Chapter 5
Simulation Modeling in Toxicology
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: March 12, 1987 | doi: 10.1021/bk-1987-0336.ch005
J. T. Stevens and D. D. Sumner Ciba-Geigy Corporation, P.O. Box 18300, Greensboro, NC 27419
Attempts to understand and manage toxicological manifestations are generally a reactive rather than a predictive endeavor. Although we have responded by addressing untoward reactions with no effect levels and safety factors and oncogenic responses with quantitative and qualitative risk modeling, little has been established as a foundation for prediction of responses. The purpose of this paper will be to present a summary of the state-of-the-art on structure activity modeling; this process may assist in the evolution of predictive approaches to toxicology.
The performance of mechanistic studies to determine how xenobiotics produce their toxic responses is a promising approach for the understanding of risks (I). This technique would appear equally appropriate for a proactive, as well as reactive, examination of the factors involved. Understanding is based on experience; this commodity is as invaluable in proactive reasoning as reactive scrutiny. As we explore approaches to Structure-ActivityRelationship and biotransformation kinetics, it will become apparent that the foundation for the future is firmly anchored to the past. The link between similarity of structure and similarity of biological response is the key to making predictions on biological and/or toxicological properties. Our ability to simulate in models is only as good as our ability to accurately establish that link. For this consideration of simulation modeling, some of the currently available approaches for prediction of toxicity through chemistry will be examined—looking at both integrated knowledge and empirical evaluation. Structure Activity Relationships The information base between toxicological response and chemical structures has been growing exponentially. The integration of these data into a comprehensive and reliable structure activity 0097-6156/87/0336-0043$06.00/0 © 1987 American Chemical Society
Ragsdale and Kuhr; Pesticides ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
44
PESTICIDES: MINIMIZING THE RISKS
r e l a t i o n s h i p system (SAR) h a s , g e n e r a l l y , been l i n e a r . Although computers have a s s i s t e d g r e a t l y i n t h i s e v o l u t i o n , development has r e q u i r e d t h a t c e r t a i n b a s i c c r i t e r i a f o r e f f e c t i v e assessment be met. These r e q u i r e m e n t s a r e i n c l u d e d i n T a b l e I . Table I .
Criteria
for Reliable Structure A c t i v i t y
Modeling
Broad d a t a base (>60 compounds)
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: March 12, 1987 | doi: 10.1021/bk-1987-0336.ch005
- Congeneric
c h e m i s t r y (good
p r e d i c t i o n o n l y w i t h i n the
same c l a s s o f c h e m i s t r y ) - Same mode/mechanism o f a c t i o n Relevant
test/organism
The i n c o r p o r a t i o n o f these c r i t e r i a i n t o a s t r u c t u r e a c t i v i t y model i s no s i m p l e t a s k . A l t h o u g h i t i s not n e c e s s a r y t o have e i t h e r c o n g e n e r i c c h e m i s t r y o r t h e same mode o f a c t i o n f o r p r a c t i c a l SAR models, t h e s e d a t a p r o v i d e a f o u n d a t i o n f o r g r e a t e r a c c u r a c y . A wide v a r i e t y o f b i o l o g i c a l r e a c t i o n s must be c o n s i d e r e d . Q u a n t i t a t i v e s t r u c t u r e a c t i v i t y r e l a t i o n s h i p s (QSAR) have been used i n d e s i g n i n g s t r u c t u r e s f o r e f f i c a c y f o r both p h a r m a c e u t i c a l s and a g r i c u l t u r a l c h e m i c a l s . Hansch (2) was one o f the f i r s t t o attempt t o i n t e g r a t e t h e c o n g e n e r i c c h e m i s t r y , m a t h e m a t i c a l l y , w i t h b i o l o g i c a l a c t i v i t y ; a g e n e r a l i z e d Hansch r e g r e s s i o n e q u a t i o n resemb l e s the f o l l o w i n g O):
