5 Solvent Effects on Adsorption at the Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 21, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch005
Polymer/Solid Interface M . J . SCHICK and Ε. N . H A R V E Y , JR. Central Research Laboratories, Interchemical Corporation, Clifton, N . J.
The adsorption on Graphon
of polystyrene- C 14
(PS- C,
M
14
w
=
292,000)
carbon black was studied from six solvents
covering a range of solvent power. The results indicate in creased adsorption
of PS- C 14
on Graphon
with decreasing
solvent power. Similarly, correlation between the of PS- C 14
PS- C 14
on Graphon and the hydrodynamic
in solution is good; i.e., A
8
adsorption
dimensions of
increases with decreasing
end-to-end root-mean-square length of the polymer in solu tion
() . 2
1/2
It is postulated that under conditions of
weak segment-surface
interaction
a uniformly
adsorbing
polymer like polystyrene attaches itself to the Graphon sur face from good solvents as a flat oriented monolayer; from a poor solvent the polymer assumes a loop or coil structure in which only part of the polymer segments are attached directly to the Graphon
surface.
/ C o m p r e h e n s i v e r e v i e w s d e a l i n g w i t h t h e a d s o r p t i o n of p o l y m e r s ^
at
s o l i d - l i q u i d interfaces h a v e r e c e n t l y b e e n p u b l i s h e d b y H u g h e s a n d
F r a n k e n b e r g (13),
P a t a t , K i l l m a n , a n d S c h l i e b e n e r (18, 19),
B u l a s , R o t h s t e i n , a n d E i r i c h (21),
K i p l i n g (14),
Rowland,
and Stromberg
(9,27).
T h e factor of p r i m a r y interest i n the p r o b l e m at h a n d , the effect of solvent o n p o l y m e r a d s o r p t i o n i n n o n a q u e o u s
systems, has b e e n
subject of s e v e r a l investigations (2, 6, 8, 11, 12, 15, 16, 20, 22, 25,
the 28).
I n g e n e r a l , a m a r k e d d e p e n d e n c e of p o l y m e r a d s o r p t i o n o n solvent u s e d was observed.
S e v e r a l of these d a t a s u p p o r t the c o n t e n t i o n that p o l y m e r s
are s t r o n g l y a d s o r b e d f r o m p o o r solvents a n d t h a t the reverse h o l d s t r u e for g o o d solvents ( I I , 12, 15, 16, 22, 25, 28).
H o w e v e r , this strict d e
p e n d e n c e of a d s o r p t i o n o n solvent p o w e r is o v e r s h a d o w e d i n m a n y cases b y the i n t e r a c t i o n b e t w e e n p o l y m e r a n d adsorbent ( 8 ) , strong c o m p e t i t i o n b e t w e e n solvent a n d p o l y m e r for the surface of the adsorbent 63 In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
(2,17,
64
INTERACTION
O F LIQUIDS A T SOLID
SUBSTRATES
20), o r m o l e c u l a r w e i g h t effects ( 1 6 ) . T h e r e f o r e , i t a p p e a r e d d e s i r a b l e to e s t a b l i s h a r i g o r o u s c o r r e l a t i o n b e t w e e n s o l u t i o n a n d surface p r o p e r t i e s as a f u n c t i o n of solvent p o w e r
i n a w e l l - c h a r a c t e r i z e d system u n d e r
c o n d i t i o n s i n w h i c h t h e adsorbent surface w a s at a l l t i m e i n contact w i t h t h e e q u i l i b r i u m s o l u t i o n of t h e adsorbate. T h e system d e s c r i b e d i n this i n v e s t i g a t i o n is p o l y s t y r e n e - C a d Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 21, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch005
14
sorbed
on Graphon carbon black
( g r a p h i t i z e d S p h e r o n 6 ) f r o m six
solvents c o m p r i s i n g a w i d e s p e c t r u m f r o m g o o d to p o o r solvent p o w e r . W e l l - c h a r a c t e r i z e d m a t e r i a l s w e r e selected to e l u c i d a t e t h e c o n f o r m a t i o n of p o l y m e r m o l e c u l e s at t h e s o l i d / l i q u i d interface.
