2 Some Uses of High-Resolution Electron Microscopy in Solid State Chemistry
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
LEROY
EYRING
Department of Chemistry and the Center for Solid State Science, A r i z o n a State University, Tempe, A Z 85281
The
principles
to permit
of electron
an evaluation
of high-resolution ReO -related
techniques
very selectively interval
formation
are briefly
sketched
use and
limitations
to solid state chemistry.
systems have been extensively
3
the
microscopy
of the potential
reviewed
MO3 and
to
studied
and illustrated.
MO 2
are
5
destruction
of point
and
extended
of regular
and the ordering
of the latter into new phases are
These
phases
block
include
bronzes
structures
phases suited
electron
investigated. described
deficient
variable
The
representative materials
microscopy results
and illustrated,
tetragonal
and
of
for
including
the
larger
study
ordinary
class
where conventional
methods have failed, defects,
and phase
trans-
have
been
materials
structure
forms of extended
the
composition.
are
determination
new phases,
various
transformations.
O o l i d state c h e m i s t r y is c o m p r e h e n s i v e i n its c o n c e r n . ^
also
high-resolution
(HRTEM)
on these
defects observed.
of varied
5
the
defects.
with
MO3,
composition, 2
less ideally
mission
oxygen
elements
such as H-Nb O
Fluorite-related of
of
in
including
The intergrowth
tungsten
are
Compositions
described,
structural
The and
I t deals, at t h e
molecular level, w i t h composition, structure, bonding, reaction charac
teristics, a n d t h e r m o d y n a m i c p r o p e r t i e s of solids, as is t y p i c a l of c h e m i s t r y of gases a n d solutions.
the
I n a d d i t i o n , a n d i n p a r t i c u l a r , i t is
c o n c e r n e d w i t h the p r o p e r t i e s of m a t e r i a l s t h a t d e r i v e f r o m t h e i r solidness. F o r these m a t e r i a l s t h r e e - d i m e n s i o n a l s t r u c t u r e a n d s t r u c t u r a l are at the root
of
their composition
a n d properties.
The
0-8412-0472-1 /80/33-186-027$09.00/1 © 1980 American Chemical Society In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
defects
range
of
28
SOLID S T A T E C H E M I S T R Y :
A CONTEMPORARY
OVERVIEW
c h e m i c a l v a r i a t i o n is g r e a t l y e n l a r g e d i n t h e s o l i d state because of
the
r e l a x a t i o n of s t o i c h i o m e t r y r e q u i r e m e n t s , a n d h e n c e f r o m t h i s f a c t is d e r i v e d the p o s s i b i l i t y of i n f i n i t e c o m p o s i t i o n a l v a r i a b i l i t y a n d
aniso
t r o p i c r e a c t i o n alternatives. It w o u l d b e difficult to overestimate t h e i m p o r t a n c e of
exhaustive
s t r u c t u r a l c h a r a c t e r i z a t i o n . N o one needs to b e c o n v i n c e d of t h e v a l u e of a n X - r a y or n e u t r o n d i f f r a c t i o n i n v e s t i g a t i o n , w h i c h reveals t h e r e p e a t i n g u n i t , h e n c e the l o n g - r a n g e
o r d e r , i n c r y s t a l l i n e m a t e r i a l s — t h i s is the
b e g i n n i n g of almost a n y s t u d y .
H o w e v e r , t h e i n t i m a t e details of
the
s t r u c t u r e of r e a l solids, i n c l u d i n g t h e i r defects a n d i m p e r f e c t i o n s , g r e a t l y
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
influence t h e i r c h e m i c a l p r o p e r t i e s .
Classical diffraction methods
give
l i m i t e d i n f o r m a t i o n f r o m s u c h s m a l l regions of space; therefore, w e m u s t look elsewhere for a t e c h n i q u e that y i e l d s this s t r u c t u r a l i n f o r m a t i o n . M o s t chemists f e e l less at h o m e i n r e c i p r o c a l space, since t h e i r v i e w of s t r u c t u r e i n v o l v e s the s p a t i a l c o n f i g u r a t i o n of atoms d e s c r i b e d i n terms of the l e n g t h a n d d i r e c t i o n s of c h e m i c a l b o n d s or of d i s p l a c e d or m o v i n g atoms.
I n these terms the c o m p o s i t i o n , s t r u c t u r e , s t a b i l i t y , r e a c t i v i t y , or
m e c h a n i s m of r e a c t i o n are c o n c e i v e d i n terms of l i t e r a l m o d e l s of atoms i n fixed or transient p o s i t i o n s . T o the extent t h a t this is t r u e , a n i n s t r u m e n t t h a t w o u l d m a g n i f y a r e g i o n of space sufficiently a n d i n a t i m e frame c o m p a t i b l e to h u m a n o b s e r v a t i o n (so t h a t i n d i v i d u a l atoms c o u l d b e i d e n t i f i e d a n d l o c a t e d i n space a n d f o l l o w e d occur)
w o u l d be
the u l t i m a t e i n s t r u m e n t of
high-resolution electron microscope tial.
I t is o u r p u r p o s e
here
as c h e m i c a l
( H R E M ) has this a u d a c i o u s
to s k e t c h , of
changes
c h e m i c a l analysis.
necessity
The
poten
s u p e r f i c i a l l y , the
present state of these t e c h n i q u e s as t h e y are u s e d to i l l u m i n a t e s o l i d state c h e m i s t r y . T h e a d v a n t a g e of d i r e c t v i s u a l i z a t i o n of the structure of r e a l solids, i n c l u d i n g t h e i r defects,
b e c o m e s a p p a r e n t w h e n one r e v i e w s t h e t o r
turous p a t h b y w h i c h i n d i r e c t m e t h o d s y i e l d u n c e r t a i n i d e n t i f i c a t i o n of the p r i n c i p a l defects i n a n y m a t e r i a l . O n e m u s t not o v e r s e l l H R E M as a d i r e c t means of f o l l o w i n g the course of c h e m i c a l r e a c t i o n i n solids, b u t the v a l u e of b e i n g a b l e to v i s u a l i z e the types of defects a n d t h e i r j u x t a p o s i t i o n i n a n y m a t e r i a l is enormous.
T h e i m p a c t of H R E M
on
our
k n o w l e d g e of s t r u c t u r e a n d m e c h a n i s m i n s o l i d state c h e m i s t r y has b e e n profound. I t has b e e n m o r e t h a n a score of years since M e n t e r ( I )
anticipated
the e l u c i d a t i o n of s t r u c t u r e b a s e d o n l a t t i c e i m a g i n g . H i s d r e a m has b e e n realized i n large measure today w h e n two-dimensional images
capable
of p o i n t - t o - p o i n t i n t u i t i v e i n t e r p r e t a t i o n at a r e s o l u t i o n of 3.5 A or b e t t e r are b e i n g t a k e n . T h e t e c h n i q u e is flourishing b o t h i n p r a c t i c e a n d t h e o r y , e x p a n d i n g d a i l y its r a n g e of a p p l i c a t i o n to solids. W e w i l l n o w
quali
t a t i v e l y e x a m i n e the m e t h o d s of this t e c h n i q u e i n o r d e r to assess t h e i r
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
2.
EYRING
High-Resolution
Electron
29
Microscopy
usefulness a n d l i m i t a t i o n s . T h i s w i l l b e f o l l o w e d b y a g l i m p s e of d i v e r s e types of studies of interest to the s o l i d state c h e m i s t . F i n a l l y , a n a t t e m p t w i l l be m a d e to see d i r e c t i o n s the field m i g h t take i n the i m m e d i a t e f u t u r e . HREM
Imaging
U n d e r f a v o r a b l e c i r c u m s t a n c e s i t is p o s s i b l e to i m a g e a c r y s t a l i n t w o d i m e n s i o n s w i t h a p o i n t - t o - p o i n t r e s o l u t i o n of a b o u t 2 A .
I t has
b e e n p o s s i b l e to i m a g e crystals at a r e s o l u t i o n of a b o u t 3.5 A f o r t h e past s e v e r a l years u s i n g r e l a t i v e l y i n e x p e n s i v e , c o m m e r c i a l l y a v a i l a b l e instruments.
I t is to be h o p e d t h a t w i t h i n the next d e c a d e i t w i l l
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
r o u t i n e to i m a g e crystals at a b o u t 1.5 A . T h i s means t h a t , w h e r e a s
be now
details of s t r u c t u r e , i n c l u d i n g defects, are r e v e a l e d m i c r o s c o p i c a l l y at t h e s u b u n i t c e l l l e v e l (say, t h e l e v e l of c o o r d i n a t i o n p o l y h e d r a ) , i t s h o u l d be p o s s i b l e to o b s e r v e solids at the a t o m i c l e v e l . C l e a r l y these a d v a n c e s i n t e c h n i q u e h a v e u n f a t h o m e d significance for s o l i d state c h e m i s t r y . F o r a t h o r o u g h d i s c u s s i o n of e l e c t r o n m i c r o s c o p e i m a g i n g of c r y s t a l structures, the b o o k " D i f f r a c t i o n P h y s i c s " b y J o h n M . C o w l e y is s u g gested ( 2 ) .
