15 Rare Earth Intermetallics for Magnetostrictive
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
Devices J O S E P H B.
MILSTEIN
1
N a v a l Research Laboratory, Washington, D.C. 20375
A discussion
of methods
of preparation
cubic
Laves phase compounds,
tions
is given.
studied
might be utilized
of the unusual
these physical
properties
R E F e 2 crystals,
confirmation
properties
of
the
methods by
materials.
in
measuring of the
inter-
and iron atoms in
single-ion
elucidation
of solu-
prepared
of the
obtained
anisotropy,
for and preferred
in both bulk
preparative
of rare-earth
to these systems,
crystals
the materials
lead to the explanation
interactions
the magnetocrystalline
of single
and their solid
devices are provided
results
atomic magnetic
the potential
the
physical
experimental
materials
for
of how
in magnetostrictive
Fundamental
appropriate
2
Motivation
and an explanation
a review
REFe ,
of the
model
as
nature
of
and a demonstration
mode of application
and surface
wave
of
of the
magnetoacoustic
devices.
ATagnetostrictive
materials have
the
property
that their physical
d i m e n s i o n s are c h a n g e d d u r i n g the process of m a g n e t i z a t i o n . T h e m a g n e t o s t r i c t i v e effect is u s e d , f o r e x a m p l e , i n c e r t a i n sonar devices s u c h as t h e free-flooded n i c k e l s c r o l l m a g n e t o a c o u s t i c t r a n s d u c e r . T h e m a g n e t o s t r i c t i v e s t r a i n a v a i l a b l e i n c u b e - t e x t u r e d o x i d e - a n n e a l e d n i c k e l is o n l y 35 p a r t s p e r m i l l i o n ( p p m ) , h o w e v e r .
L a r g e r strains, a v a i l a b l e at
r o o m t e m p e r a t u r e a n d s m a l l m a g n e t i c fields, w o u l d b e h i g h l y d e s i r a b l e for device applications. T h e l a n t h a n i d e r a r e e a r t h metals e x h i b i t l a r g e m a g n e t o s t r i c t i o n , u p to 10,000 p p m , b u t at c r y o g e n i c t e m p e r a t u r e s . T h e m e t a l s i r o n , c o b a l t , C u r r e n t a d d r e s s : P h o t o v o l t a i c A d v a n c e d S i l i c o n B r a n c h , Solar E n e r g y R e s e a r c h Institute, 1617 C o l e B o u l e v a r d , G o l d e n , C O 80401. 1
T h i s c h a p t e r n o t subject to U . S . c o p y r i g h t . P u b l i s h e d 1980 A m e r i c a n C h e m i c a l Society
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
292
CHEMISTRY:
A
CONTEMPORARY
OVERVIEW
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
SOLID S T A T E
H(kOt) American Institute of Physics
Figure 1.
Room-temperature magnetostrictive strain and strain polarity as a function of magnetic field (5)
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
15. and
Intermetallics
MILSTEIN
for Magnetostrictive
293
Devices
n i c k e l are g o o d ferromagnets at r o o m t e m p e r a t u r e .
One
therefore
m i g h t expect that c o m b i n a t i o n s of these m e t a l s , as alloys or i n t e r m e t a l l i c c o m p o u n d s , c o u l d e x h i b i t l a r g e m a g n e t o s t r i c t i v e strains at r o o m t e m p e r a ture. T h e d i s c o v e r y of l a r g e , r o o m - t e m p e r a t u r e m a g n e t o s t r i c t i v e strains i n t h e class of c u b i c L a v e s - p h a s e ( I )
intermetallic compounds,
REFe , 2
w h e r e R E represents a l a n t h a n i d e rare e a r t h m e t a l , w a s m a d e at t h e N a v a l Research Laboratory ( N R L ) (2) a n d the N a v a l Surface Weapons Center ( N S W C ) (3).
E x a m p l e s of the s t r a i n as a f u n c t i o n of field r e l a
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
t i o n s h i p are s h o w n i n F i g u r e 1 f o r a n u m b e r of Pure binary R E F e however.
