10 Short-Lived Radicals at Photoactive Surfaces
Downloaded by KTH ROYAL INST OF TECHNOLOGY on February 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch010
Spin T r a p p i n g a n d Mechanistic
Consequences
M. L . HAIR and J. R. HARBOUR Xerox Research Centre of Canada, 2480 Dunwin Drive, Mississauga, Ontario, Canada L5L 1J9
The technique of spin trapping has been applied successfully to the study of radicals produced when photoactive particles are suspended in either aqueous or insulating fluids and irradiated in the presence of O . This trapping technique is reviewed with particular emphasis on the detection and identification of the superoxide anion and hydroxyl radicals. Results are interpreted within the framework of a simple band model for semiconductors. The effects of both anionic and cationic surfactants on the photoprocess are described. The addition of electron-donating molecules to the suspen sion results in a reaction (in the fluid) that is "pumped" by application of band gap radiation to the solid particle. The radicals that have been identified on irradiating several different photoactive particles are described. The ability to identify these radical intermediates is important in deter mining the exact reaction mechanism, as exemplified by a discussion of the photosynthesis of H O on zinc oxide. 2
2
2
T V J " a n y solar e n e r g y c o n v e r s i o n devices b a s e d u p o n t h e i n t e r a c t i o n o f light w i t h
semiconductors
have been
proposed.
These
include
p h o t o v o l t a i c d e v i c e s , p h o t o e l e c t r o c h e m i c a l cells t h a t c a n d i r e c t l y g e n erate e l e c t r i c i t y o r p r o d u c e a f u e l , a n d p i g m e n t d i s p e r s i o n s , w h i c h also can produce a fuel ( J ) or photodecompose a pollutant (2). I n systems w h e r e t h e s e m i c o n d u c t o r interfaces w i t h a s o l u t i o n , t h e proposed
photochemical
mechanisms
generally involve radical
inter
m e d i a t e s . H o w e v e r , there is v e r y l i t t l e e v i d e n c e of r a d i c a l p a r t i c i p a t i o n or i d e n t i f i c a t i o n . W e h a v e therefore b e g u n a n e x p e r i m e n t a l p r o g r a m a i m e d at i d e n t i f y i n g t h e r a d i c a l s p h o t o p r o d u c e d as a r e s u l t o f i r r a d i a t i o n 0-8412-0474-8/80/33-184-173$05.00/0 © 1980 American Chemical Society In Interfacial Photoprocesses: Energy Conversion and Synthesis; Wrighton, Mark S.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
174
INTERFACIAL
of v a r i o u s p i g m e n t dispersions
(3).
PHOTOPROCESSES
A better u n d e r s t a n d i n g of
these
i n t e r m e d i a t e s a n d the factors t h a t influence t h e i r p r o d u c t i o n a n d d e s t r u c t i o n s h o u l d c o n t r i b u t e to t h e d e v e l o p m e n t of these types of solar e n e r g y converters.
T h e s e factors i n c l u d e a d e t a i l e d k n o w l e d g e of the r o l e t h a t
t h e s u r f a c t a n t p l a y s . T h e surfactant is a d d e d to p i g m e n t dispersions to prevent
flocculation
of the p a r t i c l e s . T h i s is i m p o r t a n t since s u c h
floccula-
t i o n causes a r e d u c t i o n i n surface a r e a as w e l l as a n increase i n t h e rate
Downloaded by KTH ROYAL INST OF TECHNOLOGY on February 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch010
of s e t t l i n g . H o w e v e r , i n a l l these p h o t o a c t i v e
systems the
surfactant
p l a y s a d u a l r o l e a n d a l w a y s affects the surface c h a r g e as i t stabilizes the system. I t is s p e c u l a t e d
that t h e p h o t o c h e m i s t r y
at a n i n t e r f a c e
occurs
t h r o u g h r a d i c a l i n t e r m e d i a t e s ( 4 ) . I n p r i n c i p l e , e l e c t r o n s p i n resonance ( E S R ) s p e c t r o s c o p y w o u l d b e the i d e a l m e t h o d for e x a m i n i n g t h i s t y p e of i n t e r f a c i a l p h o t o c h e m i s t r y .
U n f o r t u n a t e l y , the d i r e c t d e t e c t i o n
and
i d e n t i f i c a t i o n of r a d i c a l s b y this t e c h n i q u e is p o s s i b l e o n l y i f t h e r a d i c a l s are p r o d u c e d i n r e l a t i v e l y h i g h concentrations i n the E S R c a v i t y a n d are sufficiently l o n g - l i v e d to b e d e t e c t e d . I n most systems of p r a c t i c a l interest t h e r e w i l l b e r e l a t i v e l y l a r g e concentrations of b o t h 0 fore, there is a h i g h p r o b a b i l i t y t h a t s u p e r o x i d e ( 0 " ) 2
2
and H 0 . 2
There
o r h y d r o x y l (• O H )
radicals w i l l be formed under normal ambient conditions. T h e half-lives of these r a d i c a l s ( o r t h e i r s p i n l a t t i c e r e l a x a t i o n t i m e s T i ) are sufficiently short that d i r e c t d e t e c t i o n of t h e m is not a l w a y s possible.
