concentration range. Although the selectivities on Nav1.7 are different, these three

280

peptides all shifted activation voltage to depolarized direction rendering Nav1.7 more

281

difficult to open.61

282

Other species like corn snails also contain a diverse range of Nav1.7 inhibitors,

283

however, their selectivities on Nav1.7 were relatively poor. Mu-conotoxin PIIIA,

284

isolated from Conus purpurascens was a hNav1.7 inhibitor with an IC50 value of 3.1

285

µM. Mu-conotoxin PIIIA also blocked Nav1.4.62,63 Another Nav1.7 inhibitor,

286

µ-conotoxin KIIIA, isolated from Conus kinoshitai, suppressed Nav1.7, Nav1.2 and

287

Nav1.4 at comparable concentration ranges. Nevertheless, µ-conotoxin KIIIA

288

significantly attenuated mouse pain behaviors induced by formalin, most like through

289

its action on Nav1.7.64,65

290

In conclusion, venom-derived peptides have provided a broad range of Nav1.7

291

inhibitors most of which displayed significant analgesic effect in murine pain models.

292

Further investigation on structure-activity relationships in combination with point

293

mutation and electrophysiology may provide highly potent yet selective Nav1.7

294

inhibitors with metabolic stability for analgesics development targeting Nav1.7.

295

3.3 Nav1.8 and animal toxins

296

Similar to Nav1.7, TTX-R Nav1.8 is preferentially expressed in PNS nociceptors

297

including small-diameter DRG neurons, nodose and trigeminal ganglia neurons.66

298

Nav1.8 displays a fast activation, slow inactivation and rapid repriming kinetics.66,67

299

Nav1.8 is responsible for the majority of inward Na+ current contributing to the 10

ACS Paragon Plus Environment

Page 10 of 31

Page 11 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Neuroscience

300

upstroke of neuronal APs, supporting the repetitive firing in depolarized neurons.22,68

301

Nav1.8 is also responsible for subthreshold membrane oscillations,69 which contribute

302

significantly to hyperexcitability following injury of sensory neurons.

303

The fundamental neurophysiological role of Nav1.8 in nociceptive neurons

304

suggests that Nav1.8 has significant effect on nociceptor excitability, thus linking to

305

pain management in humans. Although genetic loss-of-function mutations were not

306

yet described in humans, gain-of-function mutations of Nav1.8 were shown to

307

produce hyperexcitability and inappropriate spontaneous firing in neurons. These

308

gain-of-function mutations were thought to be the etiology of painful peripheral

309

neuropathy observed in human.70,71 Nav1.8 has been confirmed to be involved in cold,

310

inflammatory and neuropathic pain in knock-out67,72 and knock-down73,74 murine

311

models. Bierhaus et al. reported that methylglyoxal modification of Nav1.8 increased

312

nociceptor firing, contributing to hyperalgesia in mouse diabetic neuropathy. These

313

studies provided evidence for a previously unidentified pathway in which

314

methylglyoxal directly induced hyperalgesia and may suggest that Nav1.8 was a valid

315

therapeutic target for diabetic pain.75 Moreover, some small molecular inhibitors, such

316

as A-803467 and PF-01247324, which are potent and selective Nav1.8 blockers, were

317

reported to produce significant anti-nociceptive effect in neuropathic and

318

inflammatory pain models.76,77 Overall, although the relationship between Nav1.8

319

expression and neuropathic signaling is not as clear as Nav1.7, electrophysiological

320

properties, together with its tissue distribution, suggest that Nav1.8 is crucial in

321

nociceptive signaling.

322

To date, several selective Nav1.8 inhibitors have been identified from animal

323

venom (Table 5). The µO-conotoxin, MrVIA, from freshwater snail Conus

324

marmoreus was reported to block TTX-R Na+ current with an IC50 value of 82.8 nM

325

which was 10-fold more potent than that on TTX-S Na+ currents in DRG neurons.78

326

The inhibition of Na+ current was voltage-dependent. The inhibition was significantly

327

diminished with more depolarized voltage steps.79 The other µO-conotoxin, MrVIB,

328

displayed 10-fold selectivity in inhibiting TTX-R Na+ currents than for TTX-S Na+

329

current in nociceptive DRG neurons. Further studies demonstrated that MrVIB 11

ACS Paragon Plus Environment

ACS Chemical Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 31

330

blocked human Nav1.8 with 10-fold selectivity to other Navs.80 MrVIB displayed

331

efficacious long-lasting analgesic effects in animal models of persistent pain.80,81

332

MrVIB (0.03-3 nmol) intrathecal administration significantly reduced mechanical

333

allodynia and hyperalgesia although motor activity deficits were observed at a much

334

higher dose.80 Thus, MrVIB may represent a promising lead compound to develop

335

Nav1.8-selective inhibitor for treating inflammatory and neuropathic chronic pain.

336

Another µO-conotoxin, MfVIA, a hydrophobic 32-residue peptide, isolated from

337

Conus magnificus, potently inhibited Nav1.4 and Nav1.8 with much lower affinity to

338

other Navs.79 However, there are no in vivo data available due to its action on Nav1.4.

339

APETx2, a toxin from the sea anemone Anthopleura elegantissima, was reported

340

to be an acid-sensing ion channel 3 (ASIC3) modulator. APETx2 moralized

341

inflammatory and acid-induced pain was initially proposed to be through inhibiting

342

ASIC3. Recent studies demonstrated that APETx2 also inhibited the TTX-R Nav1.8

343

Na+ currents in DRG neurons (IC50 = 2.6 µM) with marginal effect on TTX-S Na+

344

currents. APETx2 shifted activation voltage of Nav1.8 rightward therefore reducing

345

the maximal macroscopic conductance. Thus, in vivo analgesic effect of APETx2 was

346

possible through inhibition of both Nav1.8 and ASIC3 channels, two promoting pain

347

targets.82

348

ProTx-I, identified from tarantula Thrixopelma pruriens, was the first highly

349

potent TTX-R Nav1.8 inhibitor, however, with poor selectivity.83 Many spider toxins

350

have been demontarated to inhibit Nav1.8 currents with low affinity or without

351

selectivity. Ceratotoxins (CcoTx)1-3 and phrixotoxin 3 (PaurTx3) inhibited Nav1.8

352

Na+ current at micromolar concentrations.84 JZTX-V85 and JZTX-IX86 inhibited rat

353

Nav1.8 without selectivity.87 Recently discovered µ-TRTX-Hl1a from Haplopelma

354

lividum appeared to suppress TTX-R Na+ current rather than TTX-S Na+ current

355

suggesting the selectivity of µ-TRTX-Hl1a on Nav.18. The comparable analgesic

356

effect of µ-TRTX-Hl1a with morphine in both neuropathic inflammatory pain

357

suggests its usefulness in pain drug discovery.88

358 359

As described above, the search for Nav1.8 selective inhibitors is relatively lagging

when

compared

to

Nav1.7.