2
compositions.
c o m p o u n d s suffer f r o m a n u m b e r of
L a r g e magnetic
fields,
of
the order
of
r e q u i r e d to p r o d u c e the l a r g e magnetostrictions. from a device standpoint.
problems,
several tesla,
are
T h i s is i m p r a c t i c a l
I n c e r t a i n cases m a g n e t i c s a t u r a t i o n is n o t
o b t a i n e d e v e n at 12T. T h e m a g n e t o s t r i c t i v e strains v a r y as a f u n c t i o n of r a r e - e a r t h elements, t e m p e r a t u r e , a n d c r y s t a l l o g r a p h i c o r i e n t a t i o n . m a t e r i a l s are b r i t t l e i n p o l y c r y s t a l l i n e f o r m .
The
T h e r a r e e a r t h metals are
e x t r e m e l y reactive at e l e v a t e d t e m p e r a t u r e s , w h i c h poses serious f a b r i c a tion problems.
L a s t l y , the r a r e e a r t h metals are expensive at this t i m e .
T h e s e p r o b l e m s w i l l b e addressed i n the f o l l o w i n g sections.
The
Physics of Magnetostriction
in REFe
2
Compounds
T h e structure of the c u b i c L a v e s - p h a s e R E F e
2
c o m p o u n d s is s h o w n
i n F i g u r e 2. T h e l a t t i c e p a r a m e t e r for t h e T b , D y , H o , a n d E r b i n a r y c o m p o u n d s are a p p r o x i m a t e l y 7.34, 7.32, 7.30, a n d 7.28 A , r e s p e c t i v e l y (4).
F r o m a n e x a m i n a t i o n of t h e structure, a n d f r o m the l a t t i c e p a r a m
eter, one sees t h a t the shortest r a r e e a r t h - r a r e e a r t h d i s t a n c e is a p p r o x i m a t e l y 3.2 A , r o u g h l y the same or s l i g h t l y shorter t h a n t h a t i n p u r e r a r e - e a r t h metals. T h i s distance w i l l be d i s c u s s e d i n a l a t e r section. How, strictive
t h e n , does one strain
at l o w
o b t a i n a m a t e r i a l t h a t has l a r g e
fields?
The
pure
magneto
binary compositions
d e p e n d i n g o n the r a r e - e a r t h m e t a l , either p o s i t i v e or n e g a t i v e
have,
magneto
s t r i c t i o n ( A ) a n d either p o s i t i v e or negative a n i s o t r o p y constants ( K i , K ) . 2
T h e s e are p r e s e n t e d i n T a b l e I a n d are b a s e d o n o b s e r v e d values a n d t h e o r e t i c a l estimates b y C l a r k ( 5 ) .
T h e a n i s o t r o p y of the R E F e
2
phases
is d o m i n a t e d b y t h e r a r e - e a r t h m e t a l . T o h a v e the best m a g n e t o s t r i c t i v e response a m a t e r i a l s h o u l d h a v e as l a r g e a m a g n e t o s t r i c t i o n ( A ) a n d as s m a l l a t o t a l a n i s o t r o p y ( K )
as
p o s s i b l e , as the figure of m e r i t u s e d , w h i c h is p r o p o r t i o n a l to A / K , w i l l 2
b e m a x i m i z e d . E x a m i n i n g the t a b l e entries, one sees t h a t some c o m b i n a t i o n of T b , D y , H o , a n d F e w i l l y i e l d p o s i t i v e m a g n e t o s t r i c t i o n a n d , i n p r i n c i p l e , zero K
x
a n d K , a s s u m i n g that the parameters A, K i , a n d K 2
m a y be c o m b i n e d i n a l i n e a r m a n n e r .
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
2
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
294
SOLID
o
STATE CHEMISTRY:
O
A ATOM
(
A
) B
CONTEMPORARY
OVERVIEW
ATOM
Figure 2. Crystallographic structure of the cubic (C-15) Laves phase. atoms are large (RE) atoms; B atoms are small (Fe) atoms.
T h e s t u d y of the m a g n e t o s t r i c t i o n a n d a n i s o t r o p y constants
A
as
a
f u n c t i o n of c o m p o s i t i o n is c a r r i e d out best o n h o m o g e n e o u s s i n g l e - c r y s t a l specimens i n o r d e r to o b t a i n the c o m p o s i t i o n a n d c r y s t a l l o g r a p h i c o r i e n t a t i o n d e p e n d e n c e s as a c c u r a t e l y as possible. M a g n e t i c a n i s o t r o p y m e a s u r e ments on R E F e t o r q u e (6)
2
m a t e r i a l s h a v e b e e n c a r r i e d out b y u s i n g t h e m a g n e t i c
and magnetization (7)
techniques.