M o r e a b b r e v i a t e d sources, s u c h as C o w l e y ( 3 ) , A l l p r e s s ( 4 ) ,
A l l p r e s s a n d Sanders ( 5 ) , A l l p r e s s et a l . ( 6 ) , a n d O ' K e e f e et a l . ( 7 , 8 ) , s h o u l d b e c o n s u l t e d f o r references to the p r i m a r y l i t e r a t u r e a n d for t h e d e t a i l e d m a t h e m a t i c a l , e x p e r i m e n t a l , a n d c a l c u l a t i o n a l details of m i c r o s copic imaging. A t present, most of the w o r k b e i n g d o n e is w i t h c o n v e n t i o n a l beam high-resolution transmission electron microscopy ( H R T E M ) a t i n g at 100 k e V .
These microscopes
fixed oper
are d i r e c t analogues of o p t i c a l
m i c r o s c o p e s : p a r t i c l e s f r o m a n e l e c t r o n g u n are a c c e l e r a t e d a n d c o n c e n trated on the sample to be imaged.
T h e effective size of t h e source is
normally a few microns i n diameter
(2).
T h e r e s o l u t i o n a n d contrast of the i m a g e are l a r g e l y d e t e r m i n e d i n the i n i t i a l stage of m a g n i f i c a t i o n b y the objective lens. S p h e r i c a l a b e r r a tion, w h i c h depends beams
o n p h a s e r e t a r d a t i o n , increases v e r y r a p i d l y for
d i f f r a c t e d at i n c r e a s i n g B r a g g angles.
Lenses i n common
use
h a v e a s p h e r i c a l a b e r r a t i o n constant of 1-3 m m , l i m i t i n g t h e r e s o l u t i o n to
a few
angstroms.
This, rather than high-voltage
i n s t a b i l i t i e s , is the p r i n c i p a l l i m i t a t i o n to r e s o l u t i o n ( 2 ) .
or
lens-current
Electromagnetic
stigmators are a d j u s t e d to correct a n y a s t i g m a t i s m . E l e c t r o n m i c r o s c o p y is e n h a n c e d b e c a u s e of the ease w i t h w h i c h b o t h selected area e l e c t r o n d i f f r a c t i o n a n d a n i m a g e of the same r e g i o n of a c r y s t a l c a n b e r e c o r d e d . F i g u r e 1 illustrates b o t h m o d e s of o p e r a t i o n of
a
t y p i c a l three-lens
g e o m e t r i c optics.
m a g n i f y i n g system, u s i n g the
symbolism
of
T h e r e g i o n of t h e s p e c i m e n to b e v i e w e d is b a t h e d
b y the n e a r l y p a r a l l e l electron b e a m after i t has p a s s e d t h r o u g h t h e condenser lens system.
T h e scattered electrons f r o m the s p e c i m e n are
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
30
CHEMISTRY:
A CONTEMPORARY
OVERVIEW
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
SOLID STATE
Figure 1. The ray paths in an electron microscope used (a) to produce a high-magnification image or (b) to produce a diffraction pattern of a selected area of the specimen. focused
o n t h e b a c k f o c a l p l a n e of t h e objective
diffraction pattern.
lens to p r o d u c e t h e
T h i s is t h e first F o u r i e r t r a n s f o r m of t h e object.
T h e s e electrons interfere a g a i n i n t h e G a u s s i a n i m a g e p l a n e t o p r o d u c e a n i m a g e . T h e a m p l i t u d e d i s t r i b u t i o n i n t h e i m a g e is a F o u r i e r t r a n s f o r m of that i n t h e b a c k f o c a l p l a n e . T h e f o c a l l e n g t h of the i n t e r m e d i a t e lens m a y b e c h a n g e d
[as i n
F i g u r e 1 ( b ) ] so t h a t i n s t e a d of t h e i m a g e p l a n e t h e b a c k f o c a l p l a n e of
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
2.
EYRING
High-Resolution
Electron
Microscopy
31
the objective is i m a g e d at t h e object p l a n e of the p r o j e c t o r lens, w h e r e it m a y b e v i e w e d o n a
fluorescent
screen or p h o t o g r a p h e d .
A s m a l l a p e r t u r e p l a c e d i n ' t h e i m a g e p l a n e of the o b j e c t i v e lens w i l l select o n l y p a r t of the i m a g e to b e m a g n i f i e d .
S i n c e a s w i t c h i n the
i n t e r m e d i a t e lens w i l l not c h a n g e the area selected i n the a p e r t u r e , t h e d i f f r a c t i o n p a t t e r n p r o d u c e d i n the d i f f r a c t i o n m o d e w i l l represent o n l y the selected area. T h i s selected area e l e c t r o n d i f f r a c t i o n c a p a b i l i t y is of i m m e n s e i m p o r t a n c e , e s p e c i a l l y w i t h c r y s t a l l i n e specimens, since i t p e r mits c o r r e l a t i o n of the d i f f r a c t i o n p a t t e r n w i t h the same r e g i o n of contrast o b s e r v e d i n the i m a g e .
T h e m i n i m u m area selected is l i m i t e d b y
the
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
s p h e r i c a l a b e r r a t i o n of the lens to regions a b o u t 0.5 / m i i n d i a m e t e r at 100 k e V . T h e Formation of the Image.
A s indicated above, the image
is
f o r m e d b y interference of the e l e c t r o n beams i n the i m a g e p l a n e of the objective
lens.
A n objective
a p e r t u r e is u s e d to select the
beams t h a t w i l l b e u s e d to f o r m the i m a g e . for t w o f u n d a m e n t a l reasons.
diffracted
T h e a p e r t u r e is i m p o r t a n t
F i r s t , because the p h a s e r e t a r d a t i o n of a
d i f f r a c t e d b e a m varies as t h e f o u r t h p o w e r of the a n g l e of t r a v e r s a l of the lens ( 5 ) , i t is advanatgeous to l i m i t the beams to those scattered at l o w e r angles. S e c o n d , since there is a finite r e s o l u t i o n of the
microscope,
contrast is i m p r o v e d i f those beams are r e m o v e d that are f r o m i n t e r p l a n a r spacings less t h a n the r e s o l u t i o n of the m i c r o s c o p e
and hence w o u l d
s i m p l y c o n t r i b u t e to t h e b a c k g r o u n d . If o n l y one d i f f r a c t e d b e a m is i n c l u d e d w i t h the d i r e c t b e a m , i n t e r ference w i l l
produce
s i m p l y a set of
fringes, w h i c h u n d e r
suitable
c o n d i t i o n s w i l l c o r r e s p o n d to the set of p l a n e s i n r e a l space that g i v e rise to the d i f f r a c t i o n spot.
M o r e often, m a n y beams are u s e d w i t h the
d i r e c t b e a m to f o r m a b r i g h t - f i e l d , t w o - d i m e n s i o n a l i m a g e ( 2 ) .
I n some
instances i t m a y b e d e s i r e d to e x c l u d e the d i r e c t b e a m a n d o b t a i n a n i m a g e o n l y f r o m interference of the d i f f r a c t e d beams p r o d u c i n g a d a r k field i m a g e . I n this case a h i g h e r r e s o l u t i o n has b e e n o b s e r v e d Other Experimental Conditions.
(9).
I t is necessary t o r e d u c e c o n t a m i
n a t i o n of t h e s p e c i m e n as m u c h as possible.
T h i s is a c c o m p l i s h e d
by
p r o v i d i n g surfaces c o o l e d to l i q u i d n i t r o g e n t e m p e r a t u r e s i n t h e v i c i n i t y of the s p e c i m e n .
I n some cases i t is necessary to i m p r o v e the v a c u u m ,
a n d this a u t o m a t i c a l l y reduces the rate of c o n t a m i n a t i o n . I n o r d e r to h a v e images t h a t c a n b e i n t e r p r e t e d i n t u i t i v e l y , i t is necessary to h a v e specimens less t h a n 100 A t h i c k . T h i s is a c c o m p l i s h e d i n a n y of several w a y s . sputtered
films.
M e t a l s m a y b e p r e p a r e d i n t h i n , e v a p o r a t e d , or
B r i t t l e , n o n m e t a l l i c specimens
grinding—sometimes
may
be
prepared
at l i q u i d n i t r o g e n t e m p e r a t u r e s — p r o d u c i n g
by
frag
ments t h i n e n o u g h to b e i m a g e d . I n a n y case, i o n t h i n n i n g m a y b e u s e d , a n d i f the s t r u c t u r a l features of interest are not affected b y this t r e a t m e n t , s u i t a b l y t h i n specimens m a y b e o b t a i n e d .
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
32
SOLID S T A T E C H E M I S T R Y :
The
specimens
are s u p p o r t e d
A CONTEMPORARY
OVERVIEW
frequently on holey carbon
grids,
w h e r e a t h i n e d g e of s u i t a b l e characteristics is f o u n d p r o j e c t i n g o v e r a h o l e i n the s u p p o r t
film.