Nevertheless,

12

ACS Paragon Plus Environment

genetic

evidence

and

Page 13 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Neuroscience

360

pharmacological data all suggest the potential of Nav1.8 selective inhibitors for pain

361

drug development.

362

3.4 Nav1.9 and animal toxins

363

TTX-R Nav1.9 is preferentially expressed in intrinsic myenteric sensory

364

nociceptors, small-diameter (100-fold selectivity)

137

rNav1.3 >> hNav1.5 > rNav1.4 Nav1.7 (IC50 = 10 nM) > Nav1.4 >> Nav1.5 Gating modifier hNav1.7 (IC50 ~ 21 nM) > rNav1.2 > rNav1.3 >> hNav1.5 > rNav1.4

52

61

61

53, 54

50

57, 58

Binds to site 4 in the closed state Nav1.7 (IC50 = 232 nM) > Nav1.2 >

60

Nav1.3 >> Nav1.5 > Nav1.4 Shifts activation to depolarizing direction hNav1.7 (IC50 = 25 nM) > hNav1.2 >

47

hNav1.1 >> hNav1.3, 1.4, 1.5 ZRLCCGFOKSCRSRQCKOHRCC#

Blocks current

62,

Nav1.4 (IC50 = 41 nM) >> hNav1.7 (3.1 µM)

63

Blocks current

CCNCSSKWCRDHSRCC#

(Cone snail)

501

48,

to depolarizing direction

hNav1.7 (IC50 = 17 nM) > rNav1.2 >

(Cone snail) µ-conotoxin KIIIA

Inhibits Na+ conductance and shifts activation

Blocks current

Huwentoxin-IV

Ref.

rNav1.2 > rNav1.4 > rNav1.7 >> rNav1.5

(#, C-terminal amidation; Z, pyroglutamate; O, 4-hydroxyproline)

502 503 504 505 506 507 508 19

ACS Paragon Plus Environment

64

ACS Chemical Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 31

509

Table 5. Primary structures and electrophysiological properties of Nav1.8 and Nav1.9

510

toxins from animal venoms Major pharmacology,

Toxin (species)

Amino acid sequences

µO-conotoxin MrVIA

ACRKKWEYCIVPIIGFIYCCP

Gating modifier

78,

(Cone snail)

GLICGPFVCV

TTX-R Nav (rat DRG) (IC50 = 82.8 nM)

79

µO-conotoxin MrVIB

ACSKKWEYCIVPILGFVYCC

(Cone snail)

PGLICGPFVCV

µO-conotoxin MfVIA

RDCQEKWEYCIVPILGFVYC

Blocks current

(Cone snail)

CPGLICGPFVCV

Nav1.4 > rNav1.8 (IC50 = 95.9 nM) > Nav1.5

ProTx-I

ECRYWLGGCSAGQTCCKHL

Shifts activation to depolarizing direction

(Tarantula)

VCSRRHGWCVWDGTFS

Nav1.2 ~ Nav1.5 ~ Nav1.7 ~ Nav1.8

GTACSCGNSKGIYWFYRPSC

Blocks current and shifts activation to

PTDRGYTGSCRYFLGTCCTP

depolarizing direction

AD

rNav1.8 (IC50 = 2.6 µM) > TTX-S Nav

Blocks current hNav1.8 (IC50 = 102 nM) > rNav1.2, rNav1.3, hNav1.5, hNav1.7 >> rNav1.9

APETx2 (Sea anemone)

subtype selectivity

µ-conotoxin SmIIIA

ZRCCNGRRGCSSRWCRDHS

(Cone snail)

RCC#

Blocks TTX-R Na+ current Blocks TTX-R Na+ current in rat DRG

µ-conotoxin TsIIIA GCCRWPCPSRCGMARCCSS

(Cone snail)

(IC50 = 2.6 µM)

Ref.

80, 81

79

83

82

138

139

KEGYLMDHEGCKLSCFIRPS

Dramatic facilitation of rNav1.9 currents

TsVII

GYCGRECGIKKGSSGYCAW

(Scorpion)

PACYCYGLPNWVKVWDRA TNKC#

511

while only modest inhibition of rNav1.8 at 100 nM

(#, C-terminal amidation; Z, pyroglutamate; O, 4-hydroxyproline)

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 20

ACS Paragon Plus Environment

105, 140

Page 21 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Neuroscience

528

References

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

(1) Catterall, W. A., Goldin, A. L., and Waxman, S. G. (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev. 57, 397-409. (2) Catterall, W. A. (2012) Voltage-gated sodium channels at 60: structure, function and pathophysiology. J. Physiol. 590, 2577-2589. (3) Black, J. A., and Waxman, S. G. (2013) Noncanonical roles of voltage-gated sodium channels. Neuron 80, 280-291. (4) Beneski, D. A., and Catterall, W. A. (1980) Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc. Natl. Acad. Sci. U. S. A. 77, 639-643. (5) Payandeh, J., Scheuer, T., Zheng, N., and Catterall, W. A. (2011) The crystal structure of a voltage-gated sodium channel. Nature 475, 353-358. (6) Wang, J. T., Yarov-Yarovoy, V., Kahn, R., Gordon, D., Gurevitz, M., Scheuer, T., and Catterall, W. A. (2011) Mapping the receptor site for α-scorpion toxins on a Na+ channel voltage sensor. Proc. Natl. Acad. Sci. U. S. A. 108, 15426-15431. (7) Catterall, W. A. (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67, 915-928. (8) Smith, M. R., and Goldin, A. L. (1997) Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys. J. 73, 1885-1895. (9) Catterall, W. A. (2000) From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 26, 13-25. (10) Stevens, M., Peigneur, S., and Tytgat, J. (2011) Neurotoxins and their binding areas on voltage-gated sodium channels. Front. Pharmacol. 2, 71. (11) Zhang, F., Xu, X., Li, T., and Liu, Z. (2013) Shellfish toxins targeting voltage-gated sodium channels. Mar. Drugs 11, 4698-4723. (12) Cestele, S., and Catterall, W. A. (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82, 883-892. (13) Patino, G. A., and Isom, L. L. (2010) Electrophysiology and beyond: multiple roles of Na+ channel beta subunits in development and disease. Neurosci. Lett. 486, 53-59. (14) Savio-Galimberti, E., Gollob, M. H., and Darbar, D. (2012) Voltage-gated sodium channels: biophysics, pharmacology, and related channelopathies. Front. Pharmacol. 3, 124. (15) de Lera Ruiz, M., and Kraus, R. L. (2015) Voltage-gated sodium channels: structure, function, pharmacology, and clinical indications. J. Med. Chem. 58, 7093-7118. (16) Brennan, F., Carr, D. B., and Cousins, M. (2007) Pain management: A fundamental human right. Anesth. Analg. 105, 205-221. (17) Tsuda, M., Koga, K., Chen, T., and Zhuo, M. (2017) Neuronal and microglial mechanisms for neuropathic pain in the spinal dorsal horn and anterior cingulate cortex. J. Neurochem.141, 486-498. (18) Dib-Hajj, S. D., Cummins, T. R., Black, J. A., and Waxman, S. G. (2010) Sodium channels in normal and pathological pain. Annu. Rev. Neurosci. 33, 325-347. (19) Waxman, S. G., Dib-Hajj, S., Cummins, T. R., and Black, J. A. (1999) Sodium channels and pain. Proc. Natl. Acad. Sci. U. S. A. 96, 7635-7639. 21