T 8
1 _ Constant + ( c o e f f i c i e n t ! x parameter^) + E f f e c t i v e Dose ( c o e f f . 2 x par.2) + ...+ ( c o e f f . x p a r . ) n
n
Hansch i n c o r p o r a t e d s e v e r a l c h e m i c a l / p h y s i c a l c h e m i c a l c h a r a c t e r i s t i c s i n t o t h i s approach (4^). He found Log P v a l u e s ( l o g o c t a n o l / w a t e r p o r t i o n c o e f f i c i e n t ) were u s u a l l y a p p l i c a b l e w i t h o t h e r parameters, such as Hammet l i n e a r f r e e - e n e r g y r e l a t i o n s h i p s and Van d e r Waals r a d i i s e l e c t i v e l y a p p l i c a b l e . Continued work i n t h i s a r e a by Hansch and o t h e r workers (5_) has expanded t h e number o f relevant c h a r a c t e r i s t i c s to include molecular o r b i t a l c a l c u l a t i o n s and d i f f u s i o n parameters. S t i l l , t h i s q u a n t i t a t i v e approach embodi e s c o n t i n u o u s parameters as an e n d p o i n t , a p a r a m e t r i c p h i l o s o p h y . On t h e o t h e r hand, s e v e r a l i n v e s t i g a t o r s (6^, 7) have taken another approach, based on p a t t e r n r e c o g n i t i o n . These dichotomous models s e a r c h f o r agreement between dependent v a r i a b l e s ; i . e . , whether a c h e m i c a l e n t i t y o r s u b s t r u c t u r e can be a s s o c i a t e d w i t h a p a r t i c u l a r t o x i c p r o p e r t y . F o r example, c e r t a i n N - n i t r o s a m i n e groups a r e a s s o c i a t e d w i t h tumors i n a n i m a l s . Since t h i s considerat i o n i s n o t dependent on a r e l a t i o n s h i p between t h e endpoint and the dose, t h e q u a n t i t a t i v e term i s dropped from QSAR and the e f f o r t s i m p l y named SAR. T h i s approach i s b e s t e x p r e s s e d by t h e dependent equation: T o x i c Response = f (Chemical
Structure)
Ragsdale and Kuhr; Pesticides ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: March 12, 1987 | doi: 10.1021/bk-1987-0336.ch005
5.
STEVENS A N D SUMNER
Simulation Modeling in Toxicology
T h i s i s an overwhelming concept when one e n v i s i o n s the number o f permutations p o s s i b l e . The Food and Drug A d m i n i s t r a t i o n (FDA) has t a c k l e d t h i s f o r m i d a b l e t a s k w i t h j u s t 33 q u e s t i o n s t o d e f i n e t h r e e presumptive t o x i c i t y c a t e g o r i e s ( 8 ) . The c a t e g o r i e s a r e used t o determine the degree o f t e s t i n g r e q u i r e d by the FDA. This scheme, though b a s i c and v e r y p r a g m a t i c , r e p r e s e n t s a p o t e n t i a l l y u s e f u l t o o l f o r t o x i c o l o g i s t s , b i o l o g i s t s and s y n t h e s i s c h e m i s t s . I t o f f e r s a mechanism t o r e c o g n i z e the p o t e n t i a l h a z a r d o f a compound o r to change the m o l e c u l e to a v o i d u n n e c e s s a r y t o x i c i t y . The 33 q u e s t i o n s on s t r u c t u r e are answered by a yes o r no (Appendix 1 ) . Each answer l e a d s e i t h e r t o a f u r t h e r q u e s t i o n o r to the c l a s s i f i c a t i o n i n t o one o f t h r e e c l a s s e s o f presumptive t o x i c i t y (Table I I ) . Table
II.
