Significant Parameters in the Synthesis of Large Alkaline-Free MFI

Jul 31, 1989 - Katović, Subotić, Šmit, Despotović, and Ćurić. ACS Symposium Series , Volume 398, pp 124–139. Abstract: The tetragonal form of ...
0 downloads 0 Views 1MB Size
Chapter 24

Significant Parameters in the Synthesis of Large Alkaline-Free MFI-Type Zeolites and AFI-Type Aluminophosphates

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

U. Müller, A. Brenner, A. Reich, and Κ. K. Unger Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, P. O. Box 3980, D-6500 Mainz, Federal Republic of Germany

Factorial experiments were successfully employed to determine significant synthesis variables allowing the crystallization of large AlPO -5 and ZSM-5 c r y s t a l s . Growth of AFI-type aluminophoshate up to 500 μm in length was achieved using a molar reaction composition of 0.5 Pr N - Al O - P O - 300 H O. Crystal size and yield were countercurrently affected by the water content during the synthesis . The alkaline-free crystallization of 300μmuniform MFItype zeolites at high conversion was possible in a batch of 6.5 (TPA) O - 282 (NH ) O - 96 SiO - 1400 H O. Decreasing water content and increasing ammonia concentration improved both crystal size and yield. Length growth rates reached 3.0 ± 0.6μm/h.Increasing the aluminium content caused a decrease in the size and y i e l d of ZSM-5 after four days along with a reduction in the crystal aspect r a t i o compared to aluminium-free runs. Preliminary results with alkaline-free preparations of DOH-,DDR-, MTN-, and MEL-type z e o l i t e s indicate, that large crystals with sharp p a r t i c l e size d i s t r i b u t i o n s are frequently observed in ammonia-based zeolite synthesis processes. 4

3

2

2

3

2

5

4 2

2

2

2

Large c r y s t a l s o f molecular s i e v e m a t e r i a l s a r e o f profound i n t e r e s t both f o r academic s t u d i e s and s p e c i a l i n d u s t r i a l a p p l i c a t i o n s . I n v e s t i g a t i o n s regarding s i n g l e c r y s t a l s t r u c t u r e refinement ( 1 ) , the determination o f a n i s o t r o p i c e l e c t r i c a l , magnetic o r o p t i c a l p r o p e r t i e s (2), t h e d e s c r i p t i o n o f d i f f u s i o n processes (3Λ) o r t h e e l a b o r a t i o n o f i n t r i n s i c a d s o r p t i o n p r o p e r t i e s (5J>) a r e based on the use o f uniform l a r g e specimens with a d i s t i n c t morphology. Large z e o l i t e c r y s t a l s with a r a t h e r small n o n s e l e c t i v e e x t e r n a l s u r f a c e might be useful i n s h a p e - s e l e c t i v e c a t a l y s i s (Z) o r i n f l u i d i z e d - b e d r e a c t i o n s as b i n d e r - f r e e and s e l f - s u p p o r t i n g adsorbents. Moreover, a c e r t a i n c r y s t a l s i z e and shape i s r e q u i r e d f o r t h e manufacture o f 0097-6156/89/0398-0346$06.00/0 o 1989 American Chemical Society Occelli and Robson; Zeolite Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

24. MULLERETAL.

Large Alkaline-Free Zeolites and Aluminophosphates

347

zeolite-membranes (8) o r t h e employment o f m o l e c u l a r s i e v e s as s u b s t r a t e s f o r semiconductors ( 9 ) . However, d u r i n g t h e c r y s t a l l i z a t i o n o f z e o l i t e s and r e l a t e d m a t e r i a l s , complex multicomponent mixtures, e.g. o f s i l i c a , alumina, m i n e r a l i z e r s , water and o r g a n i c templates, a r e hydrothermal 1y r e a c t e d . N u c l e a t i o n and growth o f c r y s t a l s can be dependent upon chemical composition as well as k i n e t i c s o r e q u i l i b r i u m c o n d i t i o n s e x i s t i n g i n t h e s o l i d , l i q u i d , and g a s phase. Given these c o n s i d e r a t i o n s , the most e f f i c i e n t method o f s t u d y i n g the impact on the r e s u l t s when two o r more s y n t h e s i s parameters , h e r e a f t e r c a l l e d " f a c t o r s " , were t o be changed i s obtained by f a c t o r i a l experiments (10) . A c c o r d i n g l y , a t r i a l i s designed where s e t s o f d i f f e r e n t s y n t h e s i s v a r i a b l e s are arranged i n s p e c i f i c treatment combinations, e n a b l i n g an assessment o f t h e e f f e c t s o f changing t h e l e v e l o f a f a c t o r independently o f a l l others and p o s s i b l e i n t e r a c t i o n e f f e c t s . Thus t h e r e q u i r e d i n f o r m a t i o n i s e x t r a c t e d with a p r e - s e l e c t e d degree o f s t a t i s t i c a l c e r t a i n t y a t a minimum expenditure o f e f f o r t and c o s t s . I f s i g n i f i c a n t e f f e c t s a r e e l u c i d a t e d , they can be d i r e c t l y employed as s t a r t i n g values t o f u r t h e r improve s y n t h e s i s by means o f c e n t r a l composite design o r S i m p l e x - v a r i a t i o n procedures, f i n a l l y y i e l d i n g optimum c o n d i t i o n s f o r t h e d e s i r e d response, r e g a r d i n g c r y s t a l s i z e , morphology or product y i e l d . T h i s study aims t o demonstrate, t h a t s t a t i s t i c f a c t o r i a l design can be used i n order t o determine s i g n i f i c a n t compositional parameters i n the r a p i d growth o f l a r g e h i g h - s i l i c a ZSM-5 z e o l i t e (11) and A l P 0 - 5 aluminophosphate c r y s t a l s (12.13). 4