I n the f o r m e r
technique
one measures d i r e c t l y the energy r e q u i r e d to rotate t h e m a g n e t i z a t i o n f r o m one c r y s t a l l o g r a p h i c d i r e c t i o n to another.
I n the latter
o n e m u s t c a l c u l a t e the a n i s o t r o p y b a s e d o n the m a g n e t i z a t i o n
method behavior
i n selected c r y s t a l l o g r a p h i c d i r e c t i o n s .
Polarity of A , K i , and K2
Table I.
TbFe
2
DyFe
2
HoFe
2
A
+
+
+
#1
-
+
+
K
+
-
+
2
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
15.
Intermetallics
MILSTEIN
for Magnetostrictive
295
Devices
If s u i t a b l e single crystals are a v a i l a b l e , one
m a y w i s h to
study
other p h y s i c a l p r o p e r t i e s as w e l l .
Crystal
Growth crystals.
These
are t h e T r i a r c C z o c h r a l s k i m e t h o d ( 8 , 9 ) , t h e r a d i o f r e q u e n c y ( r f )
T h r e e m e t h o d s h a v e b e e n u s e d for g r o w i n g R E F e
levita-
t i o n C z o c h r a l s k i (10) Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
m e t h o d (11).
2
m e t h o d , a n d the r f l e v i t a t i o n h o r i z o n t a l - z o n i n g
I n a l l cases one m u s t observe c e r t a i n p r e c a u t i o n s because
of the extreme r e a c t i v i t y of r a r e - e a r t h metals.
Titanium-gettered argon
c a n b e u s e d as a p r o t e c t i v e a t m o s p h e r e to p r e v e n t the c o n t a m i n a t i o n of the m e l t b y o x y g e n , i n p a r t i c u l a r . O n e s h o u l d e x c l u d e f o r e i g n m a t e r i a l s to the greatest extent p o s s i b l e , p a r t i c u l a r l y f r o m objects that contact the m e l t , s u c h as seed w i r e s a n d crucibles.
O n e s h o u l d use t h e most r a p i d g r o w t h m e t h o d a v a i l a b l e i n
o r d e r to r e d u c e the t i m e d u r i n g w h i c h c o n t a m i n a t i o n m a y occur.
Addi
t i o n a l l y , one m a y w i s h to h a v e t h e p o s s i b i l i t y of u s i n g a seed i n o r d e r to p r e p a r e
crystals of
materials o f
selected
orientation.
One
s h o u l d use s t a r t i n g
t h e best p u r i t y a v a i l a b l e , e s p e c i a l l y w h e r e h i g h - q u a l i t y
crystals are d e s i r e d .
F o r c o m m e r c i a l p r o d u c t i o n of
REFe
materials,
2
h o w e v e r , the cost of s t a r t i n g m a t e r i a l s m a y l i m i t the p u r i t y of t h e r a r e e a r t h that c a n b e u s e d p r o f i t a b l y . T h e s t a r t i n g c o m p o s i t i o n that s h o u l d be u s e d to p r e p a r e a
given
c o m p o u n d frequently can be determined by consulting a suitable phase diagram.
U n f o r t u n a t e l y , for most rare e a r t h i n t e r m e t a l l i c s , s u c h p h a s e
d i a g r a m s d o n o t exist or are of q u e s t i o n a b l e a c c u r a c y .
Some
systems,
s u c h as E r - F e , h a v e b e e n i n v e s t i g a t e d b y a n u m b e r of w o r k e r s , w i t h v a r y i n g results
(12,13,14).
One
then must work
empirically, using
v a r i o u s s t a r t i n g c o m p o s i t i o n s ; b y c o r r e l a t i n g t h e results o b t a i n e d u n d e r the a p p r o p r i a t e t h e r m o d y n a m i c r e g i m e , o n e c a n d e d u c e c e r t a i n features of the p h a s e d i a g r a m of interest. I n this w a y H o F e a n d E r F e 2
s h o w n to b e h a v e as c o n g r u e n t l y m e l t i n g m a t e r i a l s ( 9 ) .