FDA
Presumptive
Toxicity
Classification
Description Relatively
I
innocuous
Intermediately
Classifications
II
toxic
Presumptively mostly
toxic
III
The r e q u i r e m e n t s f o r t h i s approach are s i m p l e . The s t r u c t u r a l f o r m u l a , as w e l l as a knowledge o f c h e m i s t r y and b i o l o g y a r e used to make judgements on m e t a b o l i s m . The FDA has e v a l u a t e d the r e l i a b i l i t y o f the scheme, u s i n g l i t e r a t u r e d a t a and FDA's i n v e n t o r y o f over 1,500 s u b s t a n c e s and the no o b s e r v a b l e e f f e c t l e v e l s d e r i v e d from s u b c h r o n i c and chronic studies. Thus f a r , i n a r e t r o s p e c t i v e and p r o s p e c t i v e r e v i e w , based upon the a v a i l a b l e i n f o r m a t i o n at the Agency, the FDA has no i n d i c a t i o n t h a t t h e s e 33 q u e s t i o n s do not a d e q u a t e l y c l a s s i f y compounds ( c r o s s - c o m p a r i s o n o f s t r u c t u r e t o f i n d i n g s ) i n t o the t h r e e presumptive c l a s s e s . However, i t i s o b v i o u s t h a t the FDA approach i s a g e n e r a l i z e d t o x i c i t y c l a s s i f i c a t i o n and cannot s u p p l y the answers t o q u e s t i o n s such a s , what are the m e t a b o l i t e s and which compounds w i l l be t e r a t o g e n s , mutagens o r oncogens. A l t h o u g h the FDA approach has b u i l t i t s f o u n d a t i o n on a broad d a t a base, i t does not narrow i t s spectrum t o a p r e c i s e t o x i c o l o g i c a l r e s p o n s e o r mode o f a c t i o n . I t has been c l e a r f o r some time t h a t p a t t e r n r e c o g n i t i o n approaches would not go f a r w i t h o u t the computer (9.). U t i l i z i n g t e c h n i q u e s , such as r e g r e s s i o n , d i s c r i m i n a n t , and f a c t o r a n a l y s e s p r o g r e s s i n SAR (10) has been f u r t h e r enhanced. T h i s e v o l u t i o n has l e d t o such u s e f u l t o o l s as d e s c r i b e d i n T a b l e I I I .
Ragsdale and Kuhr; Pesticides ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
45
46
PESTICIDES: MINIMIZING THE RISKS
Table I I I .
Computer Assisted Research Models
Function
Model
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: March 12, 1987 | doi: 10.1021/bk-1987-0336.ch005
• Computer Assisted • Can predict precursor's need for Synthesis Planning (CASP) synthesis as well as most l i k e l y metabolites • Constrained Structure Generation (CONGEN)
• Can generate a l l possible isomers i f the substructure elements and the molecular formula are provided
• ADAPT (11)
• Affords an opportunity to predict the a c t i v i t y and properties of unstudied structures through application of pattern recognition and s t a t i s t i c s
Although to the synthesis chemist, CASP and CONGEN may seem highly i n t r i g u i n g , to the b i o l o g i s t , a system such as ADAPT opens the door to the design of new and efficacious molecules for a myriad of uses. In fact, many of the major chemical industries have begun to incorporate such computer assisted systems into their research programs as a component of informed design, rather than the formerly predominant serendipitous discovery. These SAR techniques have not surplanted standard b i o l o g i c a l e f f i c a c y models; however, the information gained helps to establish the foundation for enhanced pattern recognition. In pattern recognition modeling, such as ADAPT, i t i s d i f f i cult to e f f e c t i v e l y v i s u a l i z e and manipulate chemical structure. Instead, there has been an e f f o r t to translate abstract structure into quantities and/or numerical e n t i t i e s (10), referred to as molecular descriptors. Such descriptors have been c l a s s i f i e d as presented i n Table IV. Table IV.
Molecular Descriptors Used i n SAR
Classes of Descriptors
Examples
• Geometric/Biophysical Rotation axes, molecular volume and surface area • Physiochemical
Log P, atomic charges, linear-free energy relationships
• Structural
Molecular weight, atomic numbers, types of bonding, molecular o r b i t a l c a l c u l a tions, ring structures
• Substructural/ topological
Topological and physiochemical propert i e s of substructural arrangements, molecular symmetry and/or bonding
Ragsdale and Kuhr; Pesticides ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
5.
