Semiconducting Properties and Phase-Matching Nonlinear Optical

Dec 12, 2014 - 350 °C. Their band gaps were measured to be 1.1−1.2 eV and the resistivity of ...... (20) Jung-Eun, K.; Min, K. C.; Hoseop, Y.; Jung...
0 downloads 0 Views 4MB Size
Subscriber access provided by MONASH UNIVERSITY

Article

Semiconducting properties and phase-matching nonlinear optical response of the one-dimensional selenophosphates ANb2PSe10 (A = K, Rb, and Cs) Jonathan C. Syrigos, Daniel J Clark, Felix O Saouma, Samantha M Clarke, Lei Fang, Joon I. Jang, and Mercouri G. Kanatzidis Chem. Mater., Just Accepted Manuscript • DOI: 10.1021/cm5038217 • Publication Date (Web): 12 Dec 2014 Downloaded from http://pubs.acs.org on December 15, 2014

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Chemistry of Materials is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Semiconducting properties and phase-matching nonlinear optical response of the one-dimensional selenophosphates ANb2PSe10 (A = K, Rb, and Cs) Jonathan C. Syrigos,† Daniel J. Clark,‡ Felix O. Saouma,‡ Samantha M. Clarke, † Lei Fang,† Joon I. Jang,‡ and Mercouri G. Kanatzidis*† AUTHOR ADDRESS †Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States ‡Department of Physics, Applied Physics and Astronomy, State University of New York (SUNY) at Binghamton, Binghamton, New York 13902, United States KEYWORDS: Crystal packing, chalcophosphates, chalcogenides, thiophosphates, flux synthesis, one-dimensional, semiconducting, metal-metal bond, microfibers, Nb2Se9, NbSe2

ABSTRACT: The new compounds ANb2PSe10, where A = K, Rb and Cs, form from polyselenophosphate flux reactions and crystallize in the noncentrosymmetric space group Pc. They feature infinite one-dimensional 1/∞[Nb2PSe10-] chains separated by alkali cations. The chains consist of [Nb2(Se2)2]4+ clusters bridged by a diselenide and a [PSe4]3- group. The chains pack differently depending on which alkali cation is present in the lattice. As a result, the analogs are not isostructural with respect to each other, and each has a different unit cell. The reaction

ACS Paragon Plus Environment

1

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 42

chemistry involving a multitude of reaction conditions and their respective products is discussed. Other products from these reactions include NbSe3 and Nb2Se9 in both crystalline and microfibrous morphologies. The ANb2PSe10 compounds are stable to oxidation in ambient air but decompose when heated above 350 °C. Their band gaps were measured to be 1.1-1.2 eV and the resistivity of the K analog at room temperature was measured at 4.5 Ω-cm. Nonlinear optical second harmonic generation measurements were done on the Rb analog yielding a χ(2) of ~ 7 pm/V and showing phase matching behavior.

INTRODUCTION Complex metal chalcophosphates display a variety of interesting physico-chemical characteristics including reversible crystal-to-glass phase transitions,1, photoluminescence,5, generation (SHG).2,

6

2

ferroelectricity,3,

4

super-ionic conduction,7 metallic conductivity8 and second harmonic

5, 9, 10

These materials present a wide array of structural features ranging

from molecular units to 3-D networks3,

10

reflecting the rich diversity of chalcophosphate

building blocks that differ in size and shape. Examples of building blocks range from simple molecular units such as [PSe4]3-, [P2Se6]4- and [P2Se9]4- to clusters such as [P4Se10]4- to infinite chains like 1/∞[PSe3-] , 1/∞[P3Se4-] and 1/∞[PSe6-].3, 6, 11, 12 Despite the extensive research done on alkali metal late transition metal chalcophosphates, few reports exist on such compounds with early transition metals, especially selenium.5, 11, 13, 14-18 In fact, Sc, Mo, W, and Re do not have any respective chalcophosphate compounds. Some notable early transition metal quaternary chalcophosphates include NaV1-xP2S6 and KCrP2S6 which are composed of [V1-xP2S6]- and [CrP2S6]- chains respectively.18,

19

These compounds disperse in N-methylformamide (NMF)