F o r h i g h - r e s o l u t i o n i m a g i n g of crystals i t is necessary
to h a v e a
d o u b l e - t i l t i n g s p e c i m e n h o l d e r that c a n o r i e n t the c r y s t a l a l o n g a n y of s e v e r a l z o n e axes as d e s i r e d . I n o r d e r to h a v e g o o d contrast i n a n i m a g e w h i c h is also i n t e r p r e t a b l e , t h e c o r r e c t a p e r t u r e a n d thinness of c r y s t a l m u s t be c o m b i n e d w i t h a c a r e f u l l y a d j u s t e d focus. 900 A
(10).
U s u a l l y this r e q u i r e s a n u n d e r f o c u s
Absorption produces
of
about
n o contrast i n the G a u s s i a n i m a g e
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
p l a n e i f the a p e r t u r e is u n r e s t r i c t e d ( 5 ) . T h e Calculation of Images.
I n o r d e r for H R T E M to b e u s e f u l i n
the d e t e r m i n a t i o n of s t r u c t u r e , the images p r o d u c e d , w h i c h are a n a r r a y of l i g h t a n d d a r k spots, m u s t b e i n t e r p r e t a b l e i n terms of the t y p e a n d l o c a t i o n of t h e atoms i n the s p e c i m e n . be a two-dimensional projection
I d e a l l y the i m a g e w o u l d s i m p l y
of the a t o m i c a r r a n g e m e n t , e n a b l i n g
t h e contrast to be i n t e r p r e t e d i n t u i t i v e l y ( F i g u r e 2 ) .
U n d e r carefully
c o n t r o l l e d c o n d i t i o n s of s p e c i m e n a n d m i c r o s c o p e , this has b e e n to b e possible
found
(10).
S a t i s f y i n g a l l these c o n d i t i o n s is m o r e l i m i t i n g t h a n is d e s i r a b l e , a n d one w o u l d l i k e to b e a b l e to use i m a g e contrast w h e r e these stringent r e q u i r e m e n t s are not f u l l y met.
S u c h images are n o t i n t e r p r e t a b l e w i t h
confidence i n terms of a t o m positions unless t h e y c a n b e s h o w n to agree w i t h c a l c u l a t e d images over a range of c o n d i t i o n s (8). necessary to c a l c u l a t e images that c o r r e s p o n d
T h e r e f o r e , i t is
to t h e orientations a n d
thicknesses of t h e s p e c i m e n of k n o w n or p o s t u l a t e d s t r u c t u r e a n d c o m p a r e these w i t h those o b s e r v e d .
I n o r d e r to m a k e t h e c a l c u l a t i o n s the
c o n d i t i o n s of focus of the m i c r o s c o p e the b e a m d i v e r g e n c e , m u s t b e k n o w n (8).
m u s t h a v e specified v a l u e s , a n d
a p e r t u r e size, a n d s p h e r i c a l a b e r r a t i o n constant E v e n i f the details of s t r u c t u r e c a n n o t b e
deter
m i n e d w i t h assurance, the characteristics of the i m a g e a l l o w u n e q u i v o c a l i d e n t i f i c a t i o n w i t h a p a r t i c u l a r phase.
F o r most c h e m i c a l studies this
i n f o r m a t i o n is e n o u g h , a n d i t c a n n o t be o b t a i n e d i n other w a y s . C o m p u t e r packages n o w h a v e b e e n d e v e l o p e d
that enable
image
c a l c u l a t i o n s to b e m a d e b a s e d o n n - b e a m m u l t i s l i c e d y n a m i c a l t h e o r y (8,11).
T h e s e c a l c u l a t e d images are necessary to the i n t e r p r e t a t i o n of
o b s e r v e d images, as w i l l b e i l l u s t r a t e d b e l o w . High-Voltage H R T E M .
T h e o p t i m u m r e s o l u t i o n of a
microscope
is g i v e n b y t h e e q u a t i o n d = 0.6A
3 / 4
C
B
1 / 4
w h e r e d is t h e h a l f - w i d t h of t h e s p r e a d f u n c t i o n , A is t h e w a v e l e n g t h of the electron, a n d C
8
is the s p h e r i c a l a b e r r a t i o n coefficient
(2,3).
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Good,
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
2.
EYRING
High-Resolution
Electron
33
Microscopy
Figure 2. A print by M . C. Escher showing about one and a half unit cells. Light and dark patches are intuitively interpretable in terms of the elements of the structure. Even out of focus, the relative distances and symmetries are preserved. The more perverse will find satisfaction in viewing it upside down (31). stable, h i g h - v o l t a g e supplies n o w c a n b e m a d e a n d u s e d w i t h v e r y stable lens c u r r e n t s , so t h a t i t s h o u l d b e p o s s i b l e to increase t h e r e s o l u t i o n b y d e c r e a s i n g A, t h a t is, b y g o i n g to h i g h - v o l t a g e electrons. A t 500 k e V one expects to o b t a i n 1.7 A p o i n t - t o - p o i n t r e s o l u t i o n . T h e r e are s e v e r a l a d v a n t a g e s to u s i n g h i g h - v o l t a g e m i c r o s c o p e s s u c h as t h e a b i l i t y to s t u d y specimens t h r e e or f o u r t i m e s as t h i c k w i t h t h e same ease of i n t e r p r e t a t i o n as i n 1 0 0 - k e V m a c h i n e s .
Contrast w i l l
be
e n h a n c e d b y a f a c t o r of t w o or three, w i t h t h e same c l a r i t y a n d w i t h less damage
d u e to i n e l a s t i c s c a t t e r i n g .
T h e p r i n c i p a l advantage for
the
c h e m i s t , h o w e v e r , w i l l b e t h e p o s s i b i l i t y of fitting c o n t r o l l e d a t m o s p h e r e s p e c i m e n stages i n t h e m u c h l a r g e r m i c r o s c o p e lens c h a n n e l s . T h e m o r e p e n e t r a t i n g e l e c t r o n b e a m w i l l b e less affected b y the t h i n gaseous e n v i r o n m e n t p r o v i d e d for the s p e c i m e n at e q u i l i b r i u m . A r e s o l u t i o n of atoms
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
34
SOLID STATE C H E M I S T R Y :
A CONTEMPORARY
OVERVIEW
conjures u p the n o t i m p o s s i b l e feat of o b s e r v i n g t h e t r a n s p o r t of atoms i n crystals. T h i s s h o u l d also a d v a n c e t h e c a p a b i l i t y of d e t e r m i n i n g s t r u c t u r e b y direct imaging. T h e results of 1 - M e V m i c r o s c o p e
studies of several m a t e r i a l s a n d
t h e i n s t r u m e n t itself h a v e b e e n d e s c r i b e d b y H o r i u c h i a n d h i s c o - w o r k e r s T h e r e s o l u t i o n i m p r o v e m e n t over 1 0 0 - k e V i n s t r u m e n t s is
(12,13,14). dramatic.
W i t h a 2 - A r e s o l u t i o n , one c a n v i r t u a l l y resolve t h e
atoms
at t h e t e t r a h e d r a l sites b e t w e e n the crossed shear planes i n t h e
block
structure N b i 0 9 . H o w e v e r , these i n s t r u m e n t s are e x t r e m e l y 2
2
a n d w i l l r e q u i r e a great d e a l of d e v e l o p m e n t
expensive
b e f o r e t h e y b e c o m e as
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
p r a c t i c a l l y u s e f u l as the 1 0 0 - k e V i n s t r u m e n t s .
Applications
of HRTEM
to Solid State
Chemistry
T h e d e v e l o p m e n t of the field of e l e c t r o n m i c r o s c o p y is of
enormous
significance to t h e s o l i d state chemist. I t is a m a z i n g to c o n t e m p l a t e t h a t a l l t h e h i g h - r e s o l u t i o n studies ever m a d e h a v e e x a m i n e d o n l y a b o u t mm
2
1
of s p e c i m e n area w i t h a mass of a b o u t 0.2 fig of m a t e r i a l . T h e r e is
a l o t m o r e to b e seen! E v e n w i t h t h i s s m a l l mass, studies h a v e i n c l u d e d t h e o b s e r v a t i o n of u l t r a s t r u c t u r e a n d defects i n a great v a r i e t y of m i n e r a l specimens ( 1 5 ) , c a r b o n i n m a n y f o r m s i n c l u d i n g d i a m o n d , g r a p h i t e , a n d e v e n s i n g l e - a t o m - t h i c k sheets (16), n o n c r y s t a l l i n e i n o r g a n i c solids
a n d a w i d e r a n g e of c r y s t a l l i n e a n d
(17).