I n o r d e r to
c i r c u m v e n t this p r o b l e m w e h a v e successfully a p p l i e d the t e c h n i q u e of s p i n t r a p p i n g to p h o t o a c t i v e p a r t i c u l a t e dispersions. T h e use of a r a d i c a l a d d i t i o n r e a c t i o n to detect s h o r t - l i v e d r a d i c a l s w a s first p r o p o s e d b y l a n z e n ( 5 ) i n 1965. E a r l y w o r k o n this t e c h n i q u e c e n t e r e d o n the interactions of nitrones w i t h r a d i c a l s a n d the c o n s e q u e n t p r o d u c t i o n of stable n i t r o x i d e s . T h e r e a d e r is r e f e r r e d to a r e v i e w
by
J a n z e n ( 6 ) w h i c h covers t h e d e v e l o p m e n t of the s p i n - t r a p p i n g reactions p r i o r to 1971. A m a j o r a d v a n c e i n the u t i l i t y of this t e c h n i q u e c a m e i n 1973 w h e n J a n z e n a n d L i u ( 7 )
d e s c r i b e d the use of a
five-membered
r i n g n i t r o n e 5 , 5 - d i m e t h y l - l - p y r o l i n e - l - o x i d e ( D M P O ) . T h i s a c t e d as a s p i n t r a p i n the f o l l o w i n g m a n n e r :
(1)
T h e s p i n a d d u c t of D M P O has the a d v a n t a g e that the h y p e r f i n e s p l i t t i n g constants are s t r o n g l y d e p e n d e n t
u p o n the n a t u r e of
the
complexed
r a d i c a l a n d are sufficiently separated that r e a d y i d e n t i f i c a t i o n of
In Interfacial Photoprocesses: Energy Conversion and Synthesis; Wrighton, Mark S.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
the
10.
HAIR AND HARBOUR
Radicals
at Photoactive
175
Surfaces
r a d i c a l is g e n e r a l l y p o s s i b l e . H a r b o u r a n d B o l t o n (8,9)
have a p p l i e d this
s p i n - t r a p p i n g t e c h n i q u e to i n v i v o studies of chloroplasts a n d c h r o m a t o phores. and
T h e y f o u n d t h a t w h e n these systems w e r e i l l u m i n a t e d b o t h 0 ~ 2
- O H c o u l d b e i d e n t i f i e d f r o m the spectra of t h e r a d i c a l a d d u c t s .
A p p l i c a t i o n to p a r t i c u l a t e dispersions of p h o t o c o n d u c t i n g p a r t i c l e s w a s first r e p o r t e d i n 1977 b y H a r b o u r a n d H a i r ( 3 ) w h o s h o w e d t h a t w h e n a q u e o u s suspensions of c a d m i u m sulfide w e r e i r r a d i a t e d i n t h e presence of D M P O the 0 ~ s p i n a d d u c t w a s r e a d i l y o b s e r v e d . Downloaded by KTH ROYAL INST OF TECHNOLOGY on February 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch010
2
Experimental T h r e e types of p h o t o c o n d u c t i n g p a r t i c l e s h a v e b e e n u s e d i n t h i s w o r k . C a d m i u m sulfide, a n n - t y p e s e m i c o n d u c t o r , w a s o b t a i n e d f r o m F i s h e r a n d u s e d w i t h o u t f u r t h e r t r e a t m e n t ( 3 ) . I t c o n s i s t e d of p a r t i c l e s a p p r o x i m a t e l y 0.5 /xm i n d i a m e t e r w i t h a B E T ( N ) surface a r e a of 10 m / g . Metal-free phthalocyanine, an organic photoconducting pigment t h a t is often t a k e n as a n a n a l o g of c h l o r o p h y l l , w a s i n t h e x - c r y s t a l l i n e f o r m . T h i s i n s o l u b l e p o w d e r consisted of p a r t i c l e s less t h a n 1 / i m i n d i a m e t e r w i t h a B E T surface a r e a of 70 m / g . D i s t i l l e d w a t e r w a s r e d i s t i l l e d f r o m a n all-glass a p p a r a t u s . T h e s p i n t r a p D M P O w a s s y n t h e s i z e d and p u r i f i e d p r i o r to use b y b u l b - t o - b u l b d i s t i l l a t i o n o n a v a c u u m system and a d d e d d i r e c t l y to the d i s p e r s i o n ( ~ 0 . 1 M ) . I n a l l cases the p i g m e n t suspensions w e r e p r e p a r e d b y u l t r a s o n i c d i s p e r s i o n . T h e samples w e r e i l l u m i n a t e d i n s i t u w i t h a t u n g s t e n - q u a r t z i o d i d e l a m p d e s c r i b e d elsewhere ( J O ) or w i t h a H a n o v i a M o d e l 9 9 7 B 1KW H g - X e l a m p i n a Schoeffel M o d e l L H 1 5 1 N l a m p h o u s i n g w i t h a p p r o p r i a t e filters. T h e E S R spectra w e r e o b t a i n e d o n a V a r i a n E 1 2 E S R spectrometer. I n c e r t a i n cases either a c a t i o n i c surfactant, c e t y l t r i m e t h y l a m m o n i u m b r o m i d e ( C T A B ) f r o m S i g m a , or a n a n i o n i c s u r f a c t a n t , A e r o s o l O T ( A O T ) f r o m A m e r i c a n C y a n a m i d , w a s a d d e d to a i d d i s p e r s i o n a n d / o r to observe t h e effect of t h e a d s o r b e d m o l e c u l e s o n photochemistry. 2
2
2
Results and •OH
Discussion
Adduct.