Experimental Z e o l i t e ZSM-5. Z e o l i t e samples were c r y s t a l l i z e d from a g e l containing colloidal s i l i c a (Ludox AS-40), d e i o n i z e d water, a l u m i n i u m t r i i s o p r o p y l a t e (ATIP, Merck), as source o f aluminium, and tetrapropylammonium bromide, (TPABr, A l d r i c h ) . Ammonia s o l u t i o n s were prepared by s a t u r a t i n g a thermostated aqueous s o l u t i o n with gaseous NH (98% p u r i t y ) . Contents o f 25%, 32%, and 47% w/w o f ammonia were obtained and g r a v i m e t r i c a l l y c o n t r o l l e d . The components were added i n the sequence: TPABr, S i 0 , alumina source, water and ammonia s o l u t i o n . The mixture was v i g o r o u s l y a g i t a t e d , s e a l e d and l e f t f o r f o u r days a t a temperature o f 453 Κ t o r e a c t . Li-NH -ZSM-5 was grown using a procedure d e s c r i b e d elsewhere (14.15). 3

2

4

Aluminophosphate A l P Q - 5 . A l P 0 - 5 was obtained from compositions c o n t a i n i n g pseudoboehmite (Pural SB, Condea) which was added t o aqueous phosphoric a c i d (Merck, 85%) and d e i o n i z e d water. F i n a l l y , t r i p r o p y l a m i n e ( A l d r i c h ) was c o n t i n u o u s l y added t o t h e s t i r r e d s o l u t i o n . The c r y s t a l l i z a t i o n time was l i m i t e d t o 72 hours. C r y s t a l l i z a t i o n was c a r r i e d out with 50 ml o f r e a c t i o n mixtures in 100 ml s t e e l a u t o c l a v e s l i n e d with T e f l o n under s t a t i c c o n d i t i o n s . A l l i s o l a t e d products were c h a r a c t e r i z e d b y X-ray d i f f r a c t i o n , scanning e l e c t r o n microscopy, and e l e c t r o n microprobing (Camebax, CAMECA). S e l e c t e d samples were employed f o r n i t r o g e n a d s o r p t i o n and m i c r o c a l o r i m e t r y a t 77 K. A f t e r c a l c i n a t i o n a t 823 K, c a t a l y t i c a c t i v i t y and s e l e c t i v i t y o f HZSM-5 samples were monitored using the d i s p r o p o r t i o n a t i o n o f ethylbenzene as a t e s t r e a c t i o n . The 4

4

American Chemical Society Library 1155 16th St., N.W. Washington, Occelli and Robson;D.C. Zeolite20036 Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

348

ZEOLITE SYNTHESIS

p a r t i c l e s i z e d i s t r i b u t i o n was o b t a i n e d u s i n g o p t i c a l microscopy on 300 t o 800 i n d i v i d u a l c r y s t a l s . R e s u l t s and D i s c u s s i o n S y n t h e s i s of l a r g e AFI-tvpe c r y s t a l s . For these s t u d i e s of the c r y s t a l l i z a t i o n of l a r g e AFI-type aluminophosphate c r y s t a l s , the r e a c t i o n temperature T, the c o n c e n t r a t i o n o f t r i p r o p y l a m i n e Pr N, and the amount o f water were chosen as o p e r a t i o n a l v a r i a b l e s . S y n t h e s i s runs were performed with each of these " f a c t o r s " at a high (+) and a low (-) l e v e l , f o r molar compositions with b P r N - A 1 0 - P 0 - c H 0 as i n d i c a t e d in Table I: 3