So far t w o models
h a v e b e e n p o s t u l a t e d t o d e s c r i b e t h e c o n f o r m a t i o n of t h e a d s o r b e d p o l y m e r m o l e c u l e s at t h e s o l i d / l i q u i d interface ( 9 , 1 3 , 14, 18,19, 21, 27). I n the first m o d e l t h e p o l y m e r assumes a l o o p o r c o i l s t r u c t u r e i n w h i c h o n l y a f r a c t i o n of t h e p o l y m e r segments a r e a t t a c h e d d i r e c t l y at t h e interface, a n d i n t h e s e c o n d m o d e l t h e p o l y m e r forms a r e l a t i v e l y flat a n d c o m pressed
interfacial layer w i t h
many
segments
a t t a c h e d to t h e s o l i d
substrate. Experimental Graphon black, kindly furnished b y the Cabot Corporation, was the a d s o r b e n t ; a n d i t s p h y s i c a l properties a r e l i s t e d i n T a b l e I . T h e t e r m " G r a p h o n " refers t o S p h e r o n 6 w h i c h h a d b e e n h e a t e d t o 2 , 7 0 0 ° - 3 , 2 0 0 ° C . T h i s g r a p h i t i z e d n o n p o r o u s c a r b o n b l a c k is a u n i q u e f o r m of c a r b o n w i t h u n i f o r m surface a n d h i g h surface area. T h e G r a p h o n samples w e r e d r i e d f o r 12 hrs. at 1 4 0 ° C . a n d stored in vacuo b e f o r e u s e i n t h e a d s o r p t i o n experiments. L a b e l l e d p o l y s t y r e n e - C ( P S - C ) w a s t h e adsorbate. T w o batches were prepared b y a n identical procedure w i t h only one of them contain ing radioactive C . T h e labelled polymer was used for the adsorption measurements, whereas t h e u n l a b e l l e d p o l y m e r w a s u s e d f o r t h e d e t e r m i n a t i o n o f t h e s o l u t i o n properties. T h e p o l y s t y r e n e w a s p r e p a r e d b y e m u l s i o n p o l y m e r i z a t i o n of r e d i s t i l l e d styrene. I n o r d e r to r e m o v e u n reacted monomer the polystyrene was freeze-dried from benzene solution. 14
1 4
1 4
Table I.
Properties of Graphon Carbon Black
Manufacturer
Cabot
Code number
S6-D4
Nitrogen surface area (sq. meter/gram)
89.70
Electron microscope surface area (sq. meter/gram)
117.00
Electron microscope particle diameter d
n
(ηΐμ)
23.50
Electron microscope particle diameter d
A
(m^)
27.60
Nitrogen particle diameter d
A
(m/x)
36.00
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
SCHICK
5.
A N D HARVEY,
Polymer/Solid Interface
JR.