T h e f o r m a t i o n a n d i d e n t i f i c a t i o n of t h e - O H a d d u c t
of D M P O w a s first r e p o r t e d b y H a r b o u r , C h o w , a n d B o l t o n i n 1974 T h e s e authors p r e p a r e d the aqueous H 0 2
2
(11).
- O H r a d i c a l b y U V p h o t o l y s i s of
dilute
solution.
2H 0 2
hv
>2 - O H
2
(2)
I n the presence of D M P O the s i g n a l s h o w n i n F i g u r e 1 w a s T h e signal was characterized by g = 14.9 G . T h e a c c i d e n t a l e q u a l i t y of a
2.0060 ± N
a n d ap
K
0.0002 a n d a
N
recorded. =
a^
H
=
gives rise to the 1 : 2 : 2 : 1
q u a r t e t . T h i s a s s i g n m e n t has b e e n c o n f i r m e d b y Sargent a n d G a r d y
In Interfacial Photoprocesses: Energy Conversion and Synthesis; Wrighton, Mark S.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
(12)
INTERFACIAL
Downloaded by KTH ROYAL INST OF TECHNOLOGY on February 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch010
176
Figure 1.
The ESR spectrum of the
PHOTOPROCESSES
10G
OH adduct of DMPO
in water at
25°C
w h o p r e p a r e d - O H b y r a d i o l y s i s of d e o x y g e n a t e d w a t e r u s i n g 3 M e V electrons. T h e y o b t a i n e d a n i d e n t i c a l E S R s p e c t r u m u s i n g t h e s p i n t r a p DMPO. A s w i l l b e d i s c u s s e d i n m o r e d e t a i l l a t e r , b a n d g a p i r r a d i a t i o n of z i n c o x i d e s u s p e n d e d i n w a t e r gives rise to a s i g n a l i d e n t i c a l to t h a t s h o w n i n F i g u r e 1. 0 " Adduct. 2
T h e O " adduct was the major product observed a
H a r b o u r , C h o w , a n d B o l t o n ( 1 1 ) w h e n c o n c e n t r a t e d aqueous
by
solutions
of H 0 - c o n t a i n i n g D M P O w e r e p h o t o l y z e d . 2
2
•OH +
H 0 ->H 0 + 2
2
2
H0
(3)
2
T h e D M P O a d d u c t i n w a t e r gives a n E S R s p e c t r u m w i t h g = a
N
=
14.1 G ,
— 11.3 G a n d a
y
H
2.0061,
1.25 G .
I n aqueous systems the 0 ~ r a d i c a l is i n e q u i l i b r i u m w i t h t h e H 0 2
2
radical. H0
2
^± H
T h e p K f o r this e q u i l i b r i u m is 4.4 ± a
+
+
0
(4)
2
0.4 ( 1 3 ) .
H o w e v e r , the p K
a
of the
s p i n a d d u c t i o n i z a t i o n is not k n o w n . T h u s i t is n o t p o s s i b l e to d i s t i n g u i s h b e t w e e n 0 ~ a n d its p r o t o n a t e d f o r m w h e n t h e r a d i c a l s are i n c o r p o r a t e d 2
i n t o the D M P O a d d u c t . F u r t h e r p r o o f of the correct i d e n t i f i c a t i o n of this s p i n a d d u c t also has b e e n o b t a i n e d b y i n d e p e n d e n t l y g e n e r a t i n g 0 ~ b y s o l u b i l i z i n g p o t a s 2
s i u m s u p e r o x i d e w i t h the K - s e l e c t i v e 18-crown-6-ether +
( C E ) (14)
(see
Figure 2). K0
2
+
CE — CEK
+
+
0 2
In Interfacial Photoprocesses: Energy Conversion and Synthesis; Wrighton, Mark S.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
(5)
10.
HAIR A N D HARBOUR
Radicals
at Photoactive
177
Surfaces
Downloaded by KTH ROYAL INST OF TECHNOLOGY on February 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch010
-10G-
Figure 2.