W e w i l l discuss h e r e o n l y t w o types of studies o n c r y s t a l l i n e oxides. T h e first i n c l u d e s e x a m i n a t i o n o f m a n y s t r u c t u r a l types a n d defects i n R e 0 - b a s e d crystals ( m o s t w o r k has b e e n d o n e o n these almost i d e a l l y 3
s u i t e d m a t e r i a l s ) a n d t h e s e c o n d i n c l u d e s studies of the
fluorite-related
b i n a r y r a r e e a r t h oxides to i l l u s t r a t e the v a l u e of t h e t e c h n i q u e i n a m o r e o r d i n a r y b u t less w e l l s u i t e d c r y s t a l t y p e . Structures Based on the R e 0 tallographic Shear.
The R e 0
3
3
Structure T y p e — R e g i o n of C r y s -
s t r u c t u r e is one of t h e easiest to v i s u a l i z e .
I t consists of m e t a l atoms o c t a h e d r a l l y c o o r d i n a t e d w i t h o x y g e n in w h i c h a l l corners of the c o o r d i n a t i o n o c t a h e d r a are s h a r e d i n t h r e e d i r e c t i o n s . T h i s c u b i c n e t w o r k has t h e same a p p e a r a n c e p r o j e c t e d a l o n g a n y of the p r i n c i p a l axes—that
is, m e t a l - f i l l e d o c t a h e d r a
i n square outline
with
alternate squares u n f i l l e d i n a c h e c k e r b o a r d f a s h i o n . T h e u n f i l l e d squares are elements of square t u n n e l s i n a l l t h r e e d i r e c t i o n s . T h e u n i t cells of these r e l a t e d structures are one c o o r d i n a t i o n o c t a h e d r o n t h i c k 4.8 A )
(about
a n d f r e q u e n t l y q u i t e l a r g e i n t h e other d i r e c t i o n s ; h e n c e t h e y
are almost i d e a l subjects f o r h i g h - r e s o l u t i o n s t u d y . T h e i n v e s t i g a t i o n s w e w i l l discuss i n v o l v e r e d u c e d W 0 containing M o or N b .
N b is t h e m o s t c o m m o n
reduced materials investigated.
3
sometimes
metal i n the highly
T h e oxides n e a r M 0
3
in
composition
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
2.
EYRING
High-Resolution
Electron
h a v e defects c a l l e d c r y s t a l l o g r a p h i c shear ( C S ) . composition
35
Microscopy
T h o s e of i n t e r m e d i a t e
h a v e defects i n v o l v i n g o c t a h e d r a t h a t h a v e s h e a r e d i n a
c y l i n d r i c a l f a s h i o n , p r o v i d i n g p e n t a g o n a l t u n n e l s a l o n g the axis of shear. The
most
reduced
oxides
are s h e a r e d
i n two
directions.
A l l these
materials preserve the o c t a h e d r a l c o o r d i n a t i o n of the m e t a l atoms
by
i n c r e a s i n g edge s h a r i n g of the c o o r d i n a t i o n o c t a h e d r a as t h e m e t a l - t o o x y g e n r a t i o is i n c r e a s e d b y r e d u c t i o n . CS in W 0 Figures 3(b)
has b e e n s t u d i e d b y I i j i m a
3
and 3(c).
Figure 3(b)
(18)
a n d is i d e a l i z e d i n
shows a p r o j e c t i o n of R e 0
the c-axis. I m a g i n e r e m o v a l of a l l oxygens i n a (210)
3
along
plane and closing
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
the s t r u c t u r e to r e g a i n the same o x y g e n s t r u c t u r e b y a s h e a r i n g a c t i o n 1/2
[110].
S u c h a n o p e r a t i o n is r e p r e s e n t e d b y
is the c r e a t i o n of a W a d s l e y defect ( 1 9 ) . m i c r o g r a p h of
such a Wadsley
defect
(210) 1 / 2 [ 1 1 0 ] .
This
F i g u r e 3a is a h i g h r e s o l u t i o n (18).
T h e m a i n features
are
u n m i s t a k a b l e even t h o u g h the r e a l e d g e - s h a r i n g o c t a h e d r a are consider ably distorted.
I i j i m a f o u n d that u n d e r o t h e r t h a n o p t i m u m i m a g i n g
c o n d i t i o n s , the d e t a i l is not so e v i d e n t .
N e v e r t h e l e s s , t h e defects
are
easily r e c o g n i z e d , a n d t h e i r f o r m a t i o n a n d d e p l o y m e n t i n this s t r u c t u r e can be observed.
Figure 3. (a) High-resolution electron micrograph of a WO _s crystal obtained with the electron beam incident parallel to the c-axis. A prominent feature of the contrast shows the (210) CS plane, across which square arrays of the dark dots (indicating W atom positions) are shifted. The contrast distributions are in good accordance with the idealized model of the (210) CS plane (b). However, the image showed that edge-sharing octahedra (shaded) are considerably distorted, so that the distance X of (c) is much larger than in the ideal model (18). s
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
36
SOLID S T A T E
CHEMISTRY:
A CONTEMPORARY
OVERVIEW
Figure 4. (a) Oscillatory dark and light contrast bands running parallel to the CS plane on both sides, (b) With further electron beam irradiation, new CS planes develop with the same periodicity as that of the oscillatory contrast in (a) (18). There
is
a
clear
premonitory
behavior
before
develop d u r i n g electron irradiation [ F i g u r e 4 ( a ) ] .
the
C S
planes
T h i s manifests itself
as w a v e s of c o n t r a s t v a r i a t i o n of a r e g u l a r s p a c i n g , w h i c h t h e n d e v e l o p into
[Figure 4 ( b ) ] .
This
a p p e a r a n c e of l i n e a r p a r a l l e l lines of b l o t c h e s of c o n t r a s t a l o n g t h e
C S defects
p a r a l l e l to
a n o r i g i n a l defect
[102]
d i r e c t i o n i n d i c a t e s e a r l y stages of d e v e l o p m e n t of t h e shear p l a n e s .
These
d a r k strain fields d i s a p p e a r w h e n t h e shear occurs.
A s W a d s l e y defects
i n c r e a s e i n c o n c e n t r a t i o n , t h e y t e n d to b e c o m e p a r a l l e l a n d to
purge
themselves o f k i n k s , w h i c h a p p e a r f r e q u e n t l y i n t h e e a r l y stages. T h i s b e h a v i o r is consistent w i t h a g g r e g a t i o n of o x y g e n v a c a n c i e s o n a disk, surrounded b y partial dislocations, w h i c h can expand a n d m o v e l o n g i t u d i n a l l y as suggested b y A n d e r s o n a n d H y d e Iijima observed only (210) a n d (210)
(20).
C S planes i n material reduced
at 1 0 2 2 ° C . T h e r e w e r e n o p l a n e s o b s e r v e d i n t h e [010]
zone.
O n the
o t h e r h a n d , d u r i n g e l e c t r o n b e a m h e a t i n g , C S occurs o n ( 2 0 1 ) a n d ( 2 0 1 ) . T h i s a n i s o t r o p i c b e h a v i o r is c o n s i d e r e d to be d u e to t h e d i s t o r t i o n of monoclinic W 0
3
structures f r o m t h e c u b i c R e 0 . 3
T h e d i s t o r t i o n is a
f u n c t i o n of t e m p e r a t u r e , as are t h e p r e f e r r e d d i r e c t i o n s of shear.
I n no
case w e r e ( 1 0 2 ) p l a n e s p r e f e r r e d . T H E REGION O F T H E TETRAGONAL TUNGSTEN BRONZE T Y P E OF STRUC
TURES.
I i j i m a a n d A l l p r e s s (21,22)
a n d defects i n W 0
3
c l a r i f i e d t h e n a t u r e of
structures
c o n t a i n i n g p e n t a v a l e n t cations ( N b ) i n c o n s i d e r a b l e
concentration, together w i t h the concomitant oxygen
deficiency.
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
2.