ACS Paragon Plus Environment

ACS Chemical Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

(20) Staud, R., Weyl, E. E., Bartley, E., Price, D. D., and Robinson, M. E. (2014) Analgesic and anti-hyperalgesic effects of muscle injections with lidocaine or saline in patients with fibromyalgia syndrome. Eur. J. Pain 18, 803-812. (21) Fertleman, C. R., Baker, M. D., Parker, K. A., Moffatt, S., Elmslie, F. V., Abrahamsen, B., Ostman, J., Klugbauer, N., Wood, J. N., Gardiner, R. M., and Rees, M. (2006) SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52, 767-774. (22) Waxman, S. G., and Zamponi, G. W. (2014) Regulating excitability of peripheral afferents: emerging ion channel targets. Nat. Neurosci. 17, 153-163. (23) Cummins, T. R., and Rush, A. M. (2007) Voltage-gated sodium channel blockers for the treatment of neuropathic pain. Expert Rev. Neurother. 7, 1597-1612. (24) Catterall, W. A. (1995) Structure and function of voltage-gated ion channels. Annu. Rev. Biochem. 64, 493-531. (25) Lewis, R. J., and Garcia, M. L. (2003) Therapeutic potential of venom peptides. Nat. Rev. Drug Disco. 2, 790-802. (26) Felts, P. A., Yokoyama, S., DibHajj, S., Black, J. A., and Waxman, S. G. (1997) Sodium channel α-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Mol. Brain Res.45, 71-82. (27) Cummins, T. R., Aglieco, F., Renganathan, M., Herzog, R. I., Dib-Hajj, S. D., and Waxman, S. G. (2001) Nav1.3 sodium channels: Rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J. Neurosci. 21, 5952-5961. (28) Lindia, J. A., and Abbadie, C. (2003) Distribution of the voltage gated sodium channel Na-v 1.3-like immunoreactivity in the adult rat central nervous system. Brain Res. 960, 132-141. (29) Fukuoka, T., Kobayashi, K., Yamanaka, H., Obata, K., Dai, Y., and Noguchi, K. (2008) Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons. J. Comp. Neurol. 510, 188-206. (30) Black, J. A., Nikolajsen, L., Kroner, K., Jensen, T. S., and Waxman, S. G. (2008) Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann. Neurol. 64, 644-653. (31) Hains, B. C., Klein, J. P., Saab, C. Y., Craner, M. J., Black, J. A., and Waxman, S. G. (2003) Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J. Neurosci. 23, 8881-8892. (32) Nassar, M. A., Baker, M. D., Levato, A., Ingram, R., Mallucci, G., McMahon, S. B., and Wood, J. N. (2006) Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol. Pain 2, 33. (33) Green, B. R., Zhang, M. M., Chhabra, S., Robinson, S. D., Wilson, M. J., Redding, A., Olivera, B. M., Yoshikami, D., Bulaj, G., and Norton, R. S. (2014) Interactions of disulfide-deficient selenocysteine analogs of mu-conotoxin BuIIIB with the alpha-subunit of the voltage-gated sodium channel subtype 1.3. FEBS J. 281, 2885-2898. (34) Wilson, M. J., Yoshikami, D., Azam, L., Gajewiak, J., Olivera, B. M., Bulaj, G., and Zhang, M. M. (2011) µ-Conotoxins that differentially block sodium channels Nav1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc. Natl. Acad. Sci. U. S. A. 108, 10302-10307. 22