3

2

5

2

3

2

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

Table I. Compositional F a c t o r s and L e v e l s i n v e s t i g a t e d f o r the S y n t h e s i s of ΑΙΡΟ^-δ c r y s t a l s Factor

High Level

Α: Τ (Κ) B:

C:

423 0.5 50

453 3.0 300

ProN

H0 2

Low Level

J

Table II summarizes the 2 p o s s i b l e treatment combinations. Run (1) denotes a s y n t h e s i s with a l l f a c t o r s at t h e i r lowest l e v e l . Product y i e l d s , see Table II , and maximum c r y s t a l s i z e s along the (001) a x i s ( T a b l e I I I ) r e p r e s e n t mean values from d u p l i c a t e d s e t s o f each t r i a l . The " e f f e c t " column l i s t s the impact of a f a c t o r , p o s i t i v e or n e g a t i v e , on the response, v i z . product y i e l d and c r y s t a l l e n g t h , f o r the case t h a t the l e v e l o f t h i s f a c t o r i s r a i s e d from a medium to a high l e v e l . C a l c u l a t i o n procedures have been d e s c r i b e d i n the l i t e r a t u r e (10). Table I I . Treatment Combinations f o r the I n f l u e n c e of D i f f e r e n t F a c t o r s on the A l P 0 - 5 Product Y i e l d A

Combination

Factor A

Factor Β

1 a b ab c ac be abc

423 453 423 453 423 453 423 453

0.5 0.5 3.0 3.0 0.5 0.5 3.0 3.0

Factor Yield C % w/w 50 50 50 50 300 300 300 300

85 17 42 34 3 9 18 8

Effect 27.0 -10.0 - 1.5 5.5 -17.5 9.0 5.0 - 9.5

Significance 95% + -

F i n a l l y , a l l e f f e c t s were e v a l u a t e d by "Student t - t e s t " and " F - t e s t " methods, in order t o check whether these e f f e c t s were simply due t o experimental e r r o r r a t h e r than being s t a t i s t i c a l l y s i g n i f i c a n t . D e c i s i o n s are based on a c e r t a i n t y o f at l e a s t 95% . S i g n i f i c a n t

Occelli and Robson; Zeolite Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

24.

MULLER ET AL.

Large Alkaline-Free Zeolites and Aluminophosphates

349

v a r i a b l e s i n t h e f o l l o w i n g t a b l e s have been marked (+) i n t h e l a s t column. R e f e r r i n g t o Table I I , f a c t o r C, t h e water content, o b v i o u s l y s t r o n g l y i n f l u e n c e s the y i e l d o f AlP0 -5. T h i s e f f e c t i s negative i n s i g n which means t h a t i n c r e a s i n g t h e water content d u r i n g t h e c r y s t a l l i z a t i o n causes a s i g n i f i c a n t decrease i n y i e l d . I t should be noted, t h a t t h i s r e s u l t i s s t r i c t l y v a l i d o n l y f o r the experimental c o n d i t i o n s and compositions as l i s t e d in Table I . 4

Table I I I . Treatment Combinations f o r the I n f l u e n c e o f D i f f e r e n t F a c t o r s on the A l P 0 - 5 C r y s t a l S i z e