EYRING
High-Resolution
Electron
37
Microscopy
I n these structures, as i n R e 0 , o n l y c o r n e r s h a r i n g of c o o r d i n a t i o n 3
o c t a h e d r a occurs, b u t c o l u m n s of f o u r o r m o r e strings of o c t a h e d r a shear c y l i n d r i c a l l y a l o n g c s u c h t h a t w h e n c o r n e r s h a r i n g is r e e s t a b l i s h e d , triangular a n d pentagonal tunnels have been created along the periphery of the shear surface. T h e t u n n e l s c a n b e filled b y strings of — N b — O — N b — i n o r d e r e d w a y s to generate a v a r i e t y of superstructures. F i g u r e 5 illustrates 4Nb 0 2
5
these
•9W0
3
phenomena and 2 N b O 2
s
i n tetragonal
tungsten
bronze
(TTB),
• 7W0 . 3
T h e v a r i o u s T T B - l i k e elements m a y o c c u r i n d i v i d u a l l y as e x t e n d e d defects, b e o r d e r e d i n t o a definite s t r u c t u r e , o r b e i n t e r g r o w n w i t h t h e Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
W0
3
m a t r i x to a c c o m m o d a t e a n y c o m p o s i t i o n . T h i s is o b s e r v e d as c l e a r l y
s h o w n i n F i g u r e 6, w h e r e regions of 4 N b 0 2
5
• 9W0
3
are s e p a r a t e d b y -
Acta Crystallographica
Figure 5. Structural elements encountered in the binary system Nb^Og • WO . Each hatched square represents an M0 octahedron, which shares its corner oxygen atoms with neighboring octahedra to form a lattice of composition MO . (a) The cubic ReO. structure, (b) The host lattice of the tetragonal tungsten bronze (TTB). (c) The structure of 4Nb O • 9WO contains three TTB subcells, and the superlattice is a consequence of the ordered occupation of one-third of the pentagonal tunnels by -O-M-O-M-Ostrings parallel to c (filled circles) (21). s
6
s
2
s
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
s
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
38
SOLID S T A T E
CHEMISTRY:
A CONTEMPORARY
OVERVIEW
Figure 6. (a) Lattice image from a crystal of 4Nb 0 • 9WO containing a zigzag, out-of~phase boundary (marked with arrows). Rectangles outline the unit cells of the ordered structure, and circles within the boundary mark TTB subcells in which all four pentagonal tunnels are empty. The presence of the boundary causes a displacement of 1/3 [010] in the ordered structure, (b) Model of the boundary structure, derived from the contrast in (a). The host lattice of the corner-shared octahedra is continuous, but the pattern of occupied tunnels (full circles) is interrupted at the boundary (21). 2
a
zigzag,
out-of-phase boundary.
5
T h e correlation
s
between the
thin
c r y s t a l i m a g e contrast a n d the structure is c l e a r l y s h o w n . I t has b e e n p o s s i b l e f r o m these studies to e x p l o r e the c o m p o s i t i o n l i m i t s of e a c h p h a s e b y o b s e r v i n g d i r e c t l y the o c c u p a n c y of t h e tunnels w h e n p h a s e s e p a r a t i o n o c c u r r e d . I t has b e e n p o s s i b l e to see a v a r i e t y of i n t e r g r o w t h p a t t e r n s , a n d i t has b e e n p o s s i b l e to d e t e r m i n e n e w structures by direct observation. The Block Structures.
I f t h e o x y g e n d e f i c i e n c y is f u r t h e r i n c r e a s e d
b y c o n t i n u e d increase of N b
5 +
ions, the R e 0 - r e l a t e d structures s w i t c h 3
once m o r e i n t o a different r e g i m e , i n t h i s case t h e c r y s t a l l o g r a p h i c shear c h a r a c t e r i s t i c of t h e m o d e r a t e l y r e d u c e d W 0
3
occurs i n t w o directions
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
2.
EYRING
High-Resolution
Electron
to g i v e infinite c o l u m n s of R e 0
3
39
Microscopy
s t r u c t u r e of s m a l l d i m e n s i o n s i n t w o
d i r e c t i o n s s h i f t e d w i t h respect to e a c h other a l o n g the c o l u m n s u c h t h a t e d g e s h a r i n g occurs at t h e i r b o u n d a r i e s . Figure 7
(23)
gives a sqhematic r e p r e s e n t a t i o n of
b l o c k s t r u c t u r e of the p o l y m o r p h H - N b 0 2
5
the idealized
b o t h as a p r o j e c t i o n of e d g e -
a n d c o r n e r - s h a r i n g o c t a h e d r a a n d as a n abstract r e p r e s e n t a t i o n s h o w i n g o n l y t h e b l o c k s a n d the c o l u m n s of t e t r a h e d r a l l y c o o r d i n a t e d N b atoms. N o t i c e that 3 X 4 X
o c t a h e d r a l c o l u m n s are r e g u l a r l y i n t e r s p e r s e d w i t h 3
4 c o l u m n s s h e a r e d a n d s h i f t e d one-half a n o c t a h e d r a l distance
to
p e r m i t edge s h a r i n g . I n F i g u r e 8 ( 2 3 ) a t h i n c r y s t a l , w h i c h is p r i m a r i l y of t h e H - N b 0 Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
2
structure, is i n t e r r u p t e d b y a f a u l t i n w h i c h t w o 3 X 4
5
c o l u m n s are
i n t e r g r o w n . T h i s is s i m i l a r to a s t a c k i n g f a u l t of layers of atoms.
Notice
that t h e a p p a r e n t r e d u c t i o n r e s u l t i n g i n i n c r e a s e d edge s h a r i n g has b e e n a c c o m m o d a t e d i n a most i n g e n i o u s w a y , p r e s e r v i n g the o c t a h e d r a l c o o r d i n a t i o n o f most of the m e t a l atoms.
Acta Crystallographica
Figure 7. (a) Idealized model of the structure of H-Nb 0 and (b) its simple representation. The darker and lighter squares, which form 3 X 5 and 3X4 blocks by their corner sharing, are centered about the two levels perpendicular to the b-axis and are 1.9 A apart. The black circles represent the tetrahedrally coordinated Nb atoms. The unit cell is outlined (a = 21.2, b = 3.8, c = 19.4Aandp = 120°) (23). 2
5
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Figure
8.
Two-dimensional
2
s
lattice image of H-Nb O showing defects parallel to the c-axis. Inset corresponds to the enclosed area (23).
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
o w
Hi
o 2
O
3
w K H
a
n
C/J
o r e
2.
EYRING
High-Resolution
Electron
41
Microscopy
T h e studies so f a r i l l u s t r a t e d h a v e e s t a b l i s h e d that w h e n a s u i t a b l e c r y s t a l is v i e w e d i n a h i g h - r e s o l u t i o n m i c r o s c o p e
w i t h the appropriate
o r i e n t a t i o n a n d w i t h t h e correct a d j u s t m e n t o f t h e e l e c t r o n optics a n d p h y s i c a l c h o i c e o f reflections, a n i m a g e is o b t a i n e d that c a n b e i n t e r p r e t e d i n t u i t i v e l y i n terms of t h e t w o - d i m e n s i o n a l p r o j e c t e d crystal.
potential of the
F u r t h e r m o r e , this h i g h - r e s o l u t i o n i m a g e reveals defects
when
t h e y o c c u r b e y o n d t h e p o i n t - t o - p o i n t r e s o l u t i o n , w h i c h is u s u a l l y 3.5 A or better i n m i c r o s c o p e s p r e s e n t l y a v a i l a b l e . B e y o n d t h e r a t h e r t w o - d i m e n s i o n a l defects just d i s c u s s e d , i t h a s
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
b e e n p o s s i b l e to observe p o i n t defects i n some o f these b l o c k structures. S u c h defects h a v e b e e n d e s c r i b e d , f o r e x a m p l e , b y I i j i m a et a l .
(24).
I n F i g u r e 9 ( a ) a p o i n t defect is c l e a r l y s h o w n i n t h e 3 X 4
block
structure of N b i 0 9 , w h e r e a w h i t e spot i n d i c a t i n g o n e of t h e square 2
2
tunnels is r e p l a c e d b y a b l a c k spot, r e s u l t i n g f r o m a shift i n t h e a t o m i c positions.
F i g u r e 9 ( b ) gives t h e i r i n t e r p r e t a t i o n o f t h e a n a t o m y of t h e
d e f e c t — t w o d i s p l a c e d i n t e r s t i t i a l m e t a l atoms a n d t w o excess atoms.
oxygen
F i g u r e 9 ( c ) shows t h e locations of t h e d i s p l a c e d m e t a l atoms i n
t h e p e r f e c t s t r u c t u r e , s u g g e s t i n g t h a t t h e defects c o u l d b e a n n e a l e d o u t ( o r p r o d u c e d i n r a r e cases) b y h e a t i n g w i t h t h e e l e c t r o n b e a m .
That
this is t r u e is i l l u s t r a t e d i n F i g u r e 10, w h e r e i n the s e q u e n c e ( a ) , ( b ) , (c),
defects a p p e a r a n d , m o r e often, d i s a p p e a r as a f u n c t i o n o f t i m e
i r r a d i a t e d i n the e l e c t r o n b e a m .
STATES O F AMERICA
T h e p o i n t defects a r e t h o u g h t t o b e d u e t o o n l y a f e w atoms a n d n o t to a f e w c o l u m n s of atoms.
F u r t h e r m o r e , t h e defects c o u l d b e a s c r i b e d
Figure 9a. Enlarged image of the black spot appearing in Figure 10(c). The position of the spot corresponds to one of the 2X3 channels in a block (24).
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
42
A CONTEMPORARY
OVERVIEW
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
SOLID S T A T E C H E M I S T R Y :
Figure
9c.
Perfect structure corresponding
to the one in Figure
9b
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
(24)
2.
EYRING
High-Resolution
Electron
43
Microscopy
A s has b e e n p o i n t e d o u t ,
H R T E M on Fluorite-Related Structures.