ACS Paragon Plus Environment

Page 22 of 31

Page 23 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Neuroscience

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

(35) Ji, Y. H., Li, Y. J., Zhang, J. W., Song, B. L., Yamaki, T., Mochizuki, T., Hoshino, M., and Yanaihara, N. (1999) Covalent structures of BmK AS and BmK AS-1, two novel bioactive polypeptides purified from Chinese scorpion Buthus martensi Karsch. Toxicon 37, 519-536. (36) Liu, Z. R., Tao, J., Dong, B. Q., Ding, G., Cheng, Z. J., He, H. Q., and Ji, Y. H. (2012) Pharmacological kinetics of BmK AS, a sodium channel site 4-specific modulator on Nav1.3. Neurosci. Bull 28, 209-221. (37) Chen, J., Feng, X. H., Shi, J., Tan, Z. Y., Bai, Z. T., Liu, T., and Ji, Y. H. (2006) The anti-nociceptive effect of BmK AS, a scorpion active polypeptide, and the possible mechanism on specifically modulating voltage-gated Na+ currents in primary afferent neurons. Peptides 27, 2182-2192. (38) Cummins, T. R., Howe, J. R., and Waxman, S. G. (1998) Slow closed-state inactivation: A novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J. Neurosci.18, 9607-9619. (39) Dib-Hajj, S. D., Yang, Y., Black, J. A., and Waxman, S. G. (2013) The Nav1.7 sodium channel: from molecule to man, Nat. Rev. Neurosci. 14, 49-62. (40) Yang, Y. (2004) Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J. Med. Genet. 41, 171-174. (41) Cox, J. J., Reimann, F., Nicholas, A. K., Thornton, G., Roberts, E., Springell, K., Karbani, G., Jafri, H., Mannan, J., Raashid, Y., Al-Gazali, L., Hamamy, H., Valente, E. M., Gorman, S., Williams, R., McHale, D. P., Wood, J. N., Gribble, F. M., and Woods, C. G. (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894-898. (42) Chattopadhyay, M., Zhou, Z. G., Hao, S. L., Mata, M., and Fink, D. J. (2012) Reduction of voltage gated sodium channel protein in DRG by vector mediated miRNA reduces pain in rats with painful diabetic neuropathy. Mol. Pain 8, 9. (43) Yeomans, D. C., Levinson, S. R., Peters, M. C., Koszowski, A. G., Tzabazis, A. Z., Gilly, W. F., and Wilson, S. P. (2005) Decrease in inflammatory hyperalgesia by herpes vector-mediated knockdown of Nav1.7 sodium channels in primary afferents. Hum. Gene Ther. 16, 271-277. (44) Nassar, M. A., Stirling, L. C., Forlani, G., Baker, M. D., Matthews, E. A., Dickenson, A. H., and Wood, J. N. (2004) Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc. Natl. Acad. Sci. U. S. A.101, 12706-12711. (45) Vetter, I., Deuis, J. R., Mueller, A., Israel, M. R., Starobova, H., Zhang, A., Rash, L. D., and Mobli, M. (2017) Nav1.7 as a pain target - From gene to pharmacology. Pharmacol. Ther. 172, 73-100. (46) England, S., and de Groot, M. J. (2009) Subtype-selective targeting of voltage-gated sodium channels. Br. J. Pharmacol. 158, 1413-1425. (47) Yang, S. L., Xiao, Y., Kang, D., Liu, J., Li, Y., Undheim, E. A. B., Klint, J. K., Rong, M. Q., Lai, R., and King, G. F. (2013) Discovery of a selective Nav1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc. Natl. Acad. Sci. U. S. A. 110, 17534-17539. (48) Schmalhofer, W. A., Calhoun, J., Burrows, R., Bailey, T., Kohler, M. G., Weinglass, A. B., Kaczorowski, G. J., Garcia, M. L., Koltzenburg, M., and Priest, B. T. (2008) ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors. Mol. Pharmacol. 74, 1476-1484.

23

ACS Paragon Plus Environment

ACS Chemical Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701

(49) Murray, J. K., Ligutti, J., Liu, D., Zou, A. R., Poppe, L., Li, H. Y., Andrews, K. L., Moyer, B. D., McDonough, S. I., Favreau, P., Stocklin, R., and Miranda, L. P. (2015) Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the Nav1.7 sodium channel. J. Med. Chem. 58, 2299-2314. (50) Murray, J. K., Long, J., Zou, A., Ligutti, J., Andrews, K. L., Poppe, L., Biswas, K., Moyer, B. D., McDonough, S. I., and Miranda, L. P. (2016) Single residue substitutions that confer voltage-gated sodium ion channel subtype selectivity in the Nav1.7 inhibitory peptide GpTx-1. J. Med. Chem. 59, 2704-2717. (51) Deuis, J. R., Wingerd, J. S., Winter, Z., Durek, T., Dekan, Z., Sousa, S. R., Zimmermann, K., Hoffmann, T., Weidner, C., Nassar, M. A., Alewood, P. F., Lewis, R. J., and Vetter, I. (2016) Analgesic effects of GpTx-1, PF-04856264 and CNV1014802 in a mouse model of Nav1.7-mediated pain. Toxins (Basel) 8. (52) Shcherbatko, A., Rossi, A., Foletti, D., Zhu, G., Bogin, O., Galindo Casas, M., Rickert, M., Hasa-Moreno, A., Bartsevich, V., Crameri, A., Steiner, A. R., Henningsen, R., Gill, A., Pons, J., Shelton, D. L., Rajpal, A., and Strop, P. (2016) Engineering highly potent and selective microproteins against Nav1.7 sodium channel for treatment of pain. J. Biol. Chem. 291, 13974-13986. (53) Xiao, Y., Bingham, J. P., Zhu, W., Moczydlowski, E., Liang, S., and Cummins, T. R. (2008) Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration. J. Biol. Chem. 283, 27300-27313. (54) Revell, J. D., Lund, P. E., Linley, J. E., Metcalfe, J., Burmeister, N., Sridharan, S., Jones, C., Jermutus, L., and Bednarek, M. A. (2013) Potency optimization of Huwentoxin-IV on hNav1.7: a neurotoxin TTX-S sodium-channel antagonist from the venom of the Chinese bird-eating spider Selenocosmia huwena. Peptides 44, 40-46. (55) Liu, Y., Wu, Z., Tang, D. F., Xun, X. H., Liu, L. C., Li, X. L., Nie, D. S., Xiang, Y., Yi, J. M., and Yi, J. Z. (2014) Analgesic effects of huwentoxin-IV on animal models of inflammatory and neuropathic pain. Protein and Peptide Lett. 21, 153-158. (56) Li, D. L., Xiao, Y. C., Xu, X., Xiong, X. Y., Lu, S. Y., Liu, Z. H., Zhu, Q., Wang, M. C., Gu, X. C., and Liang, S. P. (2004) Structure-activity relationships of hainantoxin-IV and structure determination of active and inactive sodium channel blockers. J. Biol. Chem. 279, 37734-37740. (57) Liu, Z., Dai, J., Chen, Z., Hu, W., Xiao, Y., and Liang, S. (2003) Isolation and characterization of hainantoxin-IV, a novel antagonist of tetrodotoxin-sensitive sodium channels from the Chinese bird spider Selenocosmia hainana. Cell. Mol. Life Sci. 60, 972-978. (58) Cai, T., Luo, J., Meng, E., Ding, J., Liang, S., Wang, S., and Liu, Z. (2015) Mapping the interaction site for the tarantula toxin hainantoxin-IV (beta-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels. Peptides 68, 148-156. (59) Liu, Y., Tang, J., Zhang, Y., Xun, X., Tang, D., Peng, D., Yi, J., Liu, Z., and Shi, X. (2014) Synthesis and analgesic effects of mu-TRTX-Hhn1b on models of inflammatory and neuropathic pain. Toxins (Basel) 6, 2363-2378. (60) Liu, Z., Cai, T., Zhu, Q., Deng, M., Li, J., Zhou, X., Zhang, F., Li, D., Li, J., Liu, Y., Hu, W., and Liang, S. (2013) Structure and function of hainantoxin-III, a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels isolated from the Chinese bird spider Ornithoctonus hainana. J. Biol. Chem. 288, 20392-20403. 24