STEVENS A N D SUMNER
47
Simulation Modeling in Toxicology
I t i s o b v i o u s l y not p o s s i b l e t o u n r a v e l the e n t i r e c o m p l e x i t y o f the p h y s i c a l , c h e m i c a l and b i o l o g i c a l p r o p e r t i e s o f even the simplest of molecules. However, f o c u s i n g on the a p p a r e n t l y pertinent d e s c r i p t o r s f o r s t r u c t u r e s , one can, v i a p a t t e r n r e c o g n i t i o n , b e g i n to equate t o x i c o l o g i c a l r e s p o n s e w i t h s t r u c t u r e s :
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: March 12, 1987 | doi: 10.1021/bk-1987-0336.ch005
Toxicological
response =
f(structure) = f(molecular
descriptors)
J u r s et_ a l (10) q u a l i t a t i v e l y and q u a n t i t a t i v e l y examined the c o r r e l a t i o n of a v a r i e t y of molecular d e s c r i p t o r s f o r p o l y c y c l i c a r o m a t i c and n i t r o a m i n e compounds w i t h c a r c i n o g e n e s i s . The r e s u l t o f t h e s e e f f o r t s has been the e v o l u t i o n o f p r e d i c t i v e e q u a t i o n s which c a p t u r e the o n c o g e n i c r e s p o n s e f o r these c l a s s e s o f compounds as a f u n c t i o n o f the m o l e c u l a r d e s c r i p t o r s . E n s l e i n and coworkers (12, 13, 14, 15) have u t i l i z e d t h i s approach to d e v e l o p p r e d i c t i v e models f o r c a r c i n o g e n i c i t y , t e r a t o g e n i c i t y and m u t a g e n i c i t y , as w e l l as f o r a c u t e t o x i c i t y endpoints . T h i s approach i n p r e d i c t i v e t o x i c o l o g y has m a n i f e s t i t s e l f by the i n c o r p o r a t i o n o f c e r t a i n key p r i n c i p l e s . These i n c l u d e : • Marker compounds, compounds w i t h a known b i o l o g i c a l e n d p o i n t , used t o produce p r e d i c t i v e e q u a t i o n s . • E q u a t i o n s are used f o r comparison o f unknown compounds and to t e s t the system. • F i n a l l y , a s t a t i s t i c a l approach, such as s t e p w i s e r e g r e s s i o n ( i f e n d p o i n t i s c o n t i n u o u s ) or d i s c r i m i n a n t a n a l y s e s ( i f the endp o i n t i s c a t e g o r i c a l ) to v e r i f y the q u a l i t y o f f i t . D e s p i t e the g r e a t s u c c e s s t h a t has been a c h i e v e d w i t h the approach t a k e n by E n s l e i n and c o w o r k e r s , the u t i l i t y o f the system i s l i m i t e d by the depth o f the d a t a b a s e a v a i l a b l e i n the open literature. I f p r o p r i e t a r y d a t a were a v a i l a b l e from the f i l e s o f p h a r m a c e u t i c a l and a g r i c u l t u r a l companies, a new d i m e n s i o n to the r e l i a b i l i t y might be added. The p o s s i b i l i t y t h a t new compounds can be examined f o r t o x i c i t y b e f o r e they are s y n t h e s i z e d i s intriguing. However, the r e l e a s e o f p r o p r i e t a r y i n f o r m a t i o n from the bulwark o f i n h e r e n t l y c o m p e t i t i v e o r g a n i z a t i o n s i s not l i k e l y i n the near f u t u r e . T h e r e f o r e , Dr. E n s l e i n p l a n s to make h i s s o f t w a r e a v a i l a b l e by mid-1987. Then, p e r h a p s , the c r i t e r i a f o r r e l i a b l e s t r u c t u r e a c t i v i t y m o d e l i n g i n the a r e a o f t o x i c o l o g y may be b e t t e r s e r v e d . However, u n t i l t h e s e c r i t e r i a are a c h i e v e d , i t w i l l be e s s e n t i a l to r e l y on the more pragmatic approaches t o s i m u l a t i o n modeling; that i s , bioassays. Predictive Empirical
Systems
With p r e s s u r e s from the animal r i g h t s movement, an impetus has been g e n e r a t e d f o r the development o f i n v i t r o and/or computer models to reduce the l e v e l o f i n v i v o t e s t i n g . In the s e v e n t i e s , the hope o f the f u t u r e was p l a c e d i n what was then c o n s i d e r e d a p o t e n t i a l replacement t e c h n i q u e f o r the l i f e t i m e rodent b i o a s s a y for cancer a s s e s s m e n t — t h e short-term mutagenicity t e s t s , p a r t i c u l a r l y the Ames E v a l u a t i o n ( 1 6 ) . B r u s i c k (17) has shown t h a t the c o r r e l a t i o n between a p o s i t i v e mouse b i o a s s a y and a p o s i t i v e r a t b i o a s s a y f o r a s e l e c t e d group o f m a t e r i a l s i s no b e t t e r t h a n the
American Chemical Society Library 1155 16th St.,
N.w.