The ESR spectrum of 0 ' adduct in propylene 2
carbonate at
25°C
T h i s t e c h n i q u e has b e e n e x t e n d e d t o o t h e r solvents a n d t h e 0 ~ a d d u c t 2
has b e e n i d e n t i f i e d i n a series o f solvents w i t h p o l a r i t i e s r a n g i n g f r o m that of water to that of benzene. T h e nitrogen a n d ^ - h y d r o g e n splittings h a v e b e e n d e t e r m i n e d as a f u n c t i o n o f solvent p o l a r i t y . T h i s enables t h e extension o f the s p i n - t r a p p i n g t e c h n i q u e to a n y solvent system.
Further
e v i d e n c e t h a t 0 ~ w a s a c t u a l l y p r e s e n t i n those systems w a s o b t a i n e d 2
b y r a p i d freezing experiments i n the absence of the s p i n trap. A n E S R s i g n a l consistent w i t h the p r o d u c t i o n o f a n a x i a l l y s y m m e t r i c r a d i c a l w a s obtained ( g
M
= 2.08 a n d g
=
±
Application to Dispersions.
2.00). A q u e o u s dispersions of either c a d m i u m
sulfide o r x - p h t h a l o c y a n i n e g a v e n o E S R s i g n a l u p o n a d d i t i o n o f D M P O to t h e system. H o w e v e r , i l l u m i n a t i o n w i t h b a n d g a p i r r a d i a t i o n y i e l d e d a small E S R signal. T h i s was similar to the spectrum s h o w n i n F i g u r e 2 a n d is r e a d i l y i d e n t i f i e d as b e i n g t h a t of the D M P O / 0 ~ s p i n a d d u c t . T h e 2
s p i n a d d u c t does n o t f o r m i n t h e absence o f 0 is d e p e n d e n t u p o n t h e 0
2
p a r t i a l pressure.
2
a n d the a m o u n t o f p r o d u c t I t s f o r m a t i o n is consistent
w i t h a o n e - e l e c t r o n transfer f r o m t h e i r r a d i a t e d s o l i d t o t h e d i s s o l v e d 0 . 2
I n t h e absence o f surfactants o r other a d d i t i v e s , t h e i n t e n s i t y o f t h e
E S R s i g n a l is n e v e r v e r y great a n d thus t h e a p p a r e n t efficiency o f t h e p h o t o g e n e r a t i o n is q u i t e l o w .
In Interfacial Photoprocesses: Energy Conversion and Synthesis; Wrighton, Mark S.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
178
INTERFACIAL
During
illumination i n oxygenated
non-aqueous
PHOTOPROCESSES
suspensions,
the
s i g n a l shows a c o n t i n u a l n a r r o w i n g of the s p e c t r a l l i n e s . T h i s is c o n sistent w i t h the r e m o v a l of 0
2
f r o m the s o l u t i o n t h r o u g h r e d u c t i o n of
to 0 ~ a n d s u b s e q u e n t t r a p p i n g b y the D M P O .
0
2
Also during illumination,
2
h o w e v e r , the increase i n s i g n a l i n t e n s i t y is f o l l o w e d b y a s l o w
decay.
A f t e r t u r n i n g off the l i g h t the s i g n a l shows a f u r t h e r d e c a y . T h i s i n d i c a t e s t h a t the 0 ~ s p i n a d d u c t is s o m e w h a t u n s t a b l e i n these systems, p r e v e n t 2
i n g a n a c c u r a t e q u a n t i t a t i v e d e t e r m i n a t i o n of the 0 ~ a d d u c t c o n c e n t r a Downloaded by KTH ROYAL INST OF TECHNOLOGY on February 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch010
2
tion.
The
- O H a d d u c t is m u c h m o r e
stable i n b o t h l i g h t a n d d a r k
c o n d i t i o n s . I n i t i a l experiments a i m e d at q u a n t i f y i n g r a d i c a l f o r m a t i o n i n the aqueous z i n c o x i d e system are d e s c r i b e d e l s e w h e r e
(15).
T h e results o b t a i n e d a b o v e are consistent w i t h a m e c h a n i s m s u c h as i n F i g u r e 3 ( 1 6 ) .
T h e i n c i d e n t p h o t o n creates a n e l e c t r o n - h o l e p a i r
a n d , i f a n a c c e p t o r state lies b e l o w the c o n d u c t i o n b a n d , e l e c t r o n t r a n s f e r to t h e a c c e p t o r l e v e l is t h e r m o d y n a m i c a l l y f a v o r a b l e .
T h e redox level
f o r t h e 0 / 0 " c o u p l e is b e l o w the c o n d u c t i o n b a n d f o r b o t h c a d m i u m 2
2
sulfide a n d x - p h t h a l o c y a n i n e , so f o r m a t i o n of 0 " is n o t u n e x p e c t e d . 2
T h e d i r e c t d e t e c t i o n of a n e l e c t r o n transfer r e a c t i o n i n t h e C d S - H 0 2
system c a n b e a c h i e v e d b y r e p l a c i n g m o l e c u l a r o x y g e n w i t h a m o l e c u l e whose
r e d u c e d f o r m is r e l a t i v e l y stable.
such a compound.