65
T h e viscosity-average molecular weight of the polystyrene sample, Μ = 251,000, w a s c a l c u l a t e d f r o m i n t r i n s i c v i s c o s i t y measurements i n toluene a n d b u t a n o n e - 2 solutions (see T a b l e I I ) b y t h e M a r k - H o u w i n k e q u a t i o n [η] = K ' M . T h e constants w e r e K' = 1.7 X 1 0 a n d a — 0.69 for t h e toluene solutions at 2 5 . 0 ° C . a n d K ' — 3.9 Χ 1 0 " a n d a — 0.58 for t h e b u t a n o n e - 2 solutions at 25.0 ° C . ( 2 9 , 30). F o r c o m p a r i s o n t h e w e i g h t - a v e r a g e m o l e c u l a r w e i g h t M = 292,000 w a s d e t e r m i n e d f r o m l i g h t scattering measurements i n toluene solutions. T h e specific a c t i v i t y of t h e l a b e l l e d p o l y s t y r e n e s a m p l e w a s 0.0055 m c . / g r a m . γ
a
- 4
4
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 21, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch005
w
T h e solvents w e r e o f a n a l y t i c a l g r a d e a n d w e r e u s e d w i t h o u t f u r t h e r p u r i f i c a t i o n w i t h t h e e x c e p t i o n of b e n z e n e , w h i c h w a s r e d i s t i l l e d a n d stored o v e r s o d i u m pellets. T h e a d s o r p t i o n experiments w e r e r u n i n 5 0 - m l . glass-stoppered E r l e n m e y e r flasks filled w i t h 2 5 m l . adsorbate s o l u t i o n a n d 0.125 g r a m adsorbent. T h e flasks w e r e a g i t a t e d b y a m e c h a n i c a l shaker e n c l o s e d i n a n a i r thermostat a t 25.0 ° C . A f t e r 40-hr. a g i t a t i o n p e r i o d s , t h e s u s p e n sions w e r e c e n t r i f u g e d ; t h e n t h e c o n c e n t r a t i o n o f t h e u n a d s o r b e d p o l y m e r w a s d e t e r m i n e d b y r a d i o a c t i v e assay ( C ) o f a l i q u o t s o f t h e s u p e r n a t a n t l i q u i d o n p l a n c h e t s i n a G e i g e r - M u l l e r C o u n t e r w i t h a d e c a d e scaler a n d a p r i n t i n g t i m e r . A l l counts w e r e r u n i n d u p l i c a t e o r t r i p l i c a t e . T h e r e p r o d u c i b i l i t y o f t h e a d s o r p t i o n experiments w a s w i t h i n ±2.5%. Rate studies h a v e c o n f i r m e d that there is n o m e a s u r a b l e increase i n a m o u n t of p o l y s t y r e n e a d s o r b e d o n G r a p h o n f r o m b e n z e n e solutions after 36 h r s . 1 4
Table II. Effect of Solvent on the Adsorption of Polystyrene- C on Graphon at 2 5 . 0 ° C . 14
a
A*
Surface Properties A, mg./gram
0.74 0.69
509 500 491 414 409 326
55 40 129 160 160 175
Solution Properties w . dl/gram
α
Solvent Benzene Toluene Dioxane Butanone-2 E t h y l acetate Cyclohexane (^-solvent)
8
h
0.430 0.434 0.472 0.485 0.485 0.499
0.95 0.90 0.85 0.51 0.49 0.25
c
— 0.58
— 0.50
e
Thermodynamic compatibility constant. It has recently also been denoted to the symbol χι. Intrinsic viscosity: = 0.025 signifies a rigid sphere. "Exponent in Mark-Houwink equation [rç] = K'M : a = 0.5 signifies a rigid sphere or compact coil and a = 1.4 a rodlike or highly extended molecule. ( < r > ) : end-to-end, root-mean-square length derived from the Flory-Fox equa( ) tion [>] = Φ where Φ = 2.1 Χ 1 0 is the universal constant. Data calAï culated on the basis of M = 292,000. A , : extrapolated saturation concentration from adsorption isotherm plots of A in mg. polystyrene- C adsorbed per gram of Graphon vs. concentration of supernatant liquid in mg./ml.