have been
2
F o r these m a t e
rials, as w e l l as ternaries a n d q u a t e r n a r i e s b a s e d o n H o F e , i t is u s e f u l to 2
start w i t h a 1 % r a r e e a r t h - r i c h c o m p o s i t i o n , t h a t is, R E F e i . , i n o r d e r t o 9 8
p r e v e n t the f o r m a t i o n of second-phase m a t e r i a l . T h e s t a r t i n g c o m p o s i t i o n c h o s e n i m p l i e s t h a t for a c o n g r u e n t l y m e l t i n g m a t e r i a l t h e r a r e e a r t h s h o u l d c o n t a i n n o m o r e t h a n 1 % a t o m i c o x y g e n , or r o u g h l y 1 0 p p m oxy 3
g e n b y w e i g h t . I f the o x y g e n c o n c e n t r a t i o n is l a r g e r t h a n this, one r u n s the risk of g r o w i n g a c r y s t a l c o n t a m i n a t e d w i t h ever i n c r e a s i n g q u a n t i t i e s of R E F e
3
p h a s e m a t e r i a l . F o r p e r i t e c t i c m a t e r i a l s , s u c h as D y F e
T b F e , the rare-earth concentration 2
must exceed 3 3 %
atomic b y
2
or an
a m o u n sufficient to c o m p e n s a t e f o r b o t h o x y g e n c o n c e n t r a t i o n a n d t h e r a r e - e a r t h excess r e q u i r e d b y
thermodynamic
considerations.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
It
may
296
SOLID S T A T E
CHEMISTRY: A
CONTEMPORARY OVERVIEW
p r o v e necessary to t r y s e v e r a l s t a r t i n g c o m p o s i t i o n s i n o r d e r to g r o w a desired material, because the oxygen concentration b y weight i n pure c o m m e r c i a l r a r e earths is s o m e w h a t v a r i a b l e a n d m a y r e a c h 1 0 a l t h o u g h 1 0 p p m m a y b e f o u n d m o r e c o m m o n l y i n the m o r e 3
4
ppm,
expensive
d i s t i l l e d grades of the h e a v y r a r e - e a r t h metals. A
convenient
and straightforward method
for preparing starting
melts is the r f l e v i t a t i o n m e l t i n g of ingots of the metals i n t h e d e s i r e d proportions.
R e a c t i o n takes p l a c e
quickly, p r o d u c i n g a homogeneous
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
melt i n minutes. T h e a p p l i c a t i o n of t h e C z o c h r a l s k i m e t h o d r e q u i r e s a seed, w h i c h is d i p p e d i n t o the m o l t e n s t a r t i n g c h a r g e a n d w i t h d r a w n at a selected r a t e u n d e r c o n t r o l l e d t h e r m a l c o n d i t i o n s , l e a d i n g to the g r o w t h of boule.
a
I n the absence of a single c r y s t a l f r o m w h i c h a n o r i e n t e d seed
m a y b e o b t a i n e d , o n e m a y c u t a s e c t i o n of a p o l y c r y s t a l l i n e i n g o t s u c h that a s m a l l n u m b e r of grains, i d e a l l y o n l y one, w i l l contact t h e m e l t u p o n seeding.
A f t e r g r o w i n g a b o u l e , one m a y r e p e a t the process u n t i l
a seed of t h e d e s i r e d o r i e n t a t i o n is o b t a i n e d . T h e q u a l i t y of the g r o w n c r y s t a l w i l l b e d e t e r m i n e d i n p a r t b y t h e p r e s e n c e o r absence of contact b y f o r e i g n solids w i t h the c r y s t a l or the c r y s t a l - m e l t interface as g r o w t h p r o c e e d s .
A
s o l i d t h a t contacts
the
c r y s t a l m a y i n t r o d u c e defects b y a m e c h a n i c a l or a t h e r m a l stress m e c h a n i s m as the c r y s t a l cools f r o m the m e l t i n g p o i n t to r o o m
temperature.
T h e presence of a s o l i d at the c r y s t a l - m e l t i n t e r f a c e c a n result i n the s p u r i o u s n u c l e a t i o n of s e c o n d grains o r other defects.
Such a solid can
b e either a c o n t a i n e r for the m e l t , as i n the B r i d g m a n m e t h o d , or p a r t i c l e s of dross o r d i r t t h a t h e o n the surface of the m e l t .
Dark, apparently
o x i d i c drosses are p r o d u c e d f r e q u e n t l y u p o n a l l o y i n g r a r e earths w i t h t r a n s i t i o n metals. Arc-Powered
Czochralski
Crystal
Growth.