Ragsdale and Kuhr; Pesticides D.C. Society: 20036 ACS Symposium Series; Washington, American Chemical Washington, DC, 1987.
PESTICIDES: M I N I M I Z I N G T H E RISKS
48
match f o r a p o s i t i v e Ames and/or a p o s i t i v e r a t o r mouse b i o a s s a y ( T a b l e V ) . I n a d d i t i o n , a comparison o f the E n s l e i n ' s SAR C a r c i n o gen model (18) f o r these same human c a r c i n o g e n s i s p r o v i d e d . T a b l e V.
Chemicals E v a l u a t e d as P o s i t i v e f o r C a r c i n o g e n i c i t y i n Humans Compared t o t h e Response i n Rodent and B a c t e r i a l P r e d i c t i v e A s s a y s , D. B r u s i c k (17)
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: March 12, 1987 | doi: 10.1021/bk-1987-0336.ch005
1
Chemical 4-Aminobiphenyl Arsenic Asbestos Benzene Benzidine Bis(chloromethyl)ether Chromium and some chromium compounds Cyclophosphamide Diethylstilbestrol Melphalan Mustard Gas 2-Naphthylamine Soot, t a r s Vinyl chloride Percent
p r e d i c t a b i l i t y o f humans
Ames E n s l e i n s Mouse Rat Model Bioassay Bioassay Test +
+
+
+
-+
-+
-
-+
-+ + +
0 0 0 + 0 0
+
+
-+
0 + + + 0 +
+ + + + + + No D a t a
+
-
-+
+ + + + + + +
69
79
+ + + + 71
100
+ = positive - = negative 0 = cannot be e v a l u a t e d
The d a t a from E n s l e i n ' s Model show t h a t a good match w i t h the rodent b i o a s s a y s i s p o s s i b l e f o r o r g a n i c s upon which the SAR model i s based. The SAR model i s i n e f f e c t i v e f o r m e t a l s , s i m p l e h y d r o carbons l i k e benzene, m i x t u r e s and hormones. W i t h i n these l i m i t s , the p r e d i c t i o n i s 100%. C o n s i d e r i n g the r e l i a b i l i t y o f rodent and i n v i t r o b i o a s s a y s t o p r e d i c t t h e human r e s p o n s e , i t i s p o s s i b l e , w i t h c o n t i n u e d development, t h a t i n t h e f u t u r e , SAR may become a p o w e r f u l t o o l t o supplement our o t h e r s o u r c e s o f t o x i c o l o g i c a l information.
Ragsdale and Kuhr; Pesticides ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
5.
STEVENS A N D SUMNER
49
Simulation Modeling in Toxicology
Appendix 1 If 'No'
If 'Yes
1
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: March 12, 1987 | doi: 10.1021/bk-1987-0336.ch005
.. .Proceed to... 1.
Normal body constituent?
2
2.
Certain nitrogen FG's?
3
3.
"Non-physiological" elements?
5
4.
Innocuous salt of above?
5.
Simple
6.
Certain p-alkoxy benzenes?
7.
Heterocyclic?
8.
Lactone or c y c l i c diester?
9.
Certain lactones?
23
—— III
10.
Three-member heterocycle?
11
III
11.
Hetero ring; strange FG's ...?
12
12.
Heteroaromatic?
22
13.
Any substituents?
14.
More than one aromatic
15.
Readily hydrolyzed ...?
33
16.
Common terpene?
17
I
17.
Readily hydrolyzed ...?
19
18
18.