H R T E M t e c h n i q u e s are best a p p l i e d to crystals w h o s e i n t e r e s t i n g s t r u c t u r a l r e l a t i o n s h i p s are s h o w n i n p r o j e c t i o n w h e n v i e w e d a l o n g a v e r y short axis. T h i s is true b o t h i n t h e o r y a n d p r a c t i c e . T h e systems of R e 0 3
r e l a t e d structures d i s c u s s e d so f a r a r e n e a r l y i d e a l i n this respect, a n d t h e y h a v e r e v e a l e d t h e i n t i m a t e details of t h e i r s t r u c t u r a l r e l a t i o n s h i p s a n d i m p e r f e c t i o n s i n a 'shameless w a y . W e n o w demonstrate t h e use of H R T E M o n a m o r e c o m m o n t y p e of s t r u c t u r e , w h i c h does n o t h a v e a v e r y short axis i n one d i r e c t i o n w i t h l a r g e d i m e n s i o n s i n t h e o t h e r t w o a n d h e n c e strains t h e assumptions o f t h e present c a l c u l a t i o n a l a b i l i t i e s
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
and
t h e c a p a b i l i t i e s of t h e m i c r o s c o p e .
F o r this p u r p o s e
w o r k d o n e o n t h e r a r e ejirth oxides, w h i c h are T h e structures of i n t e r m e d i a t e phases
fluorite-related
i n the
we review systems.
fluorite-related
rare
e a r t h oxides h a d b e e n s t u d i e d b y c o n v e n t i o n a l d i f f r a c t i o n means a n d b y i n d i r e c t means, s u c h as e l e c t r i c a l c o n d u c t i v i t y a n d t h e pressure d e p e n d ence of c o m p o s i t i o n , for m a n y years w i t h o u t a p p r o a c h i n g a satisfactory u n d e r s t a n d i n g o f t h e s t r u c t u r a l basis of t h e h o m o l o g o u s series of i n t e r m e d i a t e phases.
F o r a n u n d e r s t a n d i n g of t h e c h e m i s t r y of a n y m a t e r i a l ,
the s t r u c t u r a l p r i n c i p l e r e l a t i n g d i s t i n c t phases a n d t h e n a t u r e of t h e
Figure
10. (a,b,c) Series of pictures taken at several-minute intervals, showing the effect of electron irradiation on the black spots (24)
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
44
SOLID
STATE
CHEMISTRY:
A CONTEMPORARY
OVERVIEW
12
t 10
12'
t Journal of Solid State Chemistry
Figure 11. Projections of the unit cells of the fluorite-related homologous series of the rare earth oxides along the common a-axis, [211 ] . Notice that the unit cell of monoclinic 12 is obtained by twinning the primitive 12 about (110) and that 12' is formed when 12 is further twinned about (Oil). The monoclinic unit cell of 10 is formed analogously to 12' from the primitive 10. The monoclinic unit cells all have a common ac plane, different from that common to the primitive unit cells (26). F
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
EYRING
High-Resolution
Electron
Microscopy
45
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
2.
Figure 12. Calculated n-beam crystal structure images for the (100) zone of PryOtg. Calculations were made with atomic-scattering factors (6X6 unit cells). Notice that the image at 27-A thickness and 900-A underfocus is a projection of the actual arrangement of two columns of oxygen vacancies per unit cell. A similar image recurs at about 135-A thickness. The other most prevalent image has one spot per unit cell and, although unequivocably recognizable, does not correspond to the projected potential (11). 7
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980. 7
J2
12
7
7
Figure 13. Observed (100) image of Pr 0 spot per unit cell, (b) A thick image of Pr 0 . cancy arrangement 3
4
12
3
k
12
7
12
and Zr Sc 0 . (a) A typical image of Pr 0 with one (c) A thin-crystal image of Zr Sc 0 , showing the vaon the right-hand side (11).
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
EYRiNG
High-Resolution
Electron
Microscopy
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
pq
a. 3.3
*s ο s
8-fill
II
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
SOLID S T A T E C H E M I S T R Y :
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
48
Figure
A CONTEMPORARY
OVERVIEW
15. Observed (100) image of Pr 0 . Inset shows the correspondence of the image to that calculated for a thin crystal (28). 9
9
16
i s o l a t e d defects i n v o l v e d i n a n y associated delineated.
S u s t a i n e d efforts
to
get
chemical change must
this i n f o r m a t i o n h a d
been
be only
m a r g i n a l l y successful before H R T E M w a s a p p l i e d . T H E INTERMEDIATE PHASES.
C o m p o s i t i o n a l l y , the h i g h e r oxides
of
the rare earths ( C e , P r , a n d T b ) h a d b e e n s h o w n to b e l o n g to a h o m o l o g o u s series R 0 N
4 < Ce 0 4
n < 6
2 n
- 2 , w i t h R m e a n i n g rare e a r t h , a n d n a n integer,
oo ( n =
and P r 0 4
fluorite-related,
4 , 7 , 9 , 1 0 , 1 1 , 1 2 , oo k n o w n ) .
E x c e p t for h e x a g o n a l
( h i g h t e m p e r a t u r e ) , a l l the phases w e r e k n o w n to b e
6
but
determination
of
t h e i r t r u e u n i t cells h a d
been
i m p o s s i b l e . T h e p r o b l e m s t e m m e d m a i n l y f r o m t h e difficulty i n g r o w i n g single crystals of
s u i t a b l e size a n d p e r f e c t i o n
without
unmanageable
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980. tl
2
Figure 16. Calculated n-beam crystal structure images of the proposed model of delta-phase Tb O 0' The image at a thickness of 26 A at 900-A underfocus corresponds to the projected potential of the proposed structure (28).
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
50
SOLID S T A T E
CHEMISTRY:
A CONTEMPORARY
OVERVIEW
Figure 17. Observed image of Tb O . There are clearly two spots per unit cell corresponding closely to the proposed structure (inset is calculated thin-crystal image) (28). lt
twinning.
20
T h e e l e c t r o n m i c r o s c o p e is q u i t e c a p a b l e of e x a m i n i n g t h i n
crystals 1 y? i n area, w h i c h are t y p i c a l l y u n t w i n n e d a n d q u i t e s u i t a b l e for observation. A s t u d y o f a l l t h e t h e n - k n o w n phases i n the P r O ^ a n d TbOa- systems w e r e m a d e b y K u n z m a n n a n d E y r i n g (26), niques.
using electron optical tech
T h i s s t u d y r e v e a l e d the u n i t cells of a l l t h e e s t a b l i s h e d phases
a n d suggested a s t r u c t u r a l p r i n c i p l e for the o d d m e m b e r s of t h e series. T h e researchers f o u n d that i f the crystals w e r e v i e w e d d o w n t h e i r a-axis ( i n the ( 2 1 1 ) z o n e , w h e r e F stands f o r fluorite i n d i c e s ) , t h e y e x h i b i t e d F
a r e g u l a r l y v a r y i n g p r o j e c t i o n p r o f i l e , as i l l u s t r a t e d i n F i g u r e 11. i n d i c a t e s t h a t t h e a-axis is c o m m o n to a l l t h e h o m o l o g o u s
This
series, a n d i n
t h a t l i m i t e d sense i t is t h e largest fluorite d e f e c t feature t h a t a l l phases have i n common. F u r t h e r e x a m i n a t i o n reveals, h o w e v e r , that t h e series is d i c h o t o m o u s w i t h the o d d - n g r o u p c h a r a c t e r i z e d b y a c o m m o n
ac p l a n e a n d t h e
e v e n m e m b e r s also w i t h a c o m m o n b u t different ac p l a n e . T h a t i s , t h e o d d m e m b e r s also h a v e a c-axis i n c o m m o n , a n d t h e e v e n m e m b e r s a c o m m o n b u t different c-axis. I n d e e d , t h e e v e n m e m b e r s are f o r m e d b y
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
2.
EYRING
High-Resolution
Electron
Microscopy
51
.4
(a)
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
ir''' °
oxygtn
(b)
i " ' '
•
tlx-coordlnate
vacancy
•
tcvon-coordlnata
cation
• tiaht-coordlnatt
cation cation
Figure 18. Projection in (211) of two possible structures of Pr tO (n = 12). (a) Model with PI symmetry, (b) Model with Pm symmetry (29). F
2
t w i n n i n g a p r i m i t i v e c e l l , r e l a t e d to t h e o d d m e m b e r s
(and shown i n
F i g u r e 1 1 ) , at the u n i t c e l l l e v e l , g i v i n g a f o l d e d defect feature folds are r e l a t e d to t h e ac p l a n e s of the o d d m e m b e r s .
u
whose
T h i s ac p l a n e is
c h a r a c t e r i z e d b y h a v i n g a l l the m e t a l atoms i t contains six- ( r a t h e r t h a n s e v e n - or e i g h t - ) c o o r d i n a t e d w i t h the t w o v a c a n t o x y g e n p o s i t i o n s across t h e b o d y d i a g o n a l of t h e i r c o o r d i n a t i o n c u b e at a n a n g l e of 73° to t h e ac plane.
T h e r e f o r e , the largest feature i n c o m m o n
to a l l t h e phases is
this ac p l a n e , w h i c h , i n the e v e n m e m b e r s , is f o l d e d i n a z i g z a g w a y .
