Shear-Induced Structural Transition and Recovery in the Salt-Free Catanionic Surfactant Systems Containing Deoxycholic Acid Changcheng Liu, Jingcheng Hao* Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, People’s Republic of China
100
G' (Pa)
0 -1 1s -1 3s -1 10 s -1 100 s
10
0.01
0.1
1
10
100
f (Hz) Figure S1. The variation of elastic modulus for the sample of x = 0.3 in the equimolar TTAOH/(DeCA + LA) system after shear at different shear rates for 6000 s.
1
40
G' G''
0.01
∆
0.01
0.1
δ
80
G' G''
10 ∆
60
δ 40
1
20 0
1
δ (°)
60
0.1
1E-3
b 100
δ (°)
80
G', G'' (Pa)
G', G'' (Pa)
a 10
20 0.1 1E-3
τ (Pa)
0.01
0.1
1
0 10
τ (Pa)
Figure S2. The variation of linear viscoelastic region for the sample of x = 0.25 in the
equimolar TTAOH/(DeCA + LA) system before and after shear. After steady for 2000 s (a) and after the hysteresis cycle experiment (b).
2.0
-1
0.5 s -1 1.0 s -1 3.0 s -1 5.0 s -1 10.0 s
η (Pa•s)
1.5 1.0 0.5 0.0 0
2000
4000
6000
t (s) Figure S3. The variation of shear viscosity with time at different shear rates for the
sample x = 0.3 in the equimolar CTAOH/(DeCA + LA) system at 100 mmol·L–1.
100
η (Pa•s)
up 10 1
down 0.1
0.01 1E-3 0.01
0.1
1
-1
10
100 1000
γ (s ) Figure S4. The hysteresis loop of the sample x = 0.3 in the equimolar CTAOH/(DeCA
+ LA) system at 100 mmol·L-1 after shear at 10 s–1 for 5000 s.
60
G' G''
0.1 ∆
1E-3
0.01
τ (Pa)
80
10 60 40 1
G' G''
40
δ
0.1
δ (°)
G', G'' (Pa)
1
G', G'' (Pa)
b
80
∆
1
10
δ (°)
a 10
0.1 1E-3
0.01
0.1
1
δ
20 0 10
τ (Pa)
Figure S5. The variation of linear viscoelastic region before (a) and after shear at 10
s–1 for 6000 s (b) for the sample x = 0.3 in the equimolar CTAOH/(DeCA + LA) system at 100 mmol·L–1.