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

4

Combination

Factor A

Factor Β

Factor C

Size /zm

Effect

1 a b ab c ac be abc

423 453 423 453 423 453 423 453

0.5 0.5 3.0 3.0 0.5 0.5 3.0 3.0

50 50 50 50 300 300 300 300

98 25 30 13 500 140 135 350

161.4 -29.4 -29.4 78.4 119.9 6.9 9.4 64.9

Significance 95% + -

Regarding the c r y s t a l s i z e i n Table I I I , i t was observed t h a t again f a c t o r C, t h e amount o f water i n t h e s y n t h e s i s mixture e x e r t s a strong i n f l u e n c e . However, high water c o n c e n t r a t i o n s a r e conducive to t h e growth o f l a r g e c r y s t a l s , s i n c e t h e e f f e c t i s p o s i t i v e . R e s u l t s obtained so f a r i l l u s t r a t e , t h a t e i t h e r high product y i e l d s or l a r g e c r y s t a l s o f AlP0 -5 can be prepared by t h e method under i n v e s t i g a t i o n . Within t h e boundaries o f these treatment combina­ t i o n s , n e i t h e r t h e s y n t h e s i s temperature n o r t h e c o n c e n t r a t i o n o f t r i p r o p y l a m i n e proved t o be s i g n i f i c a n t parameters f o r the growth o f l a r g e AlP0 -5 c r y s t a l s , t h e hexagonal r o d - l i k e shape o f l a r g e c r y s t a l s o f AFI-type i s i l l u s t r a t e d i n F i g u r e 1, whereas the norma­ l i z e d p a r t i c l e s i z e d i s t r i b u t i o n o f a t y p i c a l sample i s d e p i c t e d i n F i g u r e 2. A s i m i l a r c r y s t a l morphology has a l r e a d y been r e p o r t e d by Wilson e t a l . (13) using tetrapropylammonium c a t i o n s as an o r g a n i c template. A d s o r p t i o n p r o p e r t i e s o f l a r g e AFI-type c r y s t a l s are c o n s i s t e n t with t h e micropore s t r u c t u r e which have been d i s c u s s e d elsewhena 4

4

(16)(6).

S y n t h e s i s o f l a r g e ZSM-5 C r y s t a l s . P r e l i m i n a r y s t u d i e s l e d t o t h e i n v e s t i g a t i o n o f a s y n t h e s i s mixture with a molar composition expressed in oxide r a t i o : 6.5 (ΤΡΑ)οΟ - b (NH ) 0 - c Al 0o - Si0 a H 0. Table IV i l l u s t r a t e s the f a c t o r s which were examinea. 4

2

2

2

Occelli and Robson; Zeolite Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

2

ZEOLITE SYNTHESIS

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

350

F i g u r e 1.

Scanning E l e c t r o n Micrograph of Large A l P 0 - 5 C r y s t a l s ( s c a l e bar: 10 μπι). 4

30

1

Ξ θ1 2

10-i 0 J-

Γ ο

F i g u r e 2.

TJTTTTJTT

TTJTTTTJT

rTJTTTTJT

20 40 60 R e l a t i v e C r y s t a l L e n g t h (QQJ)

τ 80

100 ( % )

P a r t i c l e S i z e D i s t r i b u t i o n of Large A l P 0 - 5 Crystals. 4

Occelli and Robson; Zeolite Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

24. MULLERETAL.

Large Alkaline-Free Zeolites and Aluminophosphates 351

Table IV. Compositional F a c t o r s and L e v e l s f o r the S y n t h e s i s o f ZSM-5 C r y s t a l s Factor

High

A: HoO B: ( N R ) 0 C: A l ^ 4

Level

1400 141 1

3200 282 0

2

Low Level

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

Product y i e l d , see Table V, was found t o be s i g n i f i c a n t l y dependent upon t h e ammonia content. High c o n c e n t r a t i o n s caused i n c r e a s e s i n the y i e l d o f ZSM-5. Table V. Treatment Combinations f o r the I n f l u e n c e o f D i f f e r e n t F a c t o r s on the ZSM-5 Product Y i e l d Combination

Factor A

Factor Β

Factor C

Yield % w/w

1 a b ab c ac be abc

1400 3200 1400 3200 1400 3200 1400 3200

141 141 282 282 141 141 282 282

1 1 1 1 0 0 0 0

76.0 1.4 83.2 88.4 47.5 42.2 95.2 94.8

Significance 95%

Effect 66.1 - 9.4 24.3 10.6 3.8 7.9 0.8 - 9.5

+ -

High ammonia c o n c e n t r a t i o n s a r e n o t o n l y r e s p o n s i b l e f o r maximum product y i e l d s but t o g e t h e r with low water and aluminium concentra­ t i o n s , they appear f a r more important f o r t h e growth o f l a r g e c r y s t a l s (see Table V I ) . Figure 3 presents a scanning e l e c t r o n micrograph o f l a r g e uniform NH^-ZSM-5 c r y s t a l s . Compared t o a p r e v i o u s l y s y n t h e s i z e d Li-NH -ZSM-5, s e e F i g u r e s 4 and 5, t h e p a r t i c l e s i z e d i s t r i b u t i o n o f s o l i t a r y c r y s t a l s from the a l k a l i n e f r e e composition was found t o be markedly narrow, see F i g u r e 6, which h i n t s a t a s h o r t n u c l e a t i o n p e r i o d . I t i s obvious from Table VI, t h a t a high water content leads t o a decrease i n the s i z e o f the crystals. The treatment combination "be" o f Table VI was chosen i n order t o monitor the growth k i n e t i c s o f NH -ZSM-5. Table VII summarizes the r e s u l t s and compares the growth r a t e s with the data found by v a r i o u s other i n v e s t i g a t o r s with d i f f e r e n t systems. Strong i n f l u e n c e s o f OH" c o n c e n t r a t i o n on growth r a t e s have a l r e a d y been observed by Hou e t a l . f o r NH4-TPA mixtures (17) and by Lowe (20) and Hayhurst e t a l . (18) f o r Na-TPA systems. The l a t t e r group recorded even f a s t e r c r y s t a l l i z a t i o n and s h o r t e r i n d u c t i o n p e r i o d s i n N a - f r e e s y n t h e s i s 4