ACS Paragon Plus Environment

2

Page 3 of 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

yielding gels. When dispersed in NMF, the V compound forms a vivid purple gel that exhibits liquid-crystalline behavior under the right conditions.19 Other examples are RbZrPSe6 and CsZrPSe6, which contains 1/∞[ZrPSe6-] chains and possesses a high SHG coefficient above that of AgGaSe2, a standard of SHG and photoluminescence.6 KxTaPS6 (x ≤ 0.5) is also an interesting compound as the amount of K intercalated in the phase changes the length of the Ta-Ta bond present in the compound.15 K3Cr2P3S12 contains [Cr2P3S12]3- chains with Cr-Cr dimers that magnetically order below 7 K.18 Here we present three new Nb selenophosphate compounds of the family ANb2PSe10 (where A = K, Rb and Cs). These materials have a noncentrosymmetric structure similar to those of the Rb and Cs containing sulfur analogs.16, 20 The ANb2PSe10 compounds feature infinite chains that pack differently depending on which alkali metal serves as the counterion. The band gaps for each analog were measured at ~1.1 eV, and the room temperature resistivity of the K analog was measured to be 4.5 Ω-cm displaying a thermally activated temperature dependence. The compounds exhibit a significant nonlinear optical (NLO) response with phase matchable second harmonic generation (SHG).

EXPERIMENTAL SECTION Reagents. All reagents were used as obtained from the specified supplier: potassium metal (98%, Sigma Aldrich, St. Louis, MO); rubidium metal (99.9+%, Strem Chemicals, Inc., Newburyport, MA); cesium metal (99.9+%, Strem Chemicals, Inc., Newburyport, MA); niobium metal powder (99.8% excluding Ta, Ta 3000 nm,41 which is also supported by the relatively flat trend of the particle size dependence in Figure 13b. Therefore, the SHG coefficient of 2 was estimated by directly comparing the reference material in the phase-matching regime as detailed below. AgGaSe2 is the benchmark mid-IR NLO material with a static SHG coefficient of χ(2) = 66 pm/V (λ → ∞).42 By using AgGaSe2 as a reference material with a known χ(2) value, the χ(2) of 2 was measured by comparing the SHG response at the static range in which both the reference and sample are phase-matchable with minimal absorption effects. Using the Kurtz powder method,43 the static value of χ(2) of 2 can be calculated by comparison with the reference;

where IS and IR are the experimentally measured SHG counts from the sample and reference, respectively (Figure 14). The calculation yields that χ(2)(RbNb2PSe10) ~ 7 pm/V.

CONCLUSIONS New semiconducting compounds KNb2PSe10, RbNb2PSe10 and CsNb2PSe10 consisting of 1

/∞[ Nb2PSe10-] chains form from reactions in polyselenophosphate fluxes. The orientation of the

chains with respect to the unit cells differs between the alkali salts, but the overall chemical structure is otherwise similar and noncentrosymmetric in nature. The compounds possess band

ACS Paragon Plus Environment

19

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 42

gaps of ∼1.1-1.2 eV and decompose when heated above 350 °C. SHG analysis of the Rb analog states that it is phase-matchable with a χ(2) of ~ 7 pm/V. The ANb2PSe10 system shows the subtle but interesting effect that alkali metal counterion size can have on chain packing. While many materials simply expand their lattice parameters or change their crystallization completely,44 this system changes its chain packing instead. Finally, it is interesting that more elemental selenium and less alkali selenide in the reaction mixture defines a new method for the production of Nb2Se9 and NbSe2. Reducing the alkali selenide further while adding more elemental selenium favors formation of NbSe3 and Nb2Se9. When the relative fractions of Nb and Se increase in the reaction mixture at higher temperatures, the morphology of NbSe2 and Nb2Se9 changes to microfibers. This implies that this type of reaction may also be used as a convenient procedure to produce high yield samples of these binary materials in microfibrous form.