Figure 19. Crystal structure image in (211) of a thin crystal of Pr p The inset is a calculated image from the PI structural mole, Figure 18 (29). F
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
2}
w
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980. 2k
hk9
n
kk
Figure 20. Calculated image for Tb O a polymorph of Fr O . Notice the shift in the rows of undulating oxygen vacancy pairs in the images at a thickness of 26 A and a 900-A underfocus with respect to the inset of Figure 19 (28).
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
2.
EYRING
High-Resolution
T h e s t r u c t u r e of P r O i 7
of n e u t r o n p o w d e r
Electron
53
Microscopy
has b e e n d e t e r m i n e d b y t o t a l profile analysis
2
diffraction data.
T h i s has s e r v e d as t h e basis
p r e d i c t i o n of m e t a l a t o m shifts i n t h e t r i a l structures F r o m observed
a n d c a l c u l a t e d h i g h - r e s o l u t i o n i m a g e s , i t has
p o s s i b l e to d e t e r m i n e structures f o r t h e o d d m e m b e r s Tbu0 o
(PrnO
2
unit cell). 12-17.
T h e calculated and observed 7
9
6
Pr Oi , 7
been
Pr Oi ,
2
9
6
is o b s e r v e d to h a v e a q u i t e different a n d v e r y l a r g e
2 0
T h e s t u d y of P r O i
t h a t of P r O i
of
(27).
2
images are g i v e n i n F i g u r e s
w a s d o n e b y S k a r n u l i s et a l . ( I I ) ,
while
was made by Tuenge and E y r i n g (28), a n d T b n O
studied b y K u n z m a n n and E y r i n g (26)
2 0
and Tuenge and E y r i n g
was (28).
I n t h e case of P r O i , w h o s e s t r u c t u r e is k n o w n ( 2 7 ) , t h e r e s o l u t i o n of Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
7
the microscope
2
is not q u i t e sufficient to separate t h e r o w s of
spots t h a t are c a l c u l a t e d for t h i n crystals a n d t h a t r e c u r at thicknesses.
vacancy greater
T h e s e r o w s of v a c a n c i e s are c l e a r l y r e s o l v e d , h o w e v e r , i n
t h e h i g h e r m e m b e r s , a n d t h e r e is satisfactory a g r e e m e n t b e t w e e n c a l c u -
Figure
21.
Observed crystal structure image of Tb fi , Figure 20 (28) 2
u
calculated
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
in
54
SOLID S T A T E C H E M I S T R Y : A C O N T E M P O R A R Y
OVERVIEW
Weight c h a n g e , mg 30
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
20
1.50
40
1.65
50
1.70
60
1.75
70
80
90
1.95
1.80
Composition, x in PrO
2.00
x
Figure 22. Phase diagram of the PrO -0 system. Prominent features are the homologous series R 0 -2> 4 < n < oo, and two nonstoichiometric phases a and 7 h a v e v e r y s i m i l a r d e f e c t structures,
d i f f e r i n g o n l y b y the s p a c i n g of p l a n a r d e f e c t features, yet the i s o m o r p h i n the t h r e e series is R O i . 7
2
F o r e x a m p l e , for n =
only
12 t h e
one p o l y m o r p h seen so far i n the PrO^. system is different f r o m a n y of the three or m o r e seen i n the T b O ^ system.
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
H R T E M in the Study of Phase Reactions.
I t is c l e a r b y n o w t h a t
H R T E M c a n b e u s e d to get s t r u c t u r a l i n f o r m a t i o n o n a v a r i e t y of phases. I n this case the s p e c i m e n a n d m i c r o s c o p e c o n d i t i o n s m u s t b e k n o w n a n d controlled very carefully.
I n m a n y other
cases,
however,
where
structures are k n o w n , u n k n o w n , or i m m a t e r i a l , the phases, phase
the rela
t i o n s h i p s , a n d the i n t e r g r o w t h characteristics are c l e a r l y i d e n t i f i a b l e b y the c e l l p a r a m e t e r s or s y m m e t r y characteristics, w h i c h are r e v e a l e d
by
t h e i n t e n s i t y d i s t r i b u t i o n i n the i m a g e b u t w h i c h do not c o r r e s p o n d
to
the a r r a y of the c h a r g e d e n s i t y of the c r y s t a l . It is p r o b a b l e t h a t the c o n t r i b u t i o n of H R T E M to s o l i d state c h e m i s t r y w i l l be greatest i n these
Figure 23. Image of Zr Sc O in the (1H)F zone. Notice domains of the n = 4 phase about 70 A across imbedded in a matrix of an n = 7 phase. The large hexagonal pattern is due to an overlay of the two phases in perfect register. 029
0m71
lm6Ji
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
56
CHEMISTRY:
A CONTEMPORARY
OVERVIEW
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
SOLID S T A T E
Figure 24. Image of intergrowths of members of the homologous series, (a) Lattice image from (100) , showing intergrowth with iota. Domains of n = 4 with n = 7 phase. Notice the thinness of the interface between these phases of different structures, (b) (lll)p lattice image, showing a domain of Pr 0 in a crystal that is largely sigma phase. An intimate intergrowth between n = 7 and n = 9 phases. These phases are perfectly coherent, having the same ac planes at the interface and differing only in the width of the slab—in this case, one unit cell wide for a few cycles (32). 9
9
12
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
11
20
x
n
F
2n 2
Figure 25. An image of multiple-phased TbO down [211 ] . The specimen was prepared by reduction of Tb O in the microscope. Integers indicate n in Tb 0 . for cell projections in the various parts. Strain fields are apparent in the n = 7, n = 11 phase interface (28).
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
58
SOLID S T A T E
CHEMISTRY:
A CONTEMPORARY
OVERVIEW
Figure 26. An image of inter grown slabs of n = 12 and n = 11 phases in highly oxidized TbO . In this projection the body diagonal of n = I I is the same length as the edge of n = 12, permitting almost perfect coherence (28). x
latter cases w h e r e r e a c t i o n i n f o r m a t i o n , i f n o t s t r u c t u r a l i n f o r m a t i o n , is g i v e n d i r e c t l y . C h e m i c a l r e a c t i o n i n the s o l i d state is a c c o m p a n i e d b y the r e d i s t r i b u t i o n of m a t e r i a l , a n d this is r e c o r d e d d i r e c t l y b y H R T E M . T h e use of H R T E M to g i v e i n f o r m a t i o n a b o u t t h e i n d i v i d u a l defects i n solids, w h i c h are t h e agents of c h e m i c a l c h a n g e , h a v e b e e n r e p e a t e d l y m e n t i o n e d i n t h e p a r a g r a p h s a b o v e w h e r e t h e R E 0 - r e l a t e d structures 3
w e r e d i s c u s s e d . W e close o u r d i s c u s s i o n w i t h some examples of crystals of t h e
fluorite-related
materials undergoing change.
T h e p h a s e d i a g r a m of the P r O ^ system is s h o w n i n F i g u r e 22.
Of
interest h e r e are i m a g e s of t r a n s f o r m a t i o n events i n t h e t w o - p h a s e d
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Microscopy
59
regions. I n F i g u r e 23 the i n t e r g r o w t h of t h e n =
4 a n d n ^= 7 phases
2.
EYRING
High-Resolution
Electron
i n the r e l a t e d system Zr^ScyOs are o b s e r v e d i n t h e ( l l l ) p z o n e ; w e h e r e t h e p e r f e c t t o p o t a x i a l r e l a t i o n s h i p a n d the coherence phases.
T h e r e is a m a t r i x of R O i 7
2
see
of t h e t w o
i n w h i c h d o m a i n s of R 0 4
of
6
about
7 0 - A d i a m e t e r are d i s p e r s e d . T h e s e t w o phases are different e n o u g h i n s t r u c t u r e t h a t t h e y d o n o t seem to i n t e r g r o w at t h e u n i t c e l l l e v e l . M i c r o g r a p h s of p u r e PrOa. i n this c o m p o s i t i o n r e g i o n are s i m i l a r {see
Figure
24(b)]. In Figure 24(a)
the i n t e r g r o w t h of the n =
7 and n =
9 phases
I n these cases t h e structures are v e r y s i m i l a r , d i f f e r i n g o n l y
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
is o b s e r v e d .