α
b
&
d
2
1 / 2
2
3 / 2
21
w
e
14
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
66
INTERACTION
O F LIQUIDS A T SOLID
SUBSTRATES
Results and Discussion It is a w e l l k n o w n fact that t h e c o n f i g u r a t i o n of p o l y m e r m o l e c u l e s i n s o l u t i o n changes m a r k e d l y w i t h solvent p o w e r (1, 29, 30). T h i s p h e n o m e n o n has b e e n u t i l i z e d i n this s t u d y t o a d v a n c e o u r e x p e r i m e n t a l
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 21, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch005
k n o w l e d g e o f t h e c o n f o r m a t i o n of p o l y m e r m o l e c u l e s at t h e s o l i d / l i q u i d interface f r o m a c o r r e l a t i o n o f s o l u t i o n w i t h a d s o r p t i o n p r o p e r t i e s of a specific p o l y m e r - s o l v e n t system. S u c h a c o r r e l a t i o n is g i v e n i n T a b l e I I for t h e m o l e c u l a r d i m e n s i o n s o f a p o l y s t y r e n e s a m p l e i n six solvents, c o m p r i s i n g a w i d e s p e c t r u m f r o m g o o d t o p o o r solvent p o w e r , w i t h t h e c o r r e s p o n d i n g a d s o r p t i o n d a t a at t h e G r a p h o n / s o l u t i o n interface. T h e F l o r y - H u g g i n s t h e o r y is g e n e r a l l y a p p l i e d to define t h e t h e r m o d y n a m i c properties of a p o l y m e r s o l u t i o n (1).
I t gives a n expression
for e x p e r i m e n t a l l y o b t a i n a b l e q u a n t i t i e s s u c h as t h e p a r t i a l m o l a r free energy o f m i x i n g .
w h e r e χ is t h e degree o f p o l y m e r i z a t i o n . AF
1
m a y be experimentally
d e t e r m i n e d f r o m c o l l i g a t i v e p r o p e r t y measurements.
Thus, the compati
b i l i t y constant μ is a u s e f u l e m p i r i c a l p a r a m e t e r f r o m w h i c h t h e solvent p o w e r of a p o l y m e r s o l u t i o n m a y b e d e t e r m i n e d . Its v a l u e increases w i t h d e c r e a s i n g solvent p o w e r u p t o 0.55, w h e n phase s e p a r a t i o n occurs. T h e μ values l i s t e d i n t h e first c o l u m n o f T a b l e I I are t a k e n f r o m a n osmotic pressure s t u d y o f S c h i c k (23,24) o n p o l y s t y r e n e ( M = 540,000 o r M — n
v
890,000), w i t h t h e e x c e p t i o n of t h e v a l u e f o r b e n z e n e , w h i c h is t a k e n f r o m B r e i t e n b a c h a n d F r a n k ( 5 ) . T h e results i n T a b l e I I a r e l i s t e d i n i n c r e a s i n g o r d e r o f μ v a l u e s , o r i n other w o r d s , d e c r e a s i n g solvent p o w e r . T h e t w o extremes i n this c o r r e l a t i o n are b e n z e n e a n d t h e ^-solvent c y c l o hexane.
T h e i n t r i n s i c viscosities l i s t e d i n t h e s e c o n d c o l u m n decrease
w i t h d e c r e a s i n g solvent p o w e r , w h i c h is a d i r e c t c o n s e q u e n c e o f t h e c o n t r a c t i o n of t h e s w o l l e n p o l y m e r c o i l w i t h d e c r e a s i n g solvent p o w e r (1, 29, 30). T h e same h o l d s t r u e f o r t h e exponent "d i n t h e M a r k - H o u w i n k 9
e q u a t i o n s h o w n i n t h e t h i r d c o l u m n , w h i c h decreases w i t h solvent p o w e r (1, 29, 30).
decreasing
T h e d i m e n s i o n s of t h e flexible p o l y s t y r e n e
m o l e c u l e s c a l c u l a t e d b y t h e F l o r y - F o x e q u a t i o n (7)
are l i s t e d i n t h e
f o u r t h c o l u m n . I t is e v i d e n t t h a t t h e d i m e n s i o n s of t h e p o l y s t y r e n e coils decrease w i t h d e c r e a s i n g solvent p o w e r , w h i c h , as w i l l b e s h o w n b e l o w , influences m a r k e d l y t h e a d s o r p t i o n of p o l y s t y r e n e at t h e s o l i d / l i q u i d interface. T h e q u a n t i t y ( < F > ) 2
1 / 2
reaches a m i n i m u m f o r t h e ^-solvent
w h e n t h e p o l y m e r forms a c o m p a c t c o i l . T h e a d s o r p t i o n isotherms of p o l y s t y r e n e - C o n G r a p h o n f r o m these 14
six solvents a r e p l o t t e d i n F i g u r e 1 i n terms of m g . P S - C a d s o r b e d p e r 1 4
g r a m G r a p h o n vs. c o n c e n t r a t i o n of s u p e r n a t a n t l i q u i d i n m g . P S - C p e r 1 4
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
5.