M e t h y l viologen
(MV
+ 2
)
is
It is w a t e r s o l u b l e , exists as a colorless c a t i o n w h i c h
has a r e d o x p o t e n t i a l of
—0.44
(vs. N H E ) a n d c a n b e r e d u c e d to a
stable b l u e c a t i o n r a d i c a l p r o v i d e d 0
2
is not present.
to a c a d m i u m sulfide d i s p e r s i o n u n d e r N i n d e e d g i v e rise to t h e M V
+
2
A d d i t i o n of
MV
+ 2
purging and illumination d i d
signal.
A
D
Figure 3. A photon (hv) of light causes the excitation of an electron from the valence band (VB) to the conduction band (CB). If the energy level of the acceptor (A) is below that of the CB then electron transfer can occur as indicated by the arrow. Similarly, if the donor (D) state is above that of the VB electron transfer to the hole can occur.
In Interfacial Photoprocesses: Energy Conversion and Synthesis; Wrighton, Mark S.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
HAIR A N D HARBOUR
10.
A
Radicals
at Photoactive
179
Surfaces
d i r e c t c o n s e q u e n c e of the a b o v e m o d e l is that w h e n l i g h t is
a b s o r b e d a h o l e also m u s t b e c r e a t e d . I n i t i a l l y the h o l e m a y b e t r a p p e d i n the p h o t o c o n d u c t i n g p a r t i c l e . I n this case the p a r t i c l e m a y assume a r e v e r s e d c h a r g e a n d this t y p e of c h a r g e r e v e r s a l ( i n n o n a q u e o u s and
w i t h large a p p l i e d electric
field)
of e l e c t r o p h o t o g r a p h i c i m a g i n g ( 1 7 ) .
type
O v e r a p e r i o d of t i m e , h o w e v e r ,
the c a d m i u m sulfide w i l l u n d e r g o s e l f - o x i d a t i o n (18)
or the hole
react w i t h a n e l e c t r o n d o n o r i n the s u r r o u n d i n g s o l u t i o n . Downloaded by KTH ROYAL INST OF TECHNOLOGY on February 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch010
systems
f o r m s the basis of a n o v e l
e s t a b l i s h e d t h a t E D T A is p h o t o o x i d i z e d v e r y efficiently ( 1 9 ) .
will
It is w e l l Addition
of E D T A to the C d S - D M P O suspension g r e a t l y increases t h e E S R s i g n a l of the 0 ~ r a d i c a l a d d u c t . T h e c a d m i u m sulfide p a r t i c l e s are t h u s a c t i n g 2
as a p h o t o p u m p a n d d r i v i n g electrons f r o m E D T A to 0 .
A similar large
2
increase i n i n t e n s i t y of the s i g n a l d u e to the M V
+
radical cation was
o b s e r v e d w h e n E D T A w a s a d d e d to the i l l u m i n a t e d M V
+ 2
- C d S suspen
sion, thus p r o v i d i n g f u r t h e r c r e d i b i l i t y to t h e m e c h a n i s m . Effect of S u r f a c t a n t s .
F o r a n y p r a c t i c a l system i n v o l v i n g p h o t o
a c t i v e p i g m e n t dispersions i t is a l m o s t c e r t a i n that a surfactant w o u l d b e r e q u i r e d to p r e v e n t
flocculation
of the p a r t i c l e s . M a n y of the surfactants
u s e d i n aqueous systems are i o n i c a n d c a n c h a r g e the p a r t i c l e s e i t h e r p o s i t i v e l y or n e g a t i v e l y . T h e effect of a l t e r i n g the surface c h a r g e c a n b e p r e d i c t e d f r o m F i g u r e 3. T h e degree of b a n d b e n d i n g at t h e i n t e r f a c e defines the space c h a r g e r e g i o n w i t h i n the p h o t o c o n d u c t o r .
W h e n the
h o l e a n d e l e c t r o n are c r e a t e d b y a b s o r p t i o n of a p h o t o n , the holes a n d electrons m i g r a t e o p p o s i t e l y u n d e r the i n f l u e n c e of t h e field. I f a p o s i t i v e surface c h a r g e exists, electrons w i l l m i g r a t e m o r e r e a d i l y t o w a r d s
the
i n t e r f a c e a n d w i l l act m o r e efficiently as r e d u c i n g agents for t h e m o l e c u l a r o x y g e n . H o w e v e r , i f the surface is n e g a t i v e l y c h a r g e d , t h e opposite effect w o u l d b e a n t i c i p a t e d a n d e l e c t r o n transfer i m p e d e d .