ASSOCIATED CONTENT Supporting Information. 31

P MAS Solid State NMR, the coordination environment of Rb+ in RbNb2PSe10, TEM of

CsNb2PSe10 crystallites from an isopropanol dispersion, magnetic susceptibility data, PXRD of DTA products and crystallographic information files (CIF) can be found in the supporting information. This material is available free of charge via the internet at http://pubs.acs.org. AUTHOR INFORMATION Corresponding Author *[email protected]

ACS Paragon Plus Environment

20

Page 21 of 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Author Contributions The manuscript was written through contributions of all authors. SHG section and data by Daniel J. Clark, Felix O. Saouma and Professor Joon I. Jang. Magnetic susceptibility data by Samantha M. Clarke and Professor Danna Freedman. Resistivity data by Lei Fang. All authors have given approval to the final version of the manuscript. Funding Sources NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University Notes The authors declare no competing financial interest. ACKNOWLEDGMENT Financial support from the National Science Foundation (Grant DMR- 1410169) and from the Nicholson Fellowship is gratefully acknowledged. The authors thank Amy Sargeant for the help solving the crystal structures of KNb2PSe10 and CsNb2PSe10 and for general guidance in crystallography. This work made use of the EPIC facility (NUANCE Center-Northwestern University), which has received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the Nanoscale Science and Engineering Center (NSF EEC–0647560) at the International Institute for Nanotechnology; and the State of Illinois, through the International Institute for Nanotechnology. NUANCE Center is supported by the NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. We thank Professor Danna Freedman for use of her magnetic susceptibility measurement system and for useful discussions.

ACS Paragon Plus Environment

21

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 42

ABBREVIATIONS DMF, N,N-dimethylformamide; DTA, Differential Thermal Analysis; EDS, Energy Dispersive x-ray Spectroscopy; HU, Harmonics Unit; NLO, Nonlinear Optical; NMF, N-methylformamide; OPO, Optical Parametric Oscillator; SEM, Scanning Electron Microscopy; SHG, Second Harmonic Generation; PXRD, Powder X-Ray Diffraction; TEM, Transmission Electron Microscopy; TGA, Thermogravimetric Analysis

REFERENCES 1.

(a) Kanatzidis, M. G.; Sutorik, A. C., Progress in Inorganic Chemistry, 1995, 43, 151-

265; (b) Kanatzidis, M. G., Current Opinions in Solid State and Materials Science, 1997, 2, 139149. 2.

Evenson C. R.; Dorhout, P. K., Inorganic Chemistry, 2001, 40, 2875-2883.

3.

Chondroudis, K.; Kanatzidis, M. G., Inorganic Chemistry, 1995, 34, 5401-5402.

4.

Scott, B.; Pressprich, M.; Willet, R. D.; Cleary, D. A., Journal of Solid State Chemistry,

1992, 96, 294-300. 5.

Banerjee, S.; Szarko, J. M.; Yuhas, B. D.; Malliakas, C. D.; Chen, L. X.; Kanatzidis, M.

G., Journal of the American Chemical Society, 2010, 132, 5348-5350. 6.

Banerjee, S.; Malliakas, C. D.; Jang, J. I.; Ketterson, J. B.; Kanatzidis, M. G., Journal of

the American Chemical Society, 2008, 130, 12270-12272. 7.

(a) Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.;

Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., Nature Materials, 2011, 10, 682686; (b) Ong, S. P.; Mo, Y. F.; Richards, W. D.; Miara, L.; Lee, H. S.; Ceder, G., Energy and Environmental Science, 2013, 6, 148-156.

ACS Paragon Plus Environment

22

Page 23 of 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

8.

Chung, I.; Biswas, K.; Song, J.-H.; Androulakis, J.; Chondroudis, K.; Paraskevopoulos,

K. M.; Freeman, A. J.; Kanatzidis, M. G.; Angewandte Chemie International Edition, 2011, 50, 8834-8838. 9.

Chung, I.; Malliakas, C. D.; Jang, J. I.; Canlas, C. G.; Weliky, D. P.; Kanatzidis, M. G. ,

Journal of the American Chemical Society, 2007, 129, 14996-15006. 10.

Chung, I.; Kanatzidis, M. G.; Chemistry of Materials, 2014, 26, 849-869.