4

+

Occelli and Robson; Zeolite Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

ZEOLITE SYNTHESIS

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

352

F i g u r e 3.

F i g u r e 4.

Scanning E l e c t r o n Micrograph o f Large NH -ZSM-5 C r y s t a l s ( s c a l e b a r : 100 μπι). 4

Scanning E l e c t r o n Micrograph o f Large Li-NH -ZSM-5 C r y s t a l s ( s c a l e b a r : 100 μπι). 4

Occelli and Robson; Zeolite Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

24.

M U L L E R

ET

AL.

Large Alkaline-Free Zeolites and Aluminophosphates

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

30 ^ -20-;

0 -= j I I I I I II II j I II H I I I I j l l l l | l l l l | I H I | I I H | l l l l

0

20 40 60 Relative Crystal Length (QQI)

jllll |

80

100 (%)

F i g u r e 5. P a r t i c l e S i z e D i s t r i b u t i o n o f Large Li-ZSM-5 Crystals.

30-3 Ξ20Ι >*

ο i«

h

φ

0-3

j I I I I [ I M I [ I I M j I I I 1 1 M j I I I I j I I I I j I M I j 11 11 j I I I I j

0

20 40 60 80 100 Relative Crystal Length (001) (* )

F i g u r e 6. P a r t i c l e S i z e D i s t r i b u t i o n o f Large NH -ZSM-5 Crystals. 4

Occelli and Robson; Zeolite Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

353

354

ZEOLITE SYNTHESIS

p r o c e s s e s . With an a l k a l i n e - f r e e , h i g h l y a c t i v e composition o f 6.5 (TPA)oO - 282 (NH ) 0 - 96 S i 0 - 1400 HoO i t was p o s s i b l e t o r a p i d l y grow l a r g e ana uniform c r y s t a l s a t a maximum c o n v e r s i o n . 4

2

2

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

Table VI. Combinations f o r t h e I n f l u e n c e o f D i f f e r e n t F a c t o r s on t h e C r y s t a l S i z e o f ZSM-5 Combination

Factor A

Factor Β

Factor C

Size μπι

1 a b ab c ac be abc

1400 3200 1400 3200 1400 3200 1400 3200

141 141 282 282 141 141 282 282

1 1 1 1 0 0 0 0

105 18 232 123 133 122 285 225

Effect

Significance 95%

155.5 -33.3 60.8 - 9.0 36.0 15.8 2.8 - 3.5

+ + -

+ -

Upon a d d i t i o n o f aluminium, i t c o u l d be seen t h a t n o t o n l y t h e c r y s t a l s i z e f o r a g i v e n r e a c t i o n time tended t o be s m a l l e r compared to an aluminium-free s y n t h e s i s r u n , s e e Table V I , b u t t h a t t h e c r y s t a l morphology was s i g n i f i c a n t l y a f f e c t e d . Table V I I .

Comparison o f C r y s t a l Growth Rates

System 1.9 3.8 12.8 6.5 2.4

(TPA)o0-1.3 NaoO-96 SiOo-960 HoO (TPA)oO-96 SiOo-960 HoO (TPA)oO-192 (NR )oO-96 SiOo-2400 HoO (TPA)oO-282 (NH )oO-96 SiOo-1400 HoO (TPA) 0-3.4 Na 0-96 Si0 -3500 HoO-384 EtOH 4

4

2

2

2

Rate μπι/h

Reference

1.3 2.2 0.6 3.0 2.0

19 21 16 Table VI 20

With i n c r e a s i n g aluminium content d u r i n g t h e r e a c t i o n , t h e product c r y s t a l s became more g l o b u l a r i n shape. Table V I I summarizes t h e i n f l u e n c e o f A l with r e s p e c t t o t h e aspect r a t i o , d e f i n e d as t h e r a t i o o f c r y s t a l l e n g t h (001) t o c r y s t a l width (100). Concerning c r y s t a l h a b i t s i n Na-TPA compositions, no i n f l u e n c e o f A l - c o n c e n t r a ­ t i o n was observed by Mostowicz and Berak (22). Hayhurst e t a l . (18) r e p o r t e d a dependency o f product aspect r a t i o s on t h e a l k a l i n i t y i n sodium c o n t a i n i n g r e a c t i o n mixtures. C o n t r a r i l y , o b s e r v a t i o n s o f NH^-ZSM-S r e a c t i o n s g i v e n i n Table VIII c l e a r l y i n d i c a t e , t h a t even a d u p l i c a t e d amount o f ( N H ) 0 , runs " c " and "be", has no s t a t i s t i ­ c a l s i g n i f i c a n t impact on t h e aspect r a t i o . 4