No
single-crystal
g r o w t h a p p a r a t u s or t e c h n i q u e is the best f o r the g r o w t h of a l l crystals. T h e a p p l i c a t i o n of a g i v e n t e c h n i q u e u s i n g c e r t a i n a p p a r a t u s to a selected c r y s t a l g r o w t h p r o b l e m m u s t b e m a d e o n the basis of the p r o p e r t i e s of the d e s i r e d m a t e r i a l a n d the c a p a b i l i t i e s o f the t e c h n i q u e a n d a p p a r a t u s . T h e use b y t h e a u t h o r of a n e l e c t r i c a r c - p o w e r e d C z o c h r a l s k i m e t h o d ( 8 ) f o r t h e g r o w t h of crystals of r a r e e a r t h i n t e r m e t a l l i c c o m p o u n d s b a s e d o n several c r i t e r i a .
T h e compounds
was
are a r c c o m p a t i b l e a n d are
p r e p a r e d frequently b y arc m e l t i n g on a water-cooled
copper hearth.
P r e l i m i n a r y d a t a o n a r c - m e l t e d m a t e r i a l s suggested t h a t t h e d e s i r e d c u b i c compounds
c r y s t a l l i z e d r e a d i l y , m a k i n g the C z o c h r a l s k i t e c h n i q u e
a
n a t u r a l c h o i c e f o r r a p i d c r y s t a l g r o w t h . T h e h i g h r e a c t i v i t y of r a r e e a r t h metals suggested f u r t h e r t h a t c r u c i b l e s b e a v o i d e d i f at a l l possible. A p p r o x i m a t e l y 25 g of p o l y c r y s t a l l i n e m a t e r i a l is t r a n s f e r r e d to the crystal growth furnace.
T h e m a t e r i a l is m e l t e d o n a r o t a t a b l e , c o o l e d
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
15.
MILSTEIN
Intermetallics
for Magnetostrictive
Devices
297
Figure 3. A crystal of Ho Tb Fe grown by the triarc Czochralski method, which was studied by inelastic neutron diffraction methods (20) 088
0
12
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
2
c o p p e r h e a r t h b y the a c t i o n of three electric arcs d i r e c t e d at i t f r o m t h o r i a t e d t u n g s t e n electrodes.
G e t t e r e d a r g o n at a n overpressure
several p o u n d s p e r square i n c h is u s e d as p r o t e c t i v e atmosphere.
of
Once
a p o o l of l i q u i d has b e e n e s t a b l i s h e d , a seed c r y s t a l is d i p p e d i n t o t h e melt and Czochralski growth commences. I n o r d e r to m i n i m i z e r a d i a l t h e r m a l gradients i n t h e system, the m e l t a n d g r o w i n g c r y s t a l are r o t a t e d .
R o t a t i o n of t h e m e l t
effectively
causes t h e l o c a l i z e d arcs to s w e e p the surface o f the m e l t , p r o v i d i n g m o r e u n i f o r m h e a t i n g , e l e c t r o m a g n e t i c s t i r r i n g , a n d the efficient r e m o v a l of dross f r o m the g r o w t h r e g i o n . A c r y s t a l of H o . 8 8 T b . i 2 F e 0
0
2
g r o w n b y this method a n d examined
b y n e u t r o n d i f f r a c t i o n b y N i c k l o w et a l . (15)
is s h o w n i n F i g u r e 3. Crystals
Radiofrequency Levitation Czochralski Crystal G r o w t h .
also h a v e b e e n g r o w n f r o m a w a t e r - c o o l e d H u k i n c r u c i b l e (16),
using
rf i n d u c t i o n m e l t i n g w i t h e l e c t r o m a g n e t i c l e v i t a t i o n of the m e l t . A p p r o x i m a t e l y 150 g of c h a r g e m a t e r i a l is p r e p a r e d . appears u p o n c o m p o u n d i n g
m a y be
removed
Dross that
by etching i n
aqueous
H N 0 , followed by repeated washing w i t h anhydrous methanol.
The
3
c h a r g e is m e l t e d i n the c r u c i b l e , w h i c h is h o u s e d i n a n A . D . m o d e l M P c r y s t a l - g r o w i n g f u r n a c e u n d e r a n overpressure argon.
of
Little
gettered
A seed c r y s t a l is d i p p e d i n t o the m e l t a n d C z o c h r a l s k i g r o w t h
commences. I n t h i s system the t o p p o r t i o n of the m e l t is a p p a r e n t l y the coolest r e g i o n . W h a t e v e r dross is s t i l l present f r e q u e n t l y appears as a t h i n s k i n o r p a t c h o n t h e u p p e r surface of the m e l t . m e c h a n i s m f o r its r e m o v a l .