11. Do, J.; Yun, H. , Inorganic Chemistry, 1996, 35, 3729-3730. 12. (a) McCarthy, T. J.; Kanatzidis, M. G., Inorganic Chemistry, 1995, 34, 1257-1267; (b) Song, J.-H.; Freeman, A. J.; Bera, T. K.; Chung, I.; Kanatzidis, M. G., Physical Review B, 2009, 79, 245203; (c) Chondroudis, K.; Kanatzidis, M. G., Inorganic Chemistry, 1998, 37, 2098-2099; (d) Chondroudis, K.; Kanatzidis, M. G., Angewandte Chemie International Edition, 1997, 36, 1324-1326. 13. (a) Mueller, C.; Joergens, S.; Mewis, A., Zeitschrift fuer Anorganische und Allgemeine Chemie, 2007, 633, 1633-1638; (b) Gutzmann, A.; Naether, C.; Bensch, W., Acta Crystallographica E, 2004, 60, i42-i44; (c) Cieren, X.; Angenault, J.; Couturier, J.C.; Jaulmes, S.; Quarton, M.; Robert, F., Journal of Solid State Chemistry, 1996, 121, 230-235; (d) Do, J.; Lee, K.; Yun, H., Journal of Solid State Chemistry, 1996, 125, 30-36; (e) Wu, Y. D.; Bensch, W., Inorg. Chem., 2007, 46, 6170-6177; (f) Gutzmann, A.; Naether, C.; Bensch, W., Solid State Sciences, 2004, 6, 205-211; (g) Gutzmann, A.; Naether, C.; Bensch, W., Acta Crystallographica C, 2004, 60, i11-i13; (h) Gutzmann, A.; Naether, C.; Bensch, W., Acta Crystallographica E, 2005, 61, i6-i8; (i) Gutzmann, A.; Naether, C.; Bensch, W., Acta Crystallographica E, 2005, 61, i20-i22; (j) Durand, E.; Evain, M.; Brec, R., Journal of Solid State Chemistry, 1993, 102, 146155; (k) Derstroff, V.; Tremel, W., Chemical Communications, 1998, 913-914; (l) Kopnin, E.; Coste, S.; Jobic, S.; Evain, M.; Brec, R., Materials Research Bulletin, 2000, 35, 1401-1410; (m) Gutzmann, A.; Naether, C.; Bensch, W., Zeitschrift fuer Anorganische und Allgemeine Chemie, 2005, 631, 524-529; (n) Kwak, J.-E.; Kim, C.; Yun, H.; Do, J., Bulletin of the Korean Chemical Society, 2007, 28, 701-704; (o) Jung-Eun, K.; Hoseop, Y., Bulletin of the Korean Chemical Society, 2008, 29, 273-275; (p) Kwan, D. Y.; Sangrok, K.; Hoseop, Y., Acta Crystallographica C, 2005, 61, i25-i26; (q) Sojeong, P.; Hoseop, Y., Acta Crystallographica E, 2010, 66, i51-i52;