SCHICK
AND
m l . solution.
HARVEY,
67
Polymer/Solid Interface
JR.
T h e s o l u b i l i t y l i m i t p r e c l u d e d the s t u d y i n
cyclohexane
solutions (^-solvent) at e q u i l i b r i u m concentrations e x c e e d i n g 1 m g . / m l . T h e a d s o r p t i o n isotherms of these systems w i t h the e x c e p t i o n of d i o x a n e rise r a p i d l y to a p l a t e a u at a n e q u i l i b r i u m c o n c e n t r a t i o n of a p p r o x i m a t e l y 1 m g . / m l . , as n o t e d g e n e r a l l y w i t h p o l y m e r s .
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 21, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch005
plateau level, however, have been observed. a d s o r p t i o n of power.
polystyrene- C 14
M a r k e d differences
in
These indicate increased
onto G r a p h o n w i t h
decreasing
solvent
T h e f o r m e r is expressed i n the fifth c o l u m n of T a b l e I I b y A — s
i.e., the e x t r a p o l a t e d s a t u r a t i o n c o n c e n t r a t i o n of the a d s o r p t i o n isotherms — a n d the latter b y the μ v a l u e . A s i m i l a r c o r r e l a t i o n has b e e n e s t a b l i s h e d b e t w e e n the degree o f a d s o r p t i o n a n d the h y d r o d y n a m i c properties. adsorption—i.e.,
A —increases w i t h decreasing 8
square length—i.e.,
{ ) ; see Table II.
α
2
1/2
m o l e c u l e s w i t h e v e r y segment a t t a c h e d to t h e surface sites of t h e n o n porous G r a p h o n .
I n this flat o r i e n t a t i o n t h e areas p e r m o n o m e r
decrease w i t h d e c r e a s i n g solvent p o w e r .
unit
O n l y for the good solvents—
i.e., b e n z e n e a n d t o l u e n e — w a s t h e o b s e r v e d area c o m p a r a b l e t o that of the m o n o m e r i c styrene. T h u s , i n g o o d solvents i t m a y b e a s s u m e d t h a t t h e p o l y m e r forms a r e l a t i v e l y flat a n d c o m p r e s s e d i n t e r f a c i a l l a y e r w i t h m a n y segments a t t a c h e d t o t h e s o l i d surface. A s e v i d e n c e d f r o m t h e large cross-sectional areas i n c o l u m n t w o , t h e s w o l l e n coils i n these g o o d solvents are p r o n e to u n c o i l to assume t h e c o n f o r m a t i o n suggested.
However,
this m o d e l is r u l e d o u t b y t h e r e l a t i v e l y m u c h s m a l l e r areas p e r m o n o m e r u n i t f o r t h e m e d i u m a n d p o o r solvents i n w h i c h t h e p o l y m e r forms t i g h t e r coils, viz., first c o l u m n . T h e alternate m o d e l is suggested f o r t h e m e d i u m a n d p o o r solvent systems i n w h i c h t h e p o l y m e r assumes a l o o p o r c o i l structure w i t h o n l y a f r a c t i o n of t h e p o l y m e r segments b e i n g a t t a c h e d t o t h e surface sites of t h e n o n p o r o u s G r a p h o n (26).
T h e s e c o n c l u s i o n s are
c o r r o b o r a t e d b y t h e d a t a l i s t e d i n t h e t h i r d c o l u m n . F r o m t h e better s o l vents less t h a n 6 χ
1 0 " grams p o l y s t y r e n e / c m . G r a p h o n w a s a d s o r b e d ; 8
2
w h e r e a s f r o m m e d i u m a n d p o o r solvents, f r o m 14.4 Χ 1 0 " to 19.5 Χ 1 0 8
grams/cm.