T o test these p r e
d i c t i o n s s p i n - t r a p p i n g experiments h a v e b e e n p e r f o r m e d u s i n g p h t h a l o c y a n i n e suspensions w h i c h h a v e b e e n d i s p e r s e d b y a d s o r b e d m o n o l a y e r s of e i t h e r C T A B
( w h i c h adsorbs v i a the b u l k y h y d r o c a r b o n m o i e t y to
g i v e a p o s i t i v e surface) or A O T ( w h i c h adsorbs to g i v e a n e g a t i v e surface) (20).
O n i r r a d i a t i o n , the y i e l d of the 0 ~ a d d u c t is g r e a t l y i n c r e a s e d f o r 2
the system that has the i n c r e a s e d p o s i t i v e c h a r g e a n d is s i g n i f i c a n t l y d e c r e a s e d w h e n the surface assumes a n e g a t i v e charge.
T h e monolayer
of s u r f a c t a n t does n o t p r e v e n t the e l e c t r o n transfer f r o m o c c u r r i n g a n d the effect of the surface c h a r g e is m o r e n o t i c e a b l e i n the case of t h e p h t h a l o c y a n i n e t h a n the C d S . T h u s , i n these cases, t h e surface does not s i g n i f i c a n t l y alter the p r i m a r y p h o t o c h e m i s t r y .
charge
H o w e v e r , the
r o l e of s u r f a c t a n t is c r u c i a l a n d , as w i l l b e d e s c r i b e d e l s e w h e r e
(21),
a c o m b i n a t i o n of " r i g h t " p r o p e r t i e s of surfactant a n d e l e c t r o n
donor
can
b e u s e d to a c h i e v e photosynthesis of H 0 2
2
on a phthalocyanine
surface.
In Interfacial Photoprocesses: Energy Conversion and Synthesis; Wrighton, Mark S.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
180
INTERFACIAL
A p p l i c a t i o n t o P h o t o s y n t h e s i s of H 0 . 2
PHOTOPROCESSES
W h e n z i n c o x i d e p o w d e r is
2
s u s p e n d e d i n H 0 a n d i r r a d i a t e d w i t h l i g h t of w a v e l e n g t h less t h a n 380 2
n m i n the presence of D M P O , a l a r g e E S R s i g n a l is o b s e r v e d .
T h i s is
i d e n t i c a l to t h a t s h o w n i n F i g u r e 1 a n d c a n therefore b e i d e n t i f i e d as t h e a d d u c t of D M P O a n d a n
-OH. H 0 2
is p h o t o g e n e r a t e d
2
under
these
e x p e r i m e n t a l c o n d i t i o n s a n d the efficiency of the p h o t o r e a c t i o n is i n creased b y t h e a d d i t i o n of c o m p o u n d s s u c h as f o r m a t e a n d oxalate
(4).
Downloaded by KTH ROYAL INST OF TECHNOLOGY on February 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch010
M a n y m e c h a n i s m s h a v e b e e n p r o p o s e d to a c c o u n t f o r this synthesis of H 0 , a n d a l t h o u g h r a d i c a l i n t e r m e d i a t e s are often p r o p o s e d , these s p i n 2
2
t r a p p i n g studies p r o v i d e the first d i r e c t e v i d e n c e f o r t h e i r presence. have recently concluded
a s t u d y o n the photosynthesis
of
We
hydrogen
peroxide on z i n c oxide c o m b i n i n g spin-trapping experiments, quantitative m e a s u r e m e n t of o x y g e n u p t a k e studies, a n d p e r o x i d e f o r m a t i o n i n a n a t t e m p t to define the r e a c t i o n p a t h . F u l l details are p u b l i s h e d e l s e w h e r e (15)
b u t a s u m m a r y is p e r t i n e n t because t h e s p i n - t r a p p i n g e x p e r i m e n t s
r e v e a l the m a j o r effect of the c a r b o x y l a t e - t y p e a d d i t i v e s o n t h e system. T h e salient p o i n t s are as f o l l o w s : (A)
A
quantitative comparison
between
product
formation
and
r a d i c a l c o n c e n t r a t i o n d e m o n s t r a t e d t h a t the r a d i c a l s w e r e m a j o r p a r t i c i p a n t s i n the r e a c t i o n m e c h a n i s m . ( B ) W h e n z i n c o x i d e suspensions are i l l u m i n a t e d i n the absence of a d d i t i v e s o n l y the - O H r a d i c a l a d d u c t is o b s e r v e d .
T h e 0 ~ a d d u c t is 2
n e v e r o b s e r v e d i n these e x p e r i m e n t s a n d therefore does not exist as a free e n t i t y i n the e x t e r n a l s o l u t i o n . ( A l t h o u g h this does not r u l e o u t its presence
as a surface species.)
T h e t i m e d e p e n d e n c e of the r a d i c a l
a d d u c t f o r m a t i o n is s h o w n i n F i g u r e 4.