ACS Paragon Plus Environment

Page 24 of 31

Page 25 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Neuroscience

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744

(61) Chow, C. Y., Cristofori-Armstrong, B., Undheim, E. A., King, G. F., and Rash, L. D. (2015) Three peptide modulators of the human voltage-gated sodium channel 1.7, an important analgesic target, from the venom of an Australian Tarantula. Toxins (Basel) 7, 2494-2513. (62) Safo, P., Rosenbaum, T., Shcherbatko, A., Choi, D. Y., Han, E., Toledo-Aral, J. J., Olivera, B. M., Brehm, P., and Mandel, G. (2000) Distinction among neuronal subtypes of voltage-activated sodium channels by µ-conotoxin PIIIA. J. Neurosci. 20, 76-80. (63) Nielsen, K. J., Watson, M., Adams, D. J., Hammarstrom, A. K., Gage, P. W., Hill, J. M., Craik, D. J., Thomas, L., Adams, D., Alewood, P. F., and Lewis, R. J. (2002) Solution structure of µ-conotoxin PIIIA, a preferential inhibitor of persistent tetrodotoxin-sensitive sodium channels. J. Biol. Chem. 277, 27247-27255. (64) Zhang, M. M., Green, B. R., Catlin, P., Fiedler, B., Azam, L., Chadwick, A., Terlau, H., McArthur, J. R., French, R. J., Gulyas, J., Rivier, J. E., Smith, B. J., Norton, R. S., Olivera, B. M., Yoshikami, D., and Bulaj, G. (2007) Structure/function characterization of micro-conotoxin KIIIA, an analgesic, nearly irreversible blocker of mammalian neuronal sodium channels. J. Biol. Chem. 282, 30699-30706. (65) Khoo, K. K., Feng, Z. P., Smith, B. J., Zhang, M. M., Yoshikami, D., Olivera, B. M., Bulaj, G., and Norton, R. S. (2009) Structure of the analgesic mu-conotoxin KIIIA and effects on the structure and function of disulfide deletion. Biochemistry 48, 1210-1219. (66) Akopian, A. N., Sivilotti, L., and Wood, J. N. (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257-262. (67) Akopian, A. N., Souslova, V., England, S., Okuse, K., Ogata, N., Ure, J., Smith, A., Kerr, B. J., McMahon, S. B., Boyce, S., Hill, R., Stanfa, L. C., Dickenson, A. H., and Wood, J. N. (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat. Neurosci. 2, 541-548. (68) Renganathan, M., Cummins, T. R., and Waxman, S. G. (2001) Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol. 86, 629-640. (69) Choi, J. S., and Waxman, S. G. (2011) Physiological interactions between Na(v)1.7 and Nav1.8 sodium channels: a computer simulation study. J. Neurophysiol. 106, 3173-3184. (70) Faber, C. G., Lauria, G., Merkies, I. S. J., Cheng, X. Y., Han, C. Y., Ahn, H. S., Persson, A. K., Hoeijmakers, J. G. J., Gerrits, M. M., Pierro, T., Lombardi, R., Kapetis, D., Dib-Hajj, S. D., and Waxman, S. G. (2012) Gain-of-function Nav1.8 mutations in painful neuropathy. Proc. Natl. Acad. Sci. U. S. A. 109, 19444-19449. (71) Huang, J., Yang, Y., Zhao, P., Gerrits, M. M., Hoeijmakers, J. G., Bekelaar, K., Merkies, I. S., Faber, C. G., Dib-Hajj, S. D., and Waxman, S. G. (2013) Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons. J. Neurosci. 33, 14087-14097. (72) Zimmermann, K., Leffler, A., Babes, A., Cendan, C. M., Carr, R. W., Kobayashi, J., Nau, C., Wood, J. N., and Reeh, P. W. (2007) Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447, 855-858. (73) Gold, M. S., Weinreich, D., Kim, C. S., Wang, R. Z., Treanor, J., Porreca, F., and Lai, J. (2003) Redistribution of Nav1.8 in uninjured axons enables neuropathic pain. J. Neurosci. 23, 158-166. (74) Dong, X. W., Goregoaker, S., Engler, H., Zhou, X., Mark, L., Crona, J., Terry, R., Hunter, J., and Priestley, T. (2007) Small interfering RNA-mediated selective knockdown of Nav1.8

25

ACS Paragon Plus Environment

ACS Chemical Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

tetrodotoxin-resistant sodium channel reverses mechanical allodynia in neuropathic rats. Neuroscience 146, 812-821. (75) Bierhaus, A., Fleming, T., Stoyanov, S., Leffler, A., Babes, A., Neacsu, C., Sauer, S. K., Eberhardt, M., Schnolzer, M., Lasitschka, F., Neuhuber, W. L., Kichko, T. I., Konrade, I., Elvert, R., Mier, W., Pirags, V., Lukic, I. K., Morcos, M., Dehmer, T., Rabbani, N., Thornalley, P. J., Edelstein, D., Nau, C., Forbes, J., Humpert, P. M., Schwaninger, M., Ziegler, D., Stern, D. M., Cooper, M. E., Haberkorn, U., Brownlee, M., Reeh, P. W., and Nawroth, P. P. (2012) Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat. Med. 18, 926-933. (76) Payne, C. E., Brown, A. R., Theile, J. W., Loucif, A. J. C., Alexandrou, A. J., Fuller, M. D., Mahoney, J. H., Antonio, B. M., Gerlach, A. C., Printzenhoff, D. M., Prime, R. L., Stockbridge, G., Kirkup, A. J., Bannon, A. W., England, S., Chapman, M. L., Bagal, S., Roeloffs, R., Anand, U., Anand, P., Bungay, P. J., Kemp, M., Butt, R. P., and Stevens, E. B. (2015) A novel selective and orally bioavailable Nav1.8 channel blocker, PF-01247324, attenuates nociception and sensory neuron excitability. Br. J. Pharmacol. 172, 2654-2670. (77) Jarvis, M. F., Honore, P., Shieh, C. C., Chapman, M., Joshi, S., Zhang, X. F., Kort, M., Carroll, W., Marron, B., Atkinson, R., Thomas, J., Liu, D., Krambis, M., Liu, Y., McGaraughty, S., Chu, K., Roeloffs, R., Zhong, C., Mikusa, J. P., Hernandez, G., Gauvin, D., Wade, C., Zhu, C., Pai, M., Scanio, M., Shi, L., Drizin, I., Gregg, R., Matulenko, M., Hakeem, A., Gross, M., Johnson, M., Marsh, K., Wagoner, P. K., Sullivan, J. P., Faltynek, C. R., and Krafte, D. S. (2007) A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc. Natl. Acad. Sci. U. S. A. 104, 8520-8525. (78) Daly, N. L., Ekberg, J. A., Thomas, L., Adams, D. J., Lewis, R. J., and Craik, D. J. (2004) Structures of muO-conotoxins from Conus marmoreus. I nhibitors of tetrodotoxin (TTX)-sensitive and TTX-resistant sodium channels in mammalian sensory neurons. J. Biol. Chem. 279, 25774-25782. (79) Vetter, I., Dekan, Z., Knapp, O., Adams, D. J., Alewood, P. F., and Lewis, R. J. (2012) Isolation, characterization and total regioselective synthesis of the novel muO-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels. Biochem. Pharmacol. 84, 540-548. (80) Ekberg, J., Jayamanne, A., Vaughan, C. W., Aslan, S., Thomas, L., Mould, J., Drinkwater, R., Baker, M. D., Abrahamsen, B., Wood, J. N., Adams, D. J., Christie, M. J., and Lewis, R. J. (2006) muO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proc. Natl. Acad. Sci. U. S. A. 103, 17030-17035. (81) Bulaj, G., Zhang, M. M., Green, B. R., Fiedler, B., Layer, R. T., Wei, S., Nielsen, J. S., Low, S. J., Klein, B. D., Wagstaff, J. D., Chicoine, L., Harty, T. P., Terlau, H., Yoshikami, D., and Olivera, B. M. (2006) Synthetic mu O-conotoxin MrVIB blocks TTX-resistant sodium channel Nav1.8 and has a long-lasting analgesic activity. Biochemistry 45, 7404-7414. (82) Blanchard, M. G., Rash, L. D., and Kellenberger, S. (2012) Inhibition of voltage-gated Na+ currents in sensory neurones by the sea anemone toxin APETx2. Br. J. Pharmacol. 165, 2167-2177. (83) Middleton, R. E., Warren, V. A., Kraus, R. L., Hwang, J. C., Liu, C. J., Dai, G., Brochu, R. M., Kohler, M. G., Gao, Y. D., Garsky, V. M., Bogusky, M. J., Mehl, J. T., Cohen, C. J., and Smith, M.