2
was adsorbed.
F r i s c h , H e l l m a n , a n d L u n d b e r g (10)
- 8
made
s i m i l a r observations f o r p o l y s t y r e n e a d s o r b i n g f r o m toluene onto c a r b o n (3 X 10" g r a m / c m . ) . 8
gram/cm.
2
2
A s i m p l e flat m o n o l a y e r r e q u i r e s o n l y 5 Χ 1 0
( 5 A . l a y e r i f p o l y m e r has d e n s i t y of 1) (9, 27).
- 8
Thus, the
a m o u n t a d s o r b e d i n a m e d i u m o r p o o r solvent m u s t b e m o r e t h a n a s i m p l e m o n o l a y e r . A s c i t e d a b o v e f o r these systems a m o n o l a y e r of coils w h i c h are a t t a c h e d to t h e surface w i t h o u t a n y a p p r e c i a b l e c h a n g e i n shape a n d b o n d e d to t h e surface b y o n l y a f e w p e r i p h e r a l m o n o m e r
u n i t s is a
p l a u s i b l e m o d e l (14, 21 ). S t e i n b e r g (25) has p r o p o s e d a m o d e l i n w h i c h the segment d e n s i t y i n t h e i n t e r f a c i a l l a y e r of a d s o r b e d p o l y m e r m o l e c u l e s p r o g r e s s i v e l y decreases as t h e distance f r o m t h e surface increases.
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
5.
SCHICK A N D
HARVEY,
JR.
69
Polymer/Solid Interface
Results r e p o r t e d i n T a b l e I I f o l l o w the p a t t e r n that a d s o r p t i o n of p o l y s t y r e n e - C o n G r a p h o n is f a v o r e d f r o m a poorer solvent. 14
Experi-
ments are r e p o r t e d here a n d i n the f o l l o w i n g p a r a g r a p h w h i c h h a v e b e e n p e r f o r m e d to test the r e v e r s i b i l i t y of this a d s o r p t i o n . W i t h this a i m i n mind, (1)
the d i s p l a c e m e n t of p o l y s t y r e n e - C f r o m G r a p h o n b y
the
14
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 21, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch005
o r i g i n a l solvent a n d ( 2 ) the stepwise a d s o r p t i o n f r o m different solvents w e r e s t u d i e d . T h e d a t a of T a b l e I V i m p l y t h a t n o a p p r e c i a b l e d e s o r p t i o n i n the o r i g i n a l solvent w a s o b s e r v e d w i t h a l l six solvent systems.
Once
a d s o r b e d f r o m a p a r t i c u l a r solvent, a c c o r d i n g to S t e i n b e r g ( 2 5 ) , p o l y m e r s d o not d e s o r b a p p r e c i a b l y i n t h a t solvent because the m u l t i p l i c i t y of a d s o r b i n g sites e n e r g e t i c a l l y favors a d s o r p t i o n , r e s u l t i n g i n v e r y s m a l l d e s o r p t i o n r a t e constants. Results for the stepwise a d s o r p t i o n of p o l y s t y r e n e - C o n G r a p h o n 14
f r o m different solvents are s h o w n i n T a b l e V .
I n the first t w o sets of
experiments, d a t a are g i v e n for a n o r i g i n a l c o n c e n t r a t i o n of 0.4 m g . p o l y s t y r e n e - C / m l . or 0.2 m g . / m l , r e s p e c t i v e l y , i n a l l three a d s o r p t i o n steps. 1 4
I n the s e c o n d set the o r i g i n a l concentrations i n step t w o or three c o r r e s p o n d to the supernatant l i q u i d c o n c e n t r a t i o n i n the p r e c e d i n g step. On
c h a n g i n g the e n v i r o n m e n t f r o m toluene to b u t a n o n e - 2
(the
poorer solvent) additional polymer was adsorbed. H o w e v e r , on reverting the e n v i r o n m e n t b a c k to toluene most of the a d d i t i o n a l p o l y m e r w a s desorbed.