2

Occelli and Robson; Zeolite Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

24.

MULLERETAL.

Large Alkaline-Free Zeolites and Aluminophosphates

Table V I I I . Influence o f Aluminium Content on C r y s t a l Morphology f o r NH -ZSM-5

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

4

Combination

Factor A

Factor Β

Factor C

Aspect Ratio

Effect

1 a b ab c ac be abc

1400 3200 1400 3200 1400 3200 1400 3200

141 141 282 282 141 141 282 282

1 1 1 1 0 0 0 0

3.13 1.27 3.71 2.06 7.69 9.99 6.20 6.90

5.12 -0.06 -0.40 -0.17 2.59 0.81 -0.74 -0.23

Significance 95%

-

+ -

Microprobe a n a l y s i s o f HZSM-5 samples from a Li-NFiVTPA system (sample A ) , see Figure 7, gave r i s e t o a c h a r a c t e r i s t i c composi­ t i o n a l zoning o f A l i n t h e outer r i m o f the c r y s t a l s . HZSM-5 from a l k a l i n e - f r e e processes (sample B ) , see Figure 8, had a more homo­ geneous aluminium d i s t r i b u t i o n throughout t h e c r y s t a l s . E v a l u a t i n g t h e c a t a l y t i c s h a p e - s e l e c t i v i t i e s o f these m a t e r i a l s by use o f t h e d i s p r o p o r t i o n a t i o n o f ethylbenzene (23.24) a t 523 Κ a t a conversion o f 2% i n d i f f e r e n t i a l r e a c t o r mode, i t was observed that l a r g e r c r y s t a l s o f sample A gave 85% para-diethylbenzene and 15% meta-diethylbenzene. The s m a l l e r c r y s t a l s o f sample Β with t h e smoother aluminium g r a d i e n t y i e l d e d 96% para-diethylbenzene and only 4% meta-isomer. In a second s e r i e s , samples o f crushed l a r g e c r y s t a l s with mean s i z e s o f 1-10 μπι were examined. No increase i n a c t i v i t y was observed as i s expected when t h e r e a c t i o n i s c o n t r o l l e d by t h e d i f f u s i o n l i m i t a t i o n o f molecules i n t h e l a r g e c r y s t a l s . However, t h i s treatment c r e a t e d larger non-selective external s u r f a c e area and hence a s m a l l e r s e l e c t i v i t y o f 87% p a r a - d i e t h y l ­ benzene f o r sample Β was recorded. These r e s u l t s , a t l e a s t f o r t h e t e s t r e a c t i o n a p p l i e d , a r e encouraging f o r t h e f e a s a b i l i t y o f l a r g e c r y s t a l s as c a t a l y s t s . Thus, t h e advantages o f t h e c r y s t a l l i z a t i o n o f NH -ZSM-5, v i z . l a r g e uniform c r y s t a l s , maximum conversion a t high growth r a t e s and smooth A l - z o n i n g p r o f i l e s with o n l y few e x t e r n a l s u r f a c e a c t i v e s i t e s were s u c c e s s f u l l y combined f o r t h e one-step manufacture o f a HZSM-5 c a t a l y s t , see Figure 9, d i r e c t l y grown as a s h e l l on pre-shaped s i l i c a beads (25). 4

Summary and Conclusion The amount o f water present during t h e s y n t h e s i s o f l a r g e AFI-type aluminophosphate c r y s t a l s was found t o be o f s i g n i f i c a n t importance. However, y i e l d o f A l P 0 - 5 and c r y s t a l s i z e were c o u n t e r c u r r e n t l y i n f l u e n c e d . I t f o l l o w s t h a t a t l e a s t with t r i p r o p y l a m i n e , e i t h e r few l a r g e c r y s t a l s o r maximum conversions i n t o small p a r t i c l e A l P 0 - 5 i s possible. With regard t o MFI-type z e o l i t e s , s t a t i s t i c f a c t o r i a l design proved t o be extremely h e l p f u l . For a l k a l i n e - f r e e systems, f a c t o r s 4

4

Occelli and Robson; Zeolite Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

355

ZEOLITE SYNTHESIS

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

356

SILICON

ALUMINIUM

40

80

120

160

200

m

Figure 7. E l e c t r o n Microprobe A n a l y s i s Across a ZSM-5 C r y s t a l of Sample A (bulk a n a l y s i s S i / A l = 6 5 ) .