26

ACS Paragon Plus Environment

Page 26 of 31

Page 27 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Neuroscience

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

M. (2002) Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry 41, 14734-14747. (84) Bosmans, F., Rash, L., Zhu, S., Diochot, S., Lazdunski, M., Escoubas, P., and Tytgat, J. (2006) Four novel tarantula toxins as selective modulators of voltage-gated sodium channel subtypes. Mol. Pharmacol. 69, 419-429. (85) Zeng, X., Deng, M., Lin, Y., Yuan, C., Pi, J., and Liang, S. (2007) Isolation and characterization of Jingzhaotoxin-V, a novel neurotoxin from the venom of the spider Chilobrachys jingzhao. Toxicon 49, 388-399. (86) Deng, M., Kuang, F., Sun, Z., Tao, H., Cai, T., Zhong, L., Chen, Z., Xiao, Y., and Liang, S. (2009) Jingzhaotoxin-IX, a novel gating modifier of both sodium and potassium channels from Chinese tarantula Chilobrachys jingzhao. Neuropharmacology 57, 77-87. (87) Luo, J., Zhang, Y. Y., Gong, M. T., Lu, S. S., Ma, Y. F., Zeng, X. Z., and Liang, S. P. (2014) Molecular surface of JZTX-V (β-Theraphotoxin-Cj2a) interacting with voltage-gated sodium channel subtype Nav1.4. Toxins 6, 2177-2193. (88) Meng, P., Huang, H. G., Wang, G., Yang, S. L., Lu, Q. M., Liu, J. Z., Lai, R., and Rong, M. Q. (2017) A novel toxin from Haplopelma lividum selectively inhibits the Nav1.8 channel and possesses potent analgesic efficacy. Toxins 9, 15. (89) Dib-Hajj, S., Black, J. A., Cummins, T. R., and Waxman, S. G. (2002) NaN/Na(v)1.9: a sodium channel with unique properties. Trends Neurosci. 25, 253-259. (90) Rugiero, F., Mistry, M., Sage, D., Black, J. A., Waxman, S. G., Crest, M., Clerc, N., Delmas, P., and Gola, M. (2003) Selective expression of a persistent tetrodotoxin-resistant Na+ current and Nav1.9 subunit in myenteric sensory neurons. J. Neurosci. 23, 2715-2725. (91) Fang, X., Djouhri, L., Black, J. A., Dib-Hajj, S. D., Waxman, S. G., and Lawson, S. N. (2002) The presence and role of the tetrodotoxin-resistant sodium channel Nav1.9 (NaN) in nociceptive primary afferent neurons. J. Neurosci. 22, 7425-7433. (92) Dib-Hajj, S. D., Tyrrell, L., Cummins, T. R., Black, J. A., Wood, P. M., and Waxman, S. G. (1999) Two tetrodotoxin-resistant sodium channels in human dorsal root ganglion neurons. FEBS Lett. 462, 117-120. (93) Zhang, X. Y., Wen, J., Yang, W., Wang, C., Gao, L., Zheng, L. H., Wang, T., Ran, K., Li, Y., Li, X., Xu, M., Luo, J., Feng, S., Ma, X., Ma, H., Chai, Z., Zhou, Z., Yao, J., Zhang, X., and Liu, J. Y. (2013) Gain-of-function mutations in SCN11A cause familial episodic pain. Am. J. Hum. Genet. 93, 957-966. (94) Huang, J., Han, C., Estacion, M., Vasylyev, D., Hoeijmakers, J. G., Gerrits, M. M., Tyrrell, L., Lauria, G., Faber, C. G., Dib-Hajj, S. D., Merkies, I. S., Waxman, S. G., and Group, P. S. (2014) Gain-of-function mutations in sodium channel Nav1.9 in painful neuropathy. Brain 137, 1627-1642. (95) Han, C., Yang, Y., de Greef, B. T., Hoeijmakers, J. G., Gerrits, M. M., Verhamme, C., Qu, J., Lauria, G., Merkies, I. S., Faber, C. G., Dib-Hajj, S. D., and Waxman, S. G. (2015) The domain II S4-S5 linker in Nav1.9: A missense mutation enhances activation, impairs fast inactivation, and produces human painful neuropathy. Neuromolecular Med. 17, 158-169. (96) Leipold, E., Liebmann, L., Korenke, G. C., Heinrich, T., Giesselmann, S., Baets, J., Ebbinghaus, M., Goral, R. O., Stodberg, T., Hennings, J. C., Bergmann, M., Altmuller, J., Thiele, H., Wetzel, A., Nurnberg, P., Timmerman, V., De Jonghe, P., Blum, R., Schaible, H. G., Weis, J.,