T h e r e appears to b e
that has p a r t i c u l a t e m a t t e r at the c r y s t a l - m e l t interface.
If
extremely
p u r e s t a r t i n g m a t e r i a l s w e r e u s e d , the dross m i g h t b e absent. author's experience,
no
T h e c r y s t a l therefore grows f r o m a system
u s i n g c o m m e r c i a l r a r e - e a r t h metals, a
I n the
completely
dross-free m e l t surface has n o t b e e n a c h i e v e d .
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
SOLID S T A T E C H E M I S T R Y :
A
CONTEMPORARY
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
298
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
OVERVIEW
15.
Intermetallics
MILSTEIN
for Magnetostrictive
A c r y s t a l of H o . 7 7 T b o . 3 F e 0
[lll]-oriented
2
cylinder was
2
299
Devices
g r o w n b y this method, from w h i c h a
prepared
for
magnetoacoustic
study
by
T i m m e a n d M e e k s ( 1 7 ) , is s h o w n i n F i g u r e 4. In a
Radiofrequency Horizontal Levitation Zone Crystal G r o w t h . recent p a p e r M c M a s t e r s et a l . (11) REFe
2
r e p o r t e d t h e g r o w t h of a n u m b e r of
compositions b y using an rf induction-heated horizontal levitation
zone melting method.
A s is w e l l k n o w n , z o n e m e l t i n g is a t e c h n i q u e
v e r y w e l l s u i t e d t o m a t e r i a l s that d o not m e l t c o n g r u e n t l y
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
as T b F e
2
such
(18),
and D y F e . 2
F r o m the d e s c r i p t i o n g i v e n i t w o u l d a p p e a r that this m e t h o d presents t w o severe p r o b l e m s f r o m t h e c r y s t a l g r o w e r s p o i n t of v i e w . extremely large temperature
First, an
g r a d i e n t m u s t exist v e r t i c a l l y a l o n g
c r y s t a l - m e l t i n t e r f a c e , since t h e top
of
the c h a r g e ,
the
w h i c h is c o o l e d
p r i n c i p a l l y b y r a d i a t i o n , is v e r y n e a r the m e l t i n g p o i n t ( o f t h e o r d e r of 1 0 0 0 ° C ) , w h i l e the l o w e r surface of the s o l i d i f i e d b o u l e , r o u g h l y 1 c m a w a y , rests o n a surface m a i n t a i n e d at a p p r o x i m a t e l y r o o m t e m p e r a t u r e b y w a t e r c o o l i n g . S e c o n d , a s o l i d surface, t h a t of the c r u c i b l e , is present at the g r o w t h interface.
These
circumstances
m a y c o n t r i b u t e to
the
g e n e r a t i o n of defects b y t h e r m a l stress or b y the n u c l e a t i o n of s e c o n d grains, o r to t h e r m a l l y i n d u c e d c o m p o s i t i o n a l v a r i a t i o n s across the c r y s t a l diameter
i n the
case
of
ternary
or
higher-order
systems.
i n the v e r t i c a l d i r e c t i o n , as has b e e n a p p l i e d to R E C o i 2
M i l l e r a n d D ' S i l v a (19),
7
Zoning
systems
by
w o u l d e l i m i n a t e b o t h of these difficulties b u t
w o u l d b e m o r e difficult to p e r f o r m . A c o m p a r i s o n of the results o b t a i n e d b y the three m e t h o d s
appears
in Table II. A l t h o u g h t h e C z o c h r a l s k i m e t h o d s d e s c r i b e d h a v e p r o d u c e d t h e largesta n d the highest- (crystallographic)
quality R E F e
2
crystals to
date,'it
s h o u l d b e n o t e d i n fairness that t h e m a t e r i a l s s t u d i e d are c o n g r u e n t l y melting. Table II.