0

20

40

60

80

urn

F i g u r e 8. E l e c t r o n Microprobe A n a l y s i s Across a ZSM-5 C r y s t a l of Sample Β (bulk a n a l y s i s S i / A l = 4 2 ) .

Occelli and Robson; Zeolite Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

24.

MULLER ET AL.

F i g u r e 9.

Large Alkaline-Free Zeolites and Aluminophosphates

Scanning E l e c t r o n Micrograph of a Fragment of an A l k a l i n e - F r e e HZSM-5 S h e l l Grown on a Pre-Shaped S i l i c a P e l l e t ( s c a l e bar: 10 μπ\).

Occelli and Robson; Zeolite Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

357

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

358

ZEOLITE SYNTHESIS

were d e t e c t e d which enable the r a p i d s y n t h e s i s o f large uniform 2SM5 c r y s t a l s o u t o f r e a c t i o n compositions with high ammonia and low water c o n t e n t s . Aluminium a f f e c t s t h e c r y s t a l aspect r a t i o . Moreover, f o r t h e ammonia based r e a c t i o n mixtures, a more homo­ geneous A l - g r a d i e n t a c r o s s t h e HZSM-5 c r y s t a l i s o b t a i n e d , which assures improved s h a p e - s e l e c t i v e behavior i n t h e c a t a l y t i c conver­ sion o f e t h y l benzene. Using o r g a n i c t e m p l a t i n g molecules o t h e r than TPABr, s e v e r a l s y n t h e s i s c h a r a c t e r i s t i c s remained. With aminoadamantane, l a r g e DOH-type c r y s t a l s (see F i g . 10) c o u l d be synthe­ s i z e d as well as l a r g e ZSM-58 (DDR-type) f o l l o w i n g a d d i t i o n o f aluminium. Tetramethylammoniurn n u c l e a t e d l a r g e c r y s t a l s o f ZSM-39 (MTN-type) and tetrabutylammoniurn f a v o r e d t h e s y n t h e s i s o f uniform MEL-type z e o l i t e s . Independent o f t h e template, a l l these ammonia based c r y s t a l l i z a t i o n processes had a high product y i e l d , narrow p a r t i c l e - s i z e d i s t r i b u t i o n and a r a p i d growth. F a c t o r i a l experiments can s u c c e s s f u l l y serve t o determine s i g n i ­ f i c a n t s y n t h e s i s parameters f o r aluminophosphates and z e o l i t e s . Future s t u d i e s w i l l a l s o focus on t h e u n d e r l y i n g mechanisms o f t h e n u c l e a t i o n and growth o f h i g h - s i l i c a z e o l i t e s o u t o f a l k a l i n e - f r e e ammonia c o n t a i n i n g r e a c t i o n mixtures.

F i g u r e 10. Scanning E l e c t r o n Micrograph o f Large C r y s t a l s o f DOH-Type ( s c a l e - b a r : 100 μπι). Acknowledgments F i n a n c i a l support was obtained by Deutsche Forschungsgemeinschaft. We are g r a t e f u l t o Dr. J . D. G r i b b i n and Dipl.-Chem. H. R e i c h e r t f o r help in p r e p a r i n g the manuscript. Literature 1. 2. 3. 4.

Cited

Lermer, H.; Dräger, M.; Steffen, J.; Unger, Κ. K. Zeolites 1985, 5, 131. Cox, S. D.; Gier, T. E.; Stucky, G. D.; Bierlein, J. J. Am. Chem. Soc. 1988, 110, 2987-8. Bulow, M.; Struve, P.; Rodzus, Ch.; Schirmer, W. Proc. 5 Int. Zeolite Conf., Naples 1980, pp 580-591. Beschmann, K.; Kokotailo, G. T.; Riekert, L. In Characterization of Porous Solids, Unger, Κ. K.; Rouquerol, J.; Sing, K. S. W.; Krai, H., Eds.; Elsevier: Amsterdam, 1988; pp 355-65. th

Occelli and Robson; Zeolite Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF IOWA on May 18, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0398.ch024