27

ACS Paragon Plus Environment

ACS Chemical Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

Heinemann, S. H., Hubner, C. A., and Kurth, I. (2013) A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat. Genet. 45, 1399-1404. (97) Craner, M. J., Klein, J. P., Renganathan, M., Black, J. A., and Waxman, S. G. (2002) Changes of sodium channel expression in experimental painful diabetic neuropathy. Ann. Neurol. 52, 786-792. (98) Cummins, T. R., and Waxman, S. G. (1997) Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J. Neurosci. 17, 3503-3514. (99) Dib-Hajj, S. D., Tyrrell, L., Black, J. A., and Waxman, S. G. (1998) NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc. Natl. Acad. Sci. U. S. A. 95, 8963-8968. (100) Cummins, T. R., Black, J. A., Dib-Hajj, S. D., and Waxman, S. G. (2000) Glial-derived neurotrophic factor upregulates expression of functional SNS and NaN sodium channels and their currents in axotomized dorsal root ganglion neurons. J. Neurosci. 20, 8754-8761.. (101) Amaya, F., Wang, H., Costigan, M., Allchorne, A. J., Hatcher, J. P., Egerton, J., Stean, T., Morisset, V., Grose, D., Gunthorpe, M. J., Chessell, I. P., Tate, S., Green, P. J., and Woolf, C. J. (2006) The voltage-gated sodium channel Nav1.9 is an effector of peripheral inflammatory pain hypersensitivity. J. Neurosci. 26, 12852-12860. (102) Binshtok, A. M., Wang, H., Zimmermann, K., Amaya, F., Vardeh, D., Shi, L., Brenner, G. J., Ji, R. R., Bean, B. P., Woolf, C. J., and Samad, T. A. (2008) Nociceptors are interleukin-1β sensors. J. Neurosci. 28, 14062-14073. (103) Maingret, F., Coste, B., Padilla, F., Clerc, N., Crest, M., Korogod, S. M., and Delmas, P. (2008) Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism. J. Gen. Physiol. 131, 211-225. (104) Priest, B. T., Murphy, B. A., Lindia, J. A., Diaz, C., Abbadie, C., Ritter, A. M., Liberator, P., Iyer, L. M., Kash, S. F., Kohler, M. G., Kaczorowski, G. J., MacIntyre, D. E., and Martin, W. J. (2005) Contribution of the tetrodotoxin-resistant voltage-gated sodium channel Nav1.9 to sensory transmission and nociceptive behavior. Proc. Natl. Acad. Sci. U. S. A. 102, 9382-9387. (105) Bosmans, F., Puopolo, M., Martin-Eauclaire, M. F., Bean, B. P., and Swartz, K. J. (2011) Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed znnel gene, Scn8a, in the mouse mutant motor end-plate disease. Nat. Genet. 10, 461-465. (106) Gilchrist, J., and Bosmans, F. (2012) Animal toxins can alter the function of Nav1.8 and Nav1.9. Toxins (Basel) 4, 620-632. (107) Wang, C. Z., Zhang, H., Jiang, H., Lu, W., Zhao, Z. Q., and Chi, C. W. (2006) A novel conotoxin from Conus striatus, mu-SIIIA, selectively blocking rat tetrodotoxin-resistant sodium channels. Toxicon 47, 122-132. (108) Lin, Z. X., Santos, S., Padilla, K., Printzenhoff, D., and Castle, N. A. (2016) Biophysical and pharmacological characterization of Nav1.9 voltage dependent sodium channels stably expressed in HEK-293 cells. Plos One 11, 17. (109) Vanoye, C. G., Kunic, J. D., Ehring, G. R., and George, A. L. (2013) Mechanism of sodium channel Nav1.9 potentiation by G-protein signaling. J. Gen. Physiol. 141, 193-202. (110) Zhao, F., Li, X. C., Jin, L., Zhang, F., Inoue, M., Yu, B. Y., and Cao, Z.Y. (2016) Development of a rapid throughput assay for identification of hNav1.7 antagonist using unique efficacious sodium channel agonist, antillatoxin. Mar. Drugs 14, 12. 28

ACS Paragon Plus Environment

Page 28 of 31

Page 29 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Neuroscience

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917

(111) Lipkind, G. M., and Fozzard, H. A. (1994) A structual model of the tetrodotoxin and saxitoxin binding-site of the Na+ channel. Biophys. J. 66, 1-13. (112) Cruz, L. J., Gray, W. R., Olivera, B. M., Zeikus, R. D., Kerr, L., Yoshikami, D., and Moczydlowski, E. (1985) Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J. Biol. Chem. 260, 9280-9288. (113) Albuquerque, E. X., Daly, J. W., and Witkop, B. (1971) Batrachotoxin: chemistry and pharmacology. Science (New York, N.Y.) 172, 995-1002. (114) Ulbricht, W. (1969) The effect of veratridine on excitable membranes of nerve and muscle. Ergeb. Physiol. 61, 18-71. (115) Kimura, T., Kinoshita, E., Yamaoka, K., Yuki, T., Yakehiro, M., and Seyama, I. (2000) On site of action of grayanotoxin in domain 4 segment 6 of rat skeletal muscle sodium channel. FEBS Lett. 465, 18-22. (116) Tikhonov, D. B., and Zhorov, B. S. (2005) Sodium channel activators: Model of binding inside the pore and a possible mechanism of action. FEBS Lett. 579, 4207-4212. (117) Catterall, W. A. (1979) Binding of scorpion toxin to receptor sites associated with sodium channels in frog muscle. Correlation of voltage-dependent binding with activation. J. Gen. Physiol. 74, 375-391. (118) Bergman, C., Dubois, J. M., Rojas, E., and Rathmayer, W. (1976) Decreased rate of sodium conductance inactivation in the node of Ranvier induced by a polypeptide toxin from sea anemone. Biochim. Biophys. Acta 455, 173-184. (119) Couraud, F., Rochat, H., and Lissitzky, S. (1978) Binding of scorpion and sea anemone neurotoxins to a common site related to the action potential Na+ ionophore in neuroblastoma cells. Biochem. Biophys. Res. Commun. 83, 1525-1530. (120) Nicholson, G. M., Willow, M., Howden, M. E. H., and Narahashi, T. (1994) Modification of sodium-channel gating and kinetics by versutoxin from the Australian funnel-web spider hadronyche versuta. Pflug. Arch. Eur. J. Phy. 428, 400-409. (121) Jover, E., Couraud, F., and Rochat, H. (1980) Two types of scorpion neurotoxins characterized by their binding to two separate receptor sites on rat brain synaptosomes. Biochem. Biophys. Res. Commun. 95, 1607-1614. (122) Cestele, S., Qu, Y. S., Rogers, J. C., Rochat, H., Scheuer, T., and Catterall, W. A. (1998) Voltage sensor-trapping: Enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop in domain II. Neuron 21, 919-931. (123) Lombet, A., Bidard, J. N., and Lazdunski, M. (1987) Ciguatoxin and brevetoxins share a common receptor site on the neuronal voltage-dependent Na+ channel. FEBS Lett. 219, 355-359. (124) Hasson, A., Fainzilber, M., Gordon, D., Zlotkin, E., and Spira, M. E. (1993) Alteration of sodium currents by new peptide toxins from the venom of a molluscivorous-conus snail. Eur. J. Neurosci. 5, 56-64. (125) Lombet, A., Mourre, C., and Lazdunski, M. (1988) Interaction of insecticides of the pyrethroid family with specific binding sites on the voltage-dependent sodium channel from mammalian brain. Brain Res. 459, 44-53. (126) Duflocq, A., Le Bras, B., Bullier, E., Couraud, F., and Davenne, M. (2008) Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments. Mol. Cell. Neurosci. 39, 180-192.