It is w o r t h n o t i n g that i n the s e c o n d set of experiments the
final a n d o r i g i n a l systems w e r e almost a l i k e . T h e s e results m a y a g a i n b e q u a l i t a t i v e l y e x p l a i n e d i n terms of
changes i n area r e q u i r e d b y
the
p o l y m e r m o l e c u l e to a t t a c h itself at the s o l i d / l i q u i d interface. T h e a r e a Table IV. Effect of Solvent on the Desorption of Polystyrene- C from Graphon 14
Solvent
41
Benzene Benzene Toluene Toluene Dioxane Dioxane Butanone-2 Butanone-2 E t h y l acetate E t h y l acetate Cyclohexane Cyclohexane
Equil. Cone. mg. PS-^C/ml.
% wt. PS-**C Desorbed
0.27 0.18 0.19 0.13 0.183 0.136 0.31 0.20 0.31 0.21 0.51 0.32
0 2 0 0 0 0 0 0 0 0 0 0
"Experimental procedure: (1) 40-hr. agitation cycle, (2) replacement of 10 ml. of supernatant solution in dispersion by 10 ml. of fresh solvent, and ( 3 ) 40-hr. agitation cycle.
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
70
INTERACTION
O F LIQUIDS
A T SOLID
SUBSTRATES
Table V . Stepwise Adsorption of Polystyrene- C on Graphon from Different Solvents
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 21, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch005
14
Step
Orig. Cone. of P S - ^ C , mg./ml.
Solvent
1 2 3 1 2 3 1 2 3 1 2 3
0.4 0.4 0.4 0.2 0.2 0.2 0.4 0.22 0.08 0.2 0.07 0
Toluene Butanone-2 Toluene Toluene Butanone-2 Toluene Toluene Butanone-2 Toluene Toluene Butanone-2 Toluene
a
Amount Adsorbed (mg./gram) or Desorbed in Step 39 56 40 26 40 22 38 36 27 28 14 10
Total P S - ^ C Adsorbed (mg./gram) 39 95 55 26 66 44 38 74 47 28 42 32
ads. ads. des. ads. ads. des. ads. ads. des. ads. ads. des.
"Experimental procedure: (1) 40-hr. agitation cycle, (2) replacement of supernatant solution, (3) 40-hr. agitation cycle, etc. p e r segment decreases as t h e p o l y s t y r e n e is d e s o l v a t e d o n c h a n g i n g t h e e n v i r o n m e n t f r o m g o o d t o p o o r solvent, thus c r e a t i n g a d d i t i o n a l a v a i l a b l e surface.
I n c r e a s e d a d s o r p t i o n m a y take p l a c e o n these a d d i t i o n a l free
surface sites. T h e reverse h o l d s t r u e f o r changes of e n v i r o n m e n t f r o m p o o r t o g o o d solvent. I n s u m m a r y , i t is p o s t u l a t e d t h a t u n d e r c o n d i t i o n s of w e a k segmentsurface i n t e r a c t i o n a u n i f o r m l y a d s o r b i n g p o l y m e r l i k e p o l y s t y r e n e a t taches itself, i n t h e c o n c e n t r a t i o n regions r e p r e s e n t e d b y t h e p l a t e a u x i n t h e a d s o r p t i o n isotherms, t o t h e G r a p h o n surface f r o m g o o d solvents a p p r o a c h i n g a flat o r i e n t e d m o n o l a y e r .
I n contrast, f r o m a p o o r solvent
the p o l y m e r assumes a l o o p o r c o i l s t r u c t u r e i n w h i c h o n l y p a r t o f t h e p o l y m e r segments a r e a t t a c h e d d i r e c t l y t o t h e G r a p h o n surface.