ACS Paragon Plus Environment

23

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 24 of 42

(r) Eunsil, L.; Yonghee, L.; Hoseop, Y., Acta Crystallographica E, 2011, 67, i4; (s) Jaemin, Y.; Hoseop, Y., Acta Crystallographica E, 2011, 67, i24; (t) Gutzmann, A.; Bensch, W., Solid State Sciences, 2003, 5, 1271-1276; (u) Gutzmann, A.; Naether, C.; Bensch, W., Solid State Sciences, 2004, 6, 1155-1162; (v) Kwan, D. Y.; Sangrok, K.; Hoseop, Y.; Hanjo, L., Bulletin of the Korean Chemical Society, 2005, 26, 309-311; (w) Jin, H. B.; Youngmee, K.; Seri, K.; Jin, K. S., Journal of Solid State Chemistry, 2008, 181, 1798-1802; (x) Derstroff, V.; Ensling, J.; Ksenofontov, V.; Guetlich, P.; Tremel, W., Zeitschrift fuer Anorganische und Allgemeine Chemie, 2002, 628, 1346-1354; (y) Kyounghee, K.; Jooran, N.; Hoseop, Y., Acta Crystallographica E, 2010, 66, i65i65; (z) Menzel, F.; Brockner, W.; Carrillo Cabrera, W.; von Schnering, H.G., Zeitschrift fuer Anorganische und Allgemeine Chemie, 1994, 620, 1081-1086; (aa) Taylor, S. P.; Krawiec, M.; Hwu, S.-J., Acta Crystallographica C, 2002, 58, i27-i28. 14. Goh, E.-Y.; Kim, S.-J.; Jung, D., Journal of Solid State Chem. , 2002, 168, 119-125. 15. Do, J.; Dong, Y.; Kim, J.; Hahn, S.; Yun, H., Bulletin of the Korean Chemical Society, 2005, 26, 1260-1264. 16. Kim, C.-K.; Yun, H.-S., Acta Crystallographica Section C, 2002, 58, i53-i54. 17. Gutzmann, A.; Bensch, W., Solid State Sciences, 2002, 4, 835-840. 18. Coste, S.; Kopnin, E.; Evain, M.; Jobic, S.; Payen, C.; Brec, R., Journal of Solid State Chemistry, 2001, 162, 195-203. 19. Coste, S.; Gautier, E.; Evain, M.; Bujoli-Doeuff, M.; Brec, R.; Jobic, S.; Kanatzidis, M. G., Chemistry of Materials, 2003, 15, 2323-2327. 20. Jung-Eun, K.; Min, K. C.; Hoseop, Y.; Junghwan D., Bulletin of the Korean Chemical Society, 2007, 28, 701-704. 21. McCarthy, T. J.; Ngeyi, S. P.; Liao, J. H.; DeGroot, D. C.; Hogan, T.; Kannewurf, C. R.; Kanatzidis, M. G., Chem. Mater., 1993, 5, 331. 22. Mccarthy, T. J.; Kanatzidis, M. G., Inorg. Chem., 1995, 34, 1257. 23. Cie, Stoe &, X-AREA, X-RED, and X-SHAPE. Darmstadt, Germany, 1998.

ACS Paragon Plus Environment

24

Page 25 of 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

24. Sheldrick, G. M., Acta Crystallogr., Sect. A, 2008, 64, 112. 25. Jang, J. I.; Park, S.; Clark, D. J.; Saouma, F. O.; Lombardo, D.; Harrison, C. M.; Shim, B., Journal of the Optical Society of America, 2013, 30, 2292. 26. Trumboret, F. A.; ter Haar, L. W., Chemistry of Materials, 1989, 1, 490-492. 27. Meerschaut, A.; Guémas, L.; Berger R.; Rouxel, J., Acta Crystallographica B, 1979, 35, 1747-1750. 28. Sunshine, S. A.; Ibers, J. A., Acta Crystallographica C, 1987, 43, 1019-1022. 29. Sanjinés, R.; Berger, H.; Lévy, F., Materials Research Bulletin, 1988, 23, 549-553. 30. (a) Gieck, C.; Derstroff, V.; Block, T.; Felser, C.; Regelsky, G.; Jepsen, O.; Ksenofontov, V.; Gütlich, P.; Eckert, H.; Tremel, W., Chemistry - A European Journal, 2004, 10, 382-391; (b) Lee, E.; Lee, Y.; Yun, H., Acta Crystallographica Section E, 2011, E67, i4. 31. Do, J.; Yun, H., Inorg. Chem. , 1996, 35, 3729. 32. Camerel, P.; Gabriel, J.-C.; Batail, P.; Davidson, P.; Lemaire, B.; Schmutz, M.; GulikKrzywicki, T.; Bourgaux, C., Nano Letters, 2002, 4 (2), 403-407. 33. (a) Nye, J. F. , Physical Properties of Crystals: Their Representation by Tensors and Matrices. Clarendon Press; Oxford University Press: Oxford, Oxfordshire, NY, 1984; (b) Halasyamani, P. S.; Poeppelmeier, K. R. , Chem. Mater. , 1998, 10, 2753-2769. 34. O’Neal, S. C.; Pennington, W. T.; Kolis, J. W., Angewandte Chemie International Edition, 1990, 29, 1486-1488. 35. Canlas, C. G.; Kanatzidis, M. G.; Weliky, D. P., Inorganic Chemistry, 2003, 42, 33993405. 36. Sze, S. M.; Ng, Kwok K., Physics of Semiconductor Devices. John Wiley & Sons. 37. Morris, C. D.; Li, H.; Hosub Jin, H.; Malliakas, C. D.; Peters, J. A.; Trikalitis, P. N.; Freeman, A. J.; Wessels, B. W.; Kanatzidis, M. G., Chemistry of Materials, 2013, 25, 3344−3356.