Is i t one of
I
II
19.
Open chain?
23
20.
Linear or simply branched aliphatic ...?
22
HC or common CHO?
?
4
III
7
6
1
7
III
16
ring?
III
_
8 9
10, 20,10
33
_
13
III
14
22
15 22(16)
—— —
20 21
Ragsdale and Kuhr; Pesticides ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
50
PESTICIDES: MINIMIZING THE RISKS
If 'No'
If 'Yes'
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: March 12, 1987 | doi: 10.1021/bk-1987-0336.ch005
...Proceed to... 21.
Three or more types of FG's?
18
Ill
22.
Common component of food or structurally closely related ...?
33
II
23.
Aromatic?
24
27
24.
Monocarbocyclic; certain FG's ...?
25
18
25.
Cyclopropane or cyclobutane ...?
26
II
26.
No unusual FG's; certain ketones?
22
II
27.
Any ring substituents?
III
28
28.
More than one aromatic ring?
30
29
29.
Readily hydrolyzed ...?
33
30,18
30.
Other than certain substituents?
18(19)
31
31.
Acyclic acetal, -ketal, -ester ...?
32
18,19
32.
Only certain FG's, plus ...?
22
II
33.
Enough sulfonate/sulfamate?
III
I
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9.
Stevens, J. T.; Sumner, D. D. J . Toxicol.-Clin. Toxicol. 1983, 19,781. Hansch, C. Chem. Res. 1969, 2, 232. Enslein, K. Pharmacol. Rev. 1984, 36, 131S. Leo, A; Jow, P.Y.C.; Silipo, C.; Hansch, C. J. Med. Chem. 1975, 18, 865. "QSAR and Strategies in the Design of Bioactive Compounds," Seydel, J. K., ed. Verlagsgesellschaft, Weinheim, FRG. 1985. Jurs, P. C.; Chou, J. T.; Yuan, M. J. Med. Chem. 1979, 22, 476. Tinker, J . F. J . Computational Chemistry. 1981, 2, 231. Rulis, A. The Toxicology Forum; 1982 Annual Summer Mtg. 1982, p. 352. Jurs, P. C.; Ham, C. L . ; Brugger, W. E. In "Odor Quality and Chemical Structure"; Moskowitz, H. R.; Warren, C. B; Eds.; ACS Symposium Series No. 148, American Chemical Society: Washington, D.C., 1981; pp. 143-160.
Ragsdale and Kuhr; Pesticides ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
5.
STEVENS AND SUMNER
10. 11. 12. 13. Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 25, 2018 | https://pubs.acs.org Publication Date: March 12, 1987 | doi: 10.1021/bk-1987-0336.ch005
14. 15. 16. 17. 18.
Simulation Modeling in Toxicology
51
Jurs, P. C ; Hasan, M. N.; Henry, D. R.; Stouch, T. R.; Whalen-Pederson, E. K. Fund. Appl. Toxicol. 1983, 3, 343. Stuper, A. J.; Brugger, W. E . ; Jurs, P. C. In "Computer Assisted Studies of Chemical Structure and Biological Function;" Wiley-Interscience, New York, 1979. Enslein, K.; Craig, P. N. J . Toxicol. Environ. Health 1982, 10, 521. Enslein, K.; Lander, T. R.; Strange, J. R. Teratog. Carcinog. Mutagen. 1983, 3, 289. Enslein, K.; Lander, T. R.; Tomb, M. E . ; Landis, W. G. Teratog. Carcinog. Mutagen. 1984, 6 Enslein, K.; Lander, T. R.; Tomb, M. E . ; Craig, P. N. Benchmark Papers Toxicol. 1983, 1, 1. Wolff, G. L . ; J . Environ. Pathol. Toxicol. 1977,1,79 Brusick, D. In "Application of Biological Markers to Carcinogenicity Testing"; Milman, H. A.; Sell, S.; Eds. Plenum Press, N.Y., 1983; pp. 153-163. Enslein, K., personal communication.
RECEIVED October 14, 1986
Ragsdale and Kuhr; Pesticides ACS Symposium Series; American Chemical Society: Washington, DC, 1987.