24. MULLER ET AL. Large Alkaline-Free Zeolites and Aluminophosphates 359

13. Muller, U.; Unger, Κ. Κ.; In Characterization of Porous Solids, Unger, Κ. K.; Rouquerol, J.; Sing, K. S. W.; Krai, H., Eds., Elsevier: Amsterdam, 1988; pp 101-108. 6. Muller, U.; Unger, Κ. K.; Pan, D.; Mersmann, Α.; Rouquerol, J.; Rouquerol, F.; G r i l l e t , Y. Proc. Int. Symp. "Zeolites as Catalysts, Sorbents and Detergent Builders": Weitkamp, J.; Karge, H.-G., Eds.; Elsevier: Amsterdam, 1989, pp 625-34. 7. Hölderich, W.; Hesse, M.; Naumann, F. Angew. Chem. 1988, 100, 232. Angew. Chem. Int. Ed. Engl. 1988, 27, 226. 8. Te Hennepe, H. J. C.; Bargeman, D.; Mulder, M. H. K.; Smolders, C. A. In Characterization of Porous Solids: Unger, Κ. K.; Rouquerol, J.; Sing, K. S. W.; Krai, H., Eds.: Elsevier: Amsterdam, 1988, pp 411-20. 9. Terasaki, O.; Yamazaki, K.; Thomas, J. M.; Ohsuna, T.; Watanabe, D.; Sanders, J. V.; Barry, J. C. Nature (London) 1987, 330, 58-60. 10. Davies, O. L.; The Design and Analysis of Industrial Experiments: Longman: London, 1979; pp.247-439. 11. Olson, D. H.; Kokotailo, G. T.; Lawton, S. L.; Meier, W. M. J. Phys. Chem. 1981, 85, 2238-43. 12. Bennett, J. M.; Cohen, J. P.; Flanigen, Ε. M.; Pluth, J. J.; Smith, J. V.; In Intrazeolite Chemistry: Stucky, G. D.; Dwyer, F. G., Eds.; ACS Symp. Ser. No. 218, American Chemical Society, Washington, DC, 1983, pp 109-118. 13. Wilson, S. T.; Lok, Β. M.; Messina, C. Α.; Cannan, T. R.; Flanigen, Ε. M. In Intrazeolite Chemistry; Stucky, G. D.; Dwyer, F. G., Eds.; ACS Symp. Ser. No. 218, American Chemical Society, Washington, DC, 1983, pp 79-106. 14. Müller, U.; Unger, Κ. K. Zeolites 1988, 8, 154-6. 15. Nastro, Α., Sand. L. B.; Zeolites 1983, 3, 219. 16. Müller, U.; Unger, Κ. Κ.; Z. Kristallogr. 1988, 182, 190-2. 17. Hou, L.-Y.; Sand, L. B.; Thompson, R. W. Proc. 7 Int. Zeolite Conf. Tokyo 1986, pp 239-246. 18. Hayhurst, D. T.; Aiello, R.; Nagy, J. B.; Crea, F.; Giordano, G.; Nastro, Α.; Lee, J. C. In Perspectives in Molecular Sieve Science; Flank, W. H.; Whyte, Th. E., Eds.; ACS Symp. Ser. No. 368, American Chemical Society, Washington, DC, 1983, pp 277-291. 19. Crea, F.; Nastro, Α.; Nagy, J. B.; Aiello, R. Zeolites 1988, 8, 262. 20. Lowe, Β. M.; In Innovation in Zeolite Materials Science; Grobet, P. J.; Mortier, W. J.; Vansant, E. F.; Schulz-Ekloff, G., Eds.; Elsevier: Amsterdam, 1988, pp 1-12. 21. Hayhurst, D. T.; Nastro, Α.; Aiello, R.; Crea, F.; Giordano, G. Zeolites 1988, 8, 416-422. 22. Mostowicz, R.; Berak, J. M. In Zeolites - Synthesis. Structure, Technology and Application: Drzay, B.; Hocevar, S.; Pejovnik, S., Eds; Elsevier: Amsterdam, 1985, pp 65-72. 23. Karge, H.-G.; Weitkamp, J.; Ernst, S.; Girrbach, U.; Beyer, H. K., Studies Surface Science Catalysis 1984, 19, pp 101-111. 24. Girrbach, U. Ph D. Thesis, Gutenberg-Universität, Mainz, 1987. 25. Danner, Α.; Müller, U.; Unger, Κ. K.; Hölderich, W. DE 3728451, 1987; EP 88113655, 1988. th

RECEIVED

February 17, 1989

Occelli and Robson; Zeolite Synthesis ACS Symposium Series; American Chemical Society: Washington, DC, 1989.