ACS Paragon Plus Environment

25

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 42

38. Chaudhuri, S. P.; Patraa, S. K.; Chakraborty A. K., Journal of the European Ceramic Society, 1999, 19, 22941-2950. 39. UQG

Optics,

CORNING

PYREX®

7740

BOROSILICATE;

http://www.uqgoptics.com/materials_commercial_corning_pyrexBorosilicate.aspx,

(accessed

Oct. 17, 2014). 40. Jang, J. I.; Park, S.; Harrison, C. M.; Clark, D. J.; Morris, C. D.; Chung, I.; Kanatzidis, M. G., Optics Letters, 2013, 38, 1316. 41. Nikogosyan, D. N., Nonlinear Optical Crystals: A Complete Survey. Springer-Science: New York, 2005. 42. Bhar, G. C., Japanese Journal of Applied Physics Part I, Supplement 32-3, 1993, 32, 653. 43. Kurtz, S. K.; Perry, T. T., Journal of Applied Physics, 1968, 39, (3798). 44. Kim, K.-W.; Kanatzidis, M. G., Journal of the American Chemical Society, 1998, 120, 8124-8135.

ACS Paragon Plus Environment

26

Page 27 of 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Table 1. Crystallographic refinement details of KNb2PSe10, RbNb2PSe10, and CsNb2PSe10. Compound

1

2

3

Empirical Formula

KNb2PSe10

RbNb2PSe10

CsNb2PSe10

Formula weight

1045.49

1091.86

1139.30

Wavelength, Å

0.71073

0.71073

0.71073

Habit

needle

needle

needle

Color

black

black

black

Crystal system

monoclinic

monoclinic

monoclinic

Space group

Pc

Pc

Pc

a, Å

7.2931(6)

7.3810(15)

14.626(3)

b, Å

15.612(2)

7.836(2)

7.810(2)

c, Å

13.557(3)

13.564(3)

13.553(3)

106.64(3)

106.75(3)

98.56(3)

1479.0(2)

751.2(3)

1530.9(5)

4

2

4

4.695

4.827

4.943

µ, mm

26.509

29.039

27.684

F(000)

1824

948

1968

θmax, deg

34.89

34.84

36.43

Reflections collected

22086

12251

24816

Rint

0.0710

0.0563

0.0550

No. parameters

253

128

β, (deg) V, Å

3

Z 3

ρ, g/cm

-1

254 2

Refinement method

Full matrix least-squares on F

GooF

1.063

1.055

1.085

Final R indices [>2σ(I)],

0.0571/0.1308

0.0461/0.1067

0.0577/0.1108

0.0728/0.1387

0.0600/0.1239

0.0820/0.1214

R1/wR2 R

indices

(all

data),

R1/wR2 R1 = Σ||Fo|-|Fc|| / Σ|Fo|. wR2 = {Σ[w(|Fo|2 - |Fc|2)2] / Σ[w(Fo2)2]1/2} and calc w=1/[σ2(Fo2)+(0.0559P)2+1.2737P] where P=(Fo2+2Fc2)/3

ACS Paragon Plus Environment

27

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 42

Table 2. Selected bond lengths (Å) for ANb2PSe10 (A = K, Rb, and Cs) Atoms

KNb2PSe10

RbNb2PSe10

CsNb2PSe10

Nb(1)-Nb(2)

2.9589(14)

2.9675(11)

2.9626(11)

Nb(3)-Nb(4)

2.9661(14)

Nb(1)-Se(1)

2.762(2)

Nb(3)-Se(11)

2.766(2)

Nb(1)-Se(2)

2.776(2)

Nb(3)-Se(12)

2.770(2)

Nb(2)-Se(2)

2.770(2)

Nb(4)-Se(12)

2.776(2)

Nb(1)-Se(3)

2.717(2)

Nb(3)-Se(13)

2.732(2)

Nb(2)-Se(3)

2.688(2)

Nb(4)-Se(13)

2.676(2)

Nb(1)-Se(4)

2.710(2)

Nb(3)-Se(14)

2.707(2)

Nb(2)-Se(4)

2.707(15)

Nb(4)-Se(14)