Thus,
both models postulated are useful to describe the conformation of t h e adsorbed
polymer molecules
at t h e s o l i d interface w i t h
each
being
a p p l i c a b l e f o r different solvent m e d i a . Acknowledgment T h e authors a r e i n d e b t e d t o S . C a r a n g e l o f o r i n s t r u c t i o n i n t h e radiochemical techniques.
Literature Cited (1) Billmeyer, F. W., Jr., "Textbook of Polymer Chemistry, p. 32, Interscience, New York, 1962. (2) Binford, J. S., Gessler, A. M., J. Phys. Chem. 63, 1376 (1959).
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 21, 2015 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch005
5.
S C H I C K A N D H A R V E Y , JR.
Polymer/Solid Interface
71
(3) Boundy, R. H., Boyer, R. F., "Styrene," p. 344, Reinhold, New York, 1952. (4) Ibid., p. 390. (5) Breitenbach, J. W., Frank, H. P., Monats. Chem. 79, 531 (1948). (6) Ellerstein, S., Ullman, R., J. Polymer Sci. 55, 123 (1961). (7) Flory, P. J., Fox, T. G., Jr., J. Am. Chem. Soc. 73, 1904 (1951). (8) Fontana, B. J., Thomas, J. R., J. Phys. Chem. 65, 480 (1961). (9) Fowkes, F. M., "Treatise on Adhesion and Adhesives," Vol. 1, Chapt. 9, R. L. Patrick, ed., Marcel Dekker, New York, 1967. (10) Frisch, H. L., Hellman, M. Y., Lundberg, J. L., J. Polymer Sci. 38, 441 (1959). (11) Gilliland, E. R., Gutoff, Ε. B., J. Appl. Polymer Sci. 3, 26 (1960). (12) Hobden, J. F., Jellinek, H. H. G., J. Polymer Sci. 11, 365 (1953). (13) Hughes, R. E., von Frankenberg, C. Α., Ann. Rev. Phys. Chem. 14, 290 (1963). (14) Kipling, J. J., "Adsorption from Solutions of Nonelectrolytes," Chapt. 8, Academic Press, New York, 1965. (15) Kolthoff, I. M., Gutmacher, R. E., Kahn, Α., J. Phys. Chem. 55, 1240 (1951). (16) Koral, J., Ullman, R., Eirich, R. F., J. Phys. Chem. 62, 541 (1958). (17) Luce, J. E., Robertson, Α. Α., J. Polymer Sci. 51, 317 (1961). (18) Patat, F., Killman, E., Schliebener, C., Fortschr. Hochpolym. Forsch. 3, 332 (1964). (19) Patat, F., Killman, E., Schliebener, C., Rubber Chem. Technol. 39, 36 (1966). (20) Perkel, R., Ullman, R., J. Polymer Sci. 54, 127 (1961). (21) Rowland, F., Bulas, R., Rothstein, E., Eirich, F. R., Ind. Eng. Chem. 57, No. 9, 46 (1965). (22) Rowland, F. W., Eirich, F. R., J. Polymer Sci. Part A-1, 4, 2401 (1966). (23) Schick, M. J., Ph.D. Thesis, Polytechnic Institute of Brooklyn (1948). (24) Schick, M. J., Doty, P. M., Zimm, Β. H., J. Am. Chem. Soc. 72, 530 (1950). (25) Steinberg, G., J. Phys. Chem. 71, 292 (1967). (26) Stromberg, R. R., Tutas, D. J., Passaglia, E., J. Phys. Chem. 69, 3955 (1965). (27) Stromberg, R. R., "Treatise on Adhesion and Adhesives," Vol. 1, Chapt. 3, R. L. Patrick, ed., Marcel Dekker, New York, 1967. (28) Stromberg, R. R., Quasius, A. R., Toner, S. D., Parker, M. S., J. Res. Natl. Bur. Stds. 62, 71 (1959). (29) Tanford, C., "Physical Chemistry of Macromolecules," p. 400, John Wiley, New York, 1961. (30) Ibid., p. 408. RECEIVED October 26,
1967.
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.