T h e i n t e n s i t y peaks w i t h t i m e ,
p r o b a b l y c a u s e d b y p h o t o i n d u c e d d e s t r u c t i o n of the r a d i c a l a d d u c t since the i n t e n s i t y levels off w h e n i l l u m i n a t i o n is b l o c k e d . (C)
D e s p i t e the fact t h a t 0 " is n e v e r o b s e r v e d i n free s o l u t i o n the 2
k i n e t i c curves s h o w t h a t t h e rate of ' O H p r o d u c t i o n is d e p e n d e n t u p o n the 0
2
c o n c e n t r a t i o n i n t h e s o l u t i o n . M o r e o v e r , p r e v i o u s tracer studies
s h o w that the o x y g e n t h a t is i n c o r p o r a t e d i n t o H 0 2
molecular oxygen a n d not water (D)
comes f r o m
2
the
(22).
W h e n f o r m a t e is a d d e d to the aqueous z i n c o x i d e system a n d
i r r a d i a t e d i n the presence
of D M P O ,
the
- O H a d d u c t is n o
longer
o b s e r v e d , b u t is r e p l a c e d b y t h e l a r g e s i g n a l s h o w n i n F i g u r e 5. n e w s i g n a l has g — 2.006, a
N
— 15.6 G , a n d a^
u
This
— 18.7 G . B y a series of
e x p e r i m e n t s analogous to those d e s c r i b e d earlier f o r 0 ~ a n d * O H t h i s 2
s i g n a l c a n b e i d e n t i f i e d as b e i n g c a u s e d b y the D M P O / - C 0 " 2
a d d u c t . T h e l i m i t i n g c o n c e n t r a t i o n of H 0 2
1 0 " M to 8 X 4
2
radical
f o r m e d increases f r o m 1
10" M. 4
In Interfacial Photoprocesses: Energy Conversion and Synthesis; Wrighton, Mark S.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
X
Downloaded by KTH ROYAL INST OF TECHNOLOGY on February 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch010
10.
HAIR A N D HARBOUR
i 12
i
i 36
Radicals
i
at Photoactive
i
i
60 Time (sec.)
Surfaces
i
181
1
84
1 108
Figure 4. The time dependence of the amplitude of the -OH adduct signal as a function of illumination. The field is fixed at the point indi cated by the arrow in the upper-right portion of the figure.
Figure 5.
The ESR spectrum of the 'C0 ~ adduct of DMPO at 25°C 2
in water
In Interfacial Photoprocesses: Energy Conversion and Synthesis; Wrighton, Mark S.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
182
INTERFACIAL
PHOTOPROCESSES
T h e s e observations are consistent w i t h t h e f o l l o w i n g m e c h a n i s m . ZnO + hv^±
® + hole
T h e i n i t i a l step is a p h o t o r e d u c t i o n
e electron
(6)
of m o l e c u l a r o x y g e n , w h e r e
(s)
denotes a surface species. H e" -> 0 " . ) ^ H 0
Downloaded by KTH ROYAL INST OF TECHNOLOGY on February 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch010
+
0 .)
+
2 (
2
(
2
U
(7)
)
T h e s e m u s t b e surface species b e c a u s e t h e y are n e v e r d e t e c t e d b y t h e s p i n t r a p . T h i s p r o p o s a l is s u p p o r t e d b y t h e separate o b s e r v a t i o n t h a t the rate of 0
2
u p t a k e is a f u n c t i o n of the s q u a r e root of 0
concentration,
2
s u g g e s t i n g a surface effect. The H 0
2 (
, ) species c a n t h e n b e r e d u c e d b y a s e c o n d
photoproduced
e l e c t r o n to generate H 0 . 2
2
H e" - » H 0 ' ^ H 0 +
H0 A l t e r n a t i v e l y , since H 0
2
2
U
+
)
2
2
(8)
2
is k n o w n to d i s m u t a t e i n s o l u t i o n to g i v e H 0 , 2
2
t h e f o l l o w i n g r e a c t i o n c o u l d also o c c u r : 2 H0
2 ( 8 )
-> H 0 2
2
+ 0
(9)
2
F o r the c o n c u r r e n t o x i d a t i o n i t is c l e a r t h a t - O H r a d i c a l s m u s t b e p r o d u c e d , a n d this c a n o c c u r most easily b y either of the f o l l o w i n g r e a c t i o n s : (H 0)OH- + 2
®->
-OH
(10)
+
(11)
or Zn—OH , + ( i
If E q u a t i o n (10)
0 -> Z n
2 +
is o c c u r r i n g , the r e a c t i o n converts
c h e m i c a l free e n e r g y since t h e r e a c t i o n H 0 + 2
free e n e r g y ( + 2 5
-OH
kcal) (1).
0
2
solar e n e r g y
to
- » H 0 , has a p o s i t i v e 2
2
T h e o x i d a t i o n of z i n c o x i d e i t s e l f ( E q u a
t i o n 11) w o u l d b e a p h o t o c o r r o s i o n r e a c t i o n as d i s c u s s e d b y D i x o n a n d Healy (23).