Properties of Crystals G r o w n by Various Arc Czochralski
Size ( t y p i c a l )
~ 1-cm d i a m e t e r X 1-2-cm length ( ~ 1.5 c m ) 3
Homogeneity
Homogeneous b y microprobe and magnetic torque measurements
Perfection
M o s a i c spread of a b o u t 0.1° ( b u l k , neutron-rocking curve)
Methods
RF Levitation Czochralski
RF Levitation Horizontal
~ 1-cm d i a m e t e r X ~ 9-cm length (-7 cm )
— 1-cm d i a m e t e r X 1-2-cm length (~ 1 cm )
3
M o s a i c spread a b o u t 1° to 3 ° (bulk, neutronr o c k i n g curve)
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
3
300
SOLID S T A T E C H E M I S T R Y : A
Physical
CONTEMPORARY OVERVIEW
Measurements
S i n g l e crystals of c o m p o s i t i o n s
i n the H o - T b - D y - F e
system p r o
2
d u c e d by the C z o c h r a l s k i methods described above have been examined b y a v a r i e t y of p h y s i c a l t e c h n i q u e s , i n c l u d i n g m e a s u r e m e n t s
of
elastic
and inelastic magnetostriction, magnetic anisotropy, neutron diffraction, surface acoustic w a v e ( S A W ) v e l o c i t y , a n d m a g n e t o a c o u s t i c t r a n s d u c t i o n . A b r i e f d e s c r i p t i o n of these measurements
is g i v e n b e l o w ;
for a m o r e
c o m p l e t e d i s c u s s i o n , the o r i g i n a l references s h o u l d b e c o n s u l t e d . Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
I n the H o - T b - D y - F e
2
system the easy d i r e c t i o n of m a g n e t i z a t i o n is
o b s e r v e d to v a r y as a f u n c t i o n of t e m p e r a t u r e a n d c o m p o s i t i o n .
A t room
t e m p e r a t u r e t h e H o - T b s y s t e m exhibits [111] -> [110] -> [100] as easy d i r e c t i o n s as the H o c o n t e n t increases, w h i l e the D y - T b system exhibits [111] - » [100] r e o r i e n t a t i o n o n l y . T h e s p i n r e o r i e n t a t i o n d i a g r a m s
(20)
f o r these systems are s h o w n i n F i g u r e 5. T h e s o l i d lines, w h i c h delineate t h e easy d i r e c t i o n regions, are o b t a i n e d b y t h e o r e t i c a l c a l c u l a t i o n s . h a t c h e d areas c o r r e s p o n d to easy directions o f m a g n e t i z a t i o n i n t h e
The (100)
p l a n e b e t w e e n [110] a n d [100]. T h e circles a n d squares are d a t a p o i n t s . T h i s b e h a v i o r is consistent w i t h the a s s u m p t i o n of K
2
system a n d K
2
>
0 i n the neighbor
T h u s a c o m b i n a t i o n of T b , D y , a n d H o i n
t h e p r o p e r a m o u n t s s h o u l d l e a d to K striction w i l l be small.
> 0 for t h e H o - T b
field
However,
=
K
2
necessary
=
0 at r o o m t e m p e r a t u r e .
to saturate t h e
magneto
since the m a g n e t o s t r i c t i o n
is q u i t e
Aioo, as s h o w n i n T a b l e I I I ( 2 1 ) , i t w i l l
be
necessary to h a v e a t e x t u r e d p o l y c r y s t a l l i n e m a t e r i a l or, i f p o s s i b l e ,
a
s i n g l e - c r y s t a l m a t e r i a l to o b t a i n the best efficiency.
30C-
Journal of Applied Physics
Figure 5a. Spin reorientation diagram for the Ho-Tb-Fe system as a function of rare-earth content and temperature (18) 2
70
80 at%Ho
90
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
100
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
15.
Intermetallics
MILSTEIN
50
for Magnetostrictive
60 ot.%Dy
301
Devices
70
80
Journal of Applied Physics
Figure 5b. Spin reorientation diagram for the Dy-Tb-Fe system as a function of rare-earth content and temperature (18J 2
N e u t r o n d i f f r a c t i o n m e t h o d s h a v e p r o v i d e d several i n t e r e s t i n g d a t a . The
crystallographic
determined
q u a l i t y of
Czochralski-grown
crystals
T r i a r c - g r o w n crystals p r o d u c e r o c k i n g
(10).
has
been
curve
peak
w i d t h s one-tenth that of l e v i t a t i o n - g r o w n crystals. T h e s e d a t a are p r e sented i n F i g u r e s 6 ( a )
and 6(b).
O n e sees c o n c l u s i v e l y the
appreciable
difference i n q u a l i t y , the t r i a r c - g r o w n crystals b e i n g s y s t e m a t i c a l l y m o r e perfect. T h e difference i n q u a l i t y is a s c r i b e d to the absence of dross at the g r o w t h interface i n the a r c - p o w e r e d dross i n the l e v i t a t i o n m e t h o d .
m e t h o d a n d to the presence of
T r i a r c - g r o w n crystals thus are
better for m o r e d e t a i l e d a n d precise measurements grown
specimens.