2.702(2)

Nb(2)-Se(5)

2.712(2)

Nb(4)-Se(15)

2.714(2)

Nb(1)-Se(6)

2.656(2)

Nb(3)-Se(16)

2.645(2)

Nb(2)-Se(6)

2.613(2)

Nb(4)-Se(16)

2.598(2)

Nb(1)-Se(7)

2.602(2)

Nb(3)-Se(17)

2.621(2)

Nb(2)-Se(7)

2.642(2)

Nb(4)-Se(17)

2.649(2)

Nb(1)-Se(8)

2.618(2)

2.9647(12) 2.7738(15)

2.7244(15) 2.7102(15)

2.7823(15)

2.7770(14) 2.7687(14)

2.7737(14)

2.7841(12) 2.7816(13)

2.7300(14)

2.6829(13) 2.6807(14)

2.6814(15)

2.7349(14) 2.7311(14)

2.7076(13)

2.6914(13) 2.6990(13)

2.7040(13)

2.6969(13) 2.7011(13)

2.7158(15)

2.7471(15) 2.7709(15)

2.6563(15)

2.6624(15) 2.655(2)

2.6042(14)

2.6061(14) 2.6098(15)

2.616(2)

2.5957(15) 2.5976(15)

2.6541(14)

2.6648(15) 2.6572(15)

2.6062(13)

ACS Paragon Plus Environment

2.5963(14)

28

Page 29 of 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Nb(3)-Se(18)

2.600(2)

Nb(2)-Se(8)

2.675(2)

Nb(4)-Se(18)

2.666(2)

Nb(1)-Se(9)

2.647(2)

Nb(3)-Se(19)

2.679(2)

Nb(2)-Se(9)

2.604(2)

Nb(4)-Se(19)

2.608(2)

Se(3)-Se(4)

2.328(2)

Se(13)-Se(14)

2.333(2)

Se(6)-Se(7)

2.293(2)

Se(16)-Se(17)

2.293(2)

Se(8)-Se(9)

2.312(2)

Se(18)-Se(19)

2.313(2)

Se(1)-P(1)

2.210(3)

Se(11)-P(2)

2.221(3)

Se(2)-P(1)

2.232(4)

Se(12)-P(2)

2.230(4)

Se(5)-P(1)

2.212(3)

Se(15)-P(2)

2.200(4)

Se(10)-P(1)

2.135(4)

Se(20)-P(2)

2.138(4)

2.5927(15) 2.6745(16)

2.6840(15) 2.660(2)

2.6731(14)

2.6635(14) 2.6691(14)

2.6053(14)

2.5925(15) 2.6063(15)

2.3318(14)

2.330(2) 2.329(2)

2.294(2)

2.297(2) 2.289(2)

2.315(2)

2.312(2) 2.309(2)

2.220(3)

2.200(3) 2.213(3)

2.236(3)

2.232(3) 2.231(3)

2.202(3)

2.206(3) 2.212(3)

2.137(3)

ACS Paragon Plus Environment

2.138(3) 2.133(3)

29

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 30 of 42

Table 3. Summary of reaction conditions and their respective products (A = K, Rb and Cs). Major products are shown in bold. Stoichiometric equivalents of Temperature (°C)

A2Sex

Nb

P2Se5

Se

Reaction Product

800

2

1

2

7,6

Nb2Se9, NbSe2

800

2

1

2

5-2

Nb2Se9, NbSe2, ANb2PSe10

800

1

1

2

5

Nb2Se9 (microfibers), ANb2PSe10

700

2

1

2

5-3

ANb2PSe10, NbSe2

700

1

4

1

7

NbSe3 (microfibers), ANb2PSe10

600

3

1

2

4

Unreacted flux, ANb2PSe10

600

4

1

2

4

Unreacted flux, ANb2PSe10, K4P2Se6

600

5

1

2

4

Unreacted flux, Nb2Se9, K4P2Se6

600

2, 1.5

1

2

4,3

ANb2PSe10

ACS Paragon Plus Environment

30

Page 31 of 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 1. Experimental powder X-ray diffraction patterns of ANb2PSe10 (A = K, Rb and Cs) compared to calculated patterns.

a)

b)

Figure 2. SEM images of Nb2Se9 microfibers at a a) lower resolution, and at b) a higher resolution. Microfibers range from 50 nm to 1 µm in width. The white dots present are flecks of selenium leftover from flux dissolution. Fleck formation can be easily prevented if the flux dissolution in DMF is kept oxygen free and the DMF is replaced every 30 min .