T h e l i m i t i n g c o n c e n t r a t i o n of H 0 2
2
is t h e n p r o p o s e d
to
follow from the reaction H 0 („ + 2
2
- O H -> H 0 + 2
H0
(12)
2 ( a )
T h e f o r m a t e is p r o p o s e d to f u n c t i o n , at least i n p a r t , as a getter f o r t h e - O H r a d i c a l since n o
- O H adduct can be observed.
I t also c a n
f u n c t i o n as a r e d u c t a n t .
In Interfacial Photoprocesses: Energy Conversion and Synthesis; Wrighton, Mark S.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Radicals
HAIR A N D HARBOUR
10.
at Photoactive
H C 0 " -> - C 0
•OH +
2
2
- + H
183
Surfaces
2
(13)
0
or H C 0
2
-
+
®
^
-C0 " + 2
H
(14)
+
T h e experiments described here clearly demonstrate t h e utility of the s p i n - t r a p p i n g t e c h n i q u e as a m e t h o d f o r i d e n t i f y i n g r a d i c a l i n t e r mediates i n photoactive H 0
Downloaded by KTH ROYAL INST OF TECHNOLOGY on February 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch010
2
2
systems.
T h e study of t h e photosynthesis of
o n z i n c o x i d e reveals t h e d i s t i n c t l y different m e c h a n i s t i c p a t h w a y
w h i c h occurs i n t h e p r e s e n c e o f a d d i t i v e s . W e h a v e a p p l i e d t h e s p i n t r a p p i n g m e t h o d t o s i m p l e p h o t o p r o d u c e d r e a c t i o n s o c c u r r i n g across t h e s o l i d - l i q u i d interface i n photoactive p i g m e n t dispersions.
T h e method
is also c l e a r l y a p p l i c a b l e t o p h o t o e l e c t r o c h e m i c a l cells (18,24)
and any
o t h e r heterogeneous system i n v o l v i n g i n t e r f a c i a l c h a r g e transfer.
Literature
Cited
1. Rubin, T. R.; Calvert, J. G.; Rankin, G. T.; MacNevin, W. J. Am. Chem. Soc. 1953, 75, 2850. 2. Frank, S. N.; Bard, A. J. J. Am. Chem. Soc. 1977, 99, 303. 3. Harbour, J. R.; Hair, M. L. J. Phys. Chem. 1977, 81, 1791. 4. Freund, T.; Gomes, W. P. Catal. Rev. 1969, 3, 1. 5. Janzen, E. G. Chem. Eng. News 1965, 43, 50. 6. Janzen, E. G. Acc. Chem. Res. 1971, 4, 31. 7. Janzen, E. G., Liu, J. I-Ping. J. Mag. Reson. 1973, 9, 510. 8. Harbour, J. R.; Bolton, J. R. Biochem. Biophys. Res. Commun. 1974, 64, 803. 9. Harbour, J. R.; Bolton, J. R. Photochem. Bhotobiol., in press. 10. Warden, J. T.; Bolton, J. R. J. Am. Chem. Soc. 1973, 95, 6435. 11. Harbour, J. R.; Chen, V.; Bolton, J. R. Can. J. Chem. 1974, 52, 3549. 12. Sargent, F. P.; Gardy, E. M. Can. J. Chem. 1976, 54, 275. 13. Czapski, G.; Bielski, B. H. J. Phys. Chem. 1963, 67, 2180. 14. Harbour, J. R.; Hair, M. L. J. Phys. Chem. 1978, 82, 1397. 15. Harbour, J. R.; Hair, M. L. J. Phys. Chem., in press. 16. Gerischer, H . J. Electroanal. Chem. Interfacial Electrochem. 1975, 58, 263. 17. Weigl, J. W. Angew. Chem. Int. Ed. Engl. 1977, 16, 374. 18. Gerischer, H. In "Solar Power and Fuels"; Bolton, J. R., Ed.; Academic: New York, 1977; p. 77. 19. Markiewicz, S.; Chan, M. S.; Sparks, R. H.; Evans, C. A.; Bolton, J. R. International Conference on the Photochemical Conversion and Storage of Solar Energy, London, Ontario, Canada, 1976. 20. Harbour, J. R.; Hair, M. L. Photochem. Photobiol. 1978, 28, 721. 21. Harbour, J. R.; Hair , M. L.; Tromp, J., unpublished data. 22. Calvert, J. G.; Theurer, K.; Rankin, G. T.; MacNevin, W. M. J. Am. Chem. Soc. 1954, 76, 2575. 23. Dixon, D. R.; Healy, T. W. Aust. J. Chem. 1971, 24, 1193. 24. Ellis, A. B.; Kaiser, S. W.; Wrighton, M. S. J. Am. Chem. Soc. 1976, 98, 6855. RECEIVED October 2, 1978.
In Interfacial Photoprocesses: Energy Conversion and Synthesis; Wrighton, Mark S.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.