Figure 27. Sequential images from a (211)p zone, showing nucleation and growth of sheets of n = 7 into ann = 9 phase of PrO . Time between images about 2 min (30). x
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
60
SOLID S T A T E C H E M I S T R Y : A C O N T E M P O R A R Y O V E R V I E W
b y a small variance i n the
fc-axis,
and have
i n t e r g r o w t h of
variable
thickness across t h e c o m m o n ac planes. I m a g e s r e s e m b l e structures w i t h f r e q u e n t s t a c k i n g faults. T h e a l t e r n a t i n g of n =
7 and n =
9, one u n i t
c e l l t h i c k , c a n b e r e a d i l y d i s c e r n e d for a short distance. I n the T b O a . - 0 n =
7 and n =
t w o phases. n =
2
system, t h e p r i n c i p l e t w o - p h a s e r e g i o n is b e t w e e n
11. F i g u r e 25 shows a r e g i o n of i n t e r g r o w t h of
these
B e t w e e n lines of g o o d register, one c a n observe 11 r o w s of
7 a n d 7 r o w s of n =
11, w i t h t h e r e g i o n b e t w e e n c l e a r l y m a r k e d
b y d a r k s t r a i n fields. F i g u r e 26 shows a r e g i o n of i n t e r g r o w t h of n = and n =
11, w h e r e the p r o j e c t e d b o d y d i a g o n a l of n =
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
e d g e of n =
12
11 equals t h e c e l l
12.
I n c e r t a i n cases c h e m i c a l c h a n g e c a n b e f o l l o w e d h i g h r e s o l u t i o n . F i g u r e 27 ( 3 0 ) a few minutes apart (the
exposure
d e c o m p o s i t i o n of a c r y s t a l of n = a n d r a p i d g r o w t h of t h e n =
as i t o c c u r s at
gives a sequence of images t a k e n o n l y t i m e is a b o u t 7 sec)
d u r i n g the
9, s h o w i n g d r a m a t i c a l l y the n u c l e a t i o n 7 p h a s e o c c u r r i n g a l o n g the ac
plane.
T h e r e is m u c h s l o w e r g r o w t h a l o n g b.
Conclusion T h e t e c h n i q u e a n d use of H R T E M i n b r o a d studies of the m o r e o r less i d e a l s t r u c t u r a l systems, b a s e d u p o n the R e 0
3
s t r u c t u r e , has b e e n
i l l u s t r a t e d . I n this case i n d i v i d u a l e x t e n d e d a n d p o i n t defects h a v e b e e n seen i n s p l e n d i d d e t a i l , i n c l u d i n g f o r m a t i o n a n d d e s t r u c t i o n ; regions
of
coherent i n t e r g r o w t h of c o m p o n e n t parts h a v e b e e n o b s e r v e d at the l e v e l of r e s o l u t i o n of c o o r d i n a t i o n o c t a h e d r a ; a n d the i n d i v i d u a l phases
have
b e e n d i s p l a y e d w i t h images f a i t h f u l to the c h a r g e d e n s i t y p r o j e c t i o n
to
a r e s o l u t i o n of 3.5 A . I n some cases n e w structures h a v e b e e n d i r e c t l y indicated. I n a d d i t i o n , s i m i l a r studies of a n o r d i n a r y system n o t so i d e a l l y s u i t e d to H R T E M , the f l u o r i t e - r e l a t e d system, h a v e b e e n d e s c r i b e d .
In
this case w e n o t e that the best s t r u c t u r a l i n f o r m a t i o n a v a i l a b l e f o r t h e i n t e r m e d i a t e phases is o b t a i n e d b y d i r e c t o b s e r v a t i o n of i m a g e contrast. A l s o , the details of p h a s e reactions are s h o w n t o b e r e v e a l e d d i r e c t l y b y H R T E M images. I n this case, too, n e w phases are o b s e r v e d a n d c h a r a c t e r i z e d for t h e first t i m e . C o m p u t e r packages
for t h e c a l c u l a t i o n of i m a g e s are a v a i l a b l e t o
m a k e m o n i t o r i n g of results possible, a n d m i c r o s c o p e s are b e i n g i m p r o v e d and
invented.
There should be a bright future for the application of
this t e c h n i q u e to the s t u d y of s o l i d state p r o b l e m s .
The number
cases s t u d i e d so f a r is m i n i s c u l e c o m p a r e d to the o b v i o u s a p p l i c a t i o n s .
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
of
2.
EYRING
High-Resolution
Electron
Microscopy
61
Glossary of Symbols H R T E M = high-resolution transmission electron microscopy H R E M = high-resolution electron microscope d = h a l f w i d t h of the s p r e a d f u n c t i o n A = w a v e l e n g t h of the e l e c t r o n C
s
=
s p h e r i c a l a b e r r a t i o n coefficient
k e V = volts X 10" MeV = =
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
[uvw]
3
volts X 10"
6
i n d i c e s of a d i r e c t i o n i n the d i r e c t l a t t i c e ( z o n e a x i s )
(uvw)
= i n d i c e s of a " f o r m " of z o n e axis
(hid)
=
CS = a, b c = y
n =
i n d i c e s of a set of p a r a l l e l planes c r y s t a l l o g r a p h i c shear u n i t - c e l l vectors a n i n t e g e r m a r k i n g a m e m b e r of a h o m o l o g o u s series
R = rare earth element
i= R 0 , n = 7 £= R 0 , n— 9 €
_
R
7
1 2
9
1 6
1 0
O
8= R O u
1 8
2 0
, n =
10
, n — 11
P = Ri 022, n = 12 2
Literature
Cited
1. Menter, J. W. Proc. R. Soc. London, Ser. A 1956, 236, 119. 2. Cowley, J . M. "Diffraction Physics"; N o r t h - H o l l a n d : Amsterdam, 1975; Chapters 13, 17, 18. 3. Cowley, J. M. Annu. Rev. Phys. Chem. 1978, 29, 251. 4. Allpress, J. A. Nat. Bur. Stand. (U.S.) Spec. Publ. 1972, 364, 87. 5. Allpress, J. A.; Sanders, J. V. J. Appl. Crystallogr. 1973, 6, 165. 6. Allpress, J. A.; H e w a t , E. A.; Moodie, A . F.; Sanders, J. V. Acta Crystallogr., Sect. A 1972, 28, 528. 7. O'Keefe, M. A. Acta Crystallogr., Sect. A 1973, 29, 322. 8. O'Keefe, M. A.; Buseck, P. R.; Iijima, S. Nature 1978, 274, 322. 9. Pierce, L.; Buseck, P. R. Science 1974, 186, 1209. 10. Iijima, S. J. Appl. Phys. 1971, 42, 5891. 11. Skarnulis, A . J.; Summerville, E.; E y r i n g , L. J. Solid State Chem. 1978. 23, 59. 12. H o r i u c h i ; S.; Matsui, Y.; Bando, Y . Jpn. J. Appl. Phys. 1976, 15, 2483. 13. H o r i u c h i , S.; K i k u c h i , T . ; Goto, M. Acta Crystallogr., Sect. A 1977, 33, 701. 14. H o r i u c h i , S.; Matsui, Y . ; Bando, Y . ; Sekikawa, Y . ; Sakaguchi, K . Proc. Intern. Conf. High-Voltage Microscopy, 5th, Kyoto, 1977. 15. V e b l e n , D. R.; Buseck, P . R.; B u r n h a m , C . W . Science 1977, 198, 359. 16. M i l l w a r d , G . R.; Jefferson, D . A.; Thomas, J. M. J. Microscopy 1978, 113, 1. 17. Cowley, J. M. Annu. Rev. Mater. Sci. 1976, 6, 53. 18. Iijima, S. J. Solid State Chem. 1975, 14, 52. 19. Andersson, S. " T h e Chemistry of Extended Defects in Nonmetallic Solids"; E y r i n g , L.; O'Keeffe, M., E d s . ; N o r t h - H o l l a n d : Amsterdam, 1970.
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
62 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch002
30. 31. 32.
SOLID S T A T E C H E M I S T R Y :
A CONTEMPORARY
OVERVIEW
Anderson, J. S.; H y d e , B . G . J. Phys. Chem. Solids 1967, 28, 1393. Iijima, S.; Allpress, J . A. Acta Crystallogr., Sect. A 1974, 30, 22. I b i d . , 29. Iijima, S. Acta Crystallogr., Sect. A 1973, 29, 18. Iijima, S.; K i m u r a , S.; Goto, M. Acta Crystallogr., Sect. A 1973, 29, 632. Skarnulis, A. J.; Iijima, S.; Cowley, J . M. Acta Crystallogr., Sect. A 1976, 32, 799. K u n z m a n n , P . ; E y r i n g , L. J. Solid State Chem. 1975, 14, 229. V o n Dreele, R. B.; E y r i n g , L.; B o w m a n , A. L.; Yarnell, J. L. Acta Crystallogr., Sect. B 1975, 31, 971. Tuenge, R. T.; E y r i n g , L. J. Solid State Chem. 1979, 29, 165. Summerville, E.; Tuenge, R. T . ; E y r i n g , L. J. Solid State Chem. 1978, 24, 21. Inaba, H.; Lin, S. H.; E y r i n g , L., unpublished data. Escher, M. C . Eight Heads; Escher Foundation, Haags Gemeentemuseum: T h e H a g u e , Grauenhage, Denmark. Goodenough, J . B.; W h i t t i n g h a m , M. S., E d s . I n " S o l i d State Chemistry of Energy Conversion and Storage," Adv. Chem. Ser. 1977, 163.
RECEIVED
September 18, 1978.
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.