29

ACS Paragon Plus Environment

ACS Chemical Neuroscience 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961

(127) Mantegazza, M., Gambardella, A., Rusconi, R., Schiavon, E., Annesi, F., Cassulini, R. R., Labate, A., Carrideo, S., Chifari, R., Canevini, M. P., Canger, R., Franceschetti, S., Annesi, G., Wanke, E., and Quattrone, A. (2005) Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc. Natl. Acad. Sci. U. S. A. 102, 18177-18182. (128) Mullen, S. A., and Scheffer, I. E. (2009) Translational research in epilepsy genetics sodium channels in man to interneuronopathy in mouse. Arch. Neurol. 66, 21-26. (129) Sugawara, T., Tsurubuchi, Y., Agarwala, K. L., Ito, M., Fukuma, G., Mazaki-Miyazaki, E., Nagafuji, H., Noda, M., Imoto, K., Wada, K., Mitsudome, A., Kaneko, S., Montal, M., Nagata, K., Hirose, S., and Yamakawa, K. (2001) A missense mutation of the Na+ channel alpha(II) subunit gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc. Natl. Acad. Sci. U. S. A. 98, 6384-6389. (130) Cannon, S. C. (1997) From mutation to myotonia in sodium channel disorders. Neuromuscul. Disord. 7, 241-249. (131) Wang, Q., Shen, J. X., Splawski, I., Atkinson, D., Li, Z. Z., Robinson, J. L., Moss, A. J., Towbin, J. A., and Keating, M. T. (1995) SCN5A mutations associated with an inherited cardiac-arrhythmia, long QT syndrome. Cell 80, 805-811. (132) Probst, V., Kyndt, F., Potet, F., Trochu, J. N., Mialet, G., Demolombe, S., Schott, J. J., Baro, I., Escande, D., and Le Marec, H. (2003) Haploinsufficiency in combination with aging causes SCN5A-linked hereditary lenegre disease. J. Am. Coll. Cardiol. 41, 643-652. (133) Schott, J. J., Alshinawi, C., Kyndt, F., Probst, V., Hoorntje, T. M., Hulsbeek, M., Wilde, A. A. M., Escande, D., Mannens, M., and Le Marec, H. (1999) Cardiac conduction defects associate with mutations in SCN5A. Nat. Genet. 23, 20-21. (134) Kohrman, D. C., Smith, M. R., Goldin, A. L., Harris, J., and Meisler, M. H. (1996) A missense mutation in the sodium channel Scn8a is responsible for cerebellar ataxia in the mouse mutant jolting. J. Neurosci. 16, 5993-5999. (135) Burgess, D. L., Kohrman, D. C., Galt, J., Plummer, N. W., Jones, J. M., Spear, B., and Meisler, M. H. (1995) Mutation of a new sodium-channel gene, Scn8a, in the mouse mutant motor end-plate disease. Nat. Genet. 10, 461-465. (136) Kuang, Z., Zhang, M. M., Gupta, K., Gajewiak, J., Gulyas, J., Balaram, P., Rivier, J. E., Olivera, B. M., Yoshikami, D., Bulaj, G., and Norton, R. S. (2013) Mammalian neuronal sodium channel blocker mu-conotoxin BuIIIB has a structured N-terminus that influences potency. ACS Chem. Biol. 8, 1344-1351. (137) Priest, B. T., Blumenthal, K. M., Smith, J. J., Warren, V. A., and Smith, M. M. (2007) ProTx-I and ProTx-II: gating modifiers of voltage-gated sodium channels. Toxicon 49, 194-201. (138) Keizer, D. W., West, P. J., Lee, E. F., Yoshikami, D., Olivera, B. M., Bulaj, G., and Norton, R. S. (2003) Structural basis for tetrodotoxin-resistant sodium channel binding by mu-conotoxin SmIIIA. J. Biol. Chem. 278, 46805-46813. (139) Yang, M., Zhao, S., Min, X., Shao, M., Chen, Y., Chen, Z., and Zhou, M. (2017) A novel mu-conotoxin from worm-hunting Conus tessulatus that selectively inhibit rat TTX-resistant sodium currents. Toxicon 130, 11-18. (140) Hassani, O., Mansuelle, P., Cestele, S., Bourdeaux, M., Rochat, H., and Sampieri, F. (1999) Role of lysine and tryptophan residues in the biological activity of toxin VII (Ts gamma) from the scorpion Tityus serrulatus. Eur. J. Biochem. 260, 76-86. 30

ACS Paragon Plus Environment

Page 30 of 31

Page 31 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Chemical Neuroscience

962

Selective voltage-gated sodium channel peptide toxins from animal

963

venom: pharmacological probes and analgesic drug development

964

Ying Wu1, Hui Ma1, Fan Zhang, Chunlei Zhang, Xiaohan Zou, and Zhengyu Cao

965 966

Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational

967

Development, China Pharmaceutical University, Nanjing 211198, China

968

1

Equally contributed

970



Corresponding author:

971

E-mail addresses: [email protected] (F. Zhang), [email protected]

972

(Z. Cao); Tel.: +86-25-8618-5955 (F.Z. & Z.C.)

969

973

974 975

For Table of Contents Use Only

976 977

31

ACS Paragon Plus Environment