ACS Paragon Plus Environment

31

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 32 of 42

Figure 3. PXRD patterns of RbNb2PSe10 freshly dispersed in H2O, isopropanol, and acetonitrile which were drop cast onto glass plates. The pattern shows that the samples still retain some crystallinity.

a)

b)

ACS Paragon Plus Environment

32

Page 33 of 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 4. a) A single chain of 1/∞[Nb2PSe10]- perpendicular to the chain direction. b) A single chain of 1/∞[Nb2PSe10]- looking down the chain direction.

ACS Paragon Plus Environment

33

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

a)

Page 34 of 42

b)

Figure 5. a) RbNb2PSe10 along the [100] direction. b) RbNb2PSe10 along the [010] direction.

ACS Paragon Plus Environment

34

Page 35 of 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

a)

b)

Figure 6. a) RbNb2PSe10 along the [001] direction. b) A polyhedra view of the Nb center coordination environment. The bicapped trigonal prisms are outlined in black and are facesharing on one side and edge sharing on the other.

ACS Paragon Plus Environment

35

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

a)

Page 36 of 42

b)

Figure 7. a) KNb2PSe10 along the [010] direction. Notice that chains along the [010] direction do not perfectly overlap causing b to double. b) KNb2PSe10 along the [100] direction. The unit cell dimension b is doubled compared to the Rb and Cs analog.

ACS Paragon Plus Environment

36

Page 37 of 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

a)

b)

Figure 8. a) CsNb2PSe10 along the [010] direction. The unit cell dimension a is doubled compared to the K and Rb versions. The arrow depicts the chain slide of every other chain of the structure. b) CsNb2PSe10 along the [100] direction. Unlike K and Rb versions, it is impossible to align the chains perfectly in the crystal along the ac plane.

ACS Paragon Plus Environment

37

Chemistry of Materials

Figure 9. a) TGA of ANb2PSe10 (A = K, Rb, or Cs). All compounds oxidize slightly then decompose above 375 oC in air. Percent mass loss was calculated as (current mass)/(initial mass). b) DTA data of ANb2PSe10. No peaks were detected in all samples.

1

log(abs)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 38 of 42

0.75 0.5 KNb2PSe10 Eg = 1.19(2) eV RbNb2PSe10 Eg = 1.16(2) eV

0.25

CsNb2PSe10 Eg= 1.07(2) eV

1

2

3

4

5

E, eV

Figure 10. Optical absorption spectra of ANb2PSe10 (A = K, Rb, or Cs). The K analog band gap was measured to be around 1.19 eV, the Rb to be 1.15 eV, and the Cs band gap to be 1.07 eV.

ACS Paragon Plus Environment

38

Page 39 of 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 11. Resistivity vs temperature of a single crystal sample of KNb2PSe10. As the temperature decreases, the resistivity increases indicating semiconductor behavior. The room temperature resistivity was measured at 4.5 Ω-cm. Inset: the natural log of resistivity vs inverse temperature. The activation energy was obtained by fitting the linear portion.

ACS Paragon Plus Environment

39

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 40 of 42

Figure 12. SHG response as a function of wavelength from powder samples of (a) RbNb2PSe10 and (b) AgGaSe2 in the range of λinc = 2.3 – 4.1 µm.

Figure 13. Particle-size dependence of SHG in (a) RbNb2PSe10 and (b) AgGaSe2 at λ = 3.3 µm.

ACS Paragon Plus Environment

40

Page 41 of 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 14. SHG response comparison of RbNb2PSe10 with AgGaSe2. SHG counts were compared at the long-wavelength limit (1650 nm) where RbNb2PSe10 could be compared with AgGaSe2 fairly. The dotted lines signify where the SHG counts were compared for both compounds to obtain χ(2) of RbNb2PSe10.

ACS Paragon Plus Environment

41

Chemistry of Materials

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 42 of 42

TOC Graphic

ACS Paragon Plus Environment

42