N e u t r o n inelastic scattering measurements Ho .88Tbo.i2Fe , 0
suited
t h a n are l e v i t a t i o n -
2
ErFe , 2
and
HoFe
2
have been performed
(15,22,23).
A l t h o u g h " there
v a r i a t i o n s i n the d e t a i l e d results o b t a i n e d f r o m these specimens, features are q u i t e systematic.
on are
several
T h e exchange interactions o c c u r as
F e - F e ^ tens of m i l l i e l e c t r o n v o l t s RE-Fe » RE-RE =
1 meV 0.00 ± 0.01 m e V
T h u s the F e - F e i n t e r a c t i o n is r o u g h l y e q u i v a l e n t to t h a t i n p u r e i r o n metal.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
302
SOLID S T A T E
Table III.
CHEMISTRY:
CONTEMPORARY OVERVIEW
Room-Temperature Magnetostrictive Constants TbFe
DyFe
2
A 111 ( X 10" ) A100 (X10" )
2460 300 ±
6
6
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
A
77.9°
HoFe
2
2
1060 ± 150 0 ± 4
100
78.9°
185 ± 2 0 -59 ± 6
79.9° Plenum Publishing Corporation
Figure grown
6a. Neutron diffraction rocking curves for triarc-CzochralskiREFe crystals. The angular values are arbitrary and merely serve to indicate the rocking-curve width (10). 2
t
J 61.0°
63.0°
65.0°
47.6°
49.6°
51.6° Plenum Publishing Company
Figure 6b. ralski-grown
Neutron diffraction rocking curves for rf levitation CzochREFe crystals. The angular values are arbitrary and merely serve to indicate the rocking-curve width (10). 2
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
15.
Intermetallics
MILSTEIN
for Magnetostrictive
303
Devices
T h e rare earths order b y c o u p l i n g v i a t h e i r o n s u b l a t t i c e . T h e rare earth's nearest n e i g h b o r s , a l t h o u g h at a b o u t the same d i s t a n c e as i n p u r e r a r e - e a r t h metals, d o n o t i n t e r a c t i n a n y m e a s u r a b l e w a y .
These
facts
are r a t h e r firm c o n f i r m a t i o n o f t h e s i n g l e - i o n m o d e l , w h i c h h a s b e e n involved i n calculations of various properties inelastic n e u t r o n d i f f r a c t i o n results f o r E r F e
2
o f these
systems. T h e
at r o o m t e m p e r a t u r e a r e
s h o w n i n F i g u r e 7 a n d a r e t y p i c a l o f t h e results f o u n d f o r a l l o f t h e REFe
2
systems s t u d i e d to date.
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
S A W studies (24) h a v e b e e n c a r r i e d o u t b y u s i n g several single crystals i n t h e H o - T b - D y - F e
2
system.
T h e wave
velocity could b e
a l t e r e d f r o m a b o u t 1.75 t o 2.15 X 1 0 c m • sec" , f o r p r o p a g a t i o n o f 5
1
waves h a v i n g f ^ 85 M H z , a l o n g t h e [001] d i r e c t i o n o f a [110]-cut
0.8
0.4
REDUCED
WAVE
0
0.2 0.4 VECTOR (X comp.)
Figure 7. Room-temperature inelastic neutron diffraction data for ErFe with fit curves and fitting parameters (21): ErFe , 295 K; — 3.6; 2
2
Fe
= 0.66;
d -e Fe
F
= 30 meV; d .
Experimental,
Fe
Er
Er
= -0.32 meV; d .
(O); model, (
Er
Er
).
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
= 0.
304
SOLID S T A T E
0.8
CHEMISTRY: A CONTEMPORARY OVERVIEW
0.8
r
r
T b
23
H (
?77
F e
2[ ] m
, 3 y.7 2
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
T b
0
20
40
60
80
100
0
Magnetic Bias Field (kA/m)
200
400
600
D
800
F e
1000
Bias Flux Density (mT)
Figure 8. Room-temperature coupling coefficient K for several REFe materials in polycrystalline and oriented form as a function of magnetic field (27) ss
2
c r y s t a l , w i t h a m a g n e t i c field of 8.6 K O e w h o s e d i r e c t i o n w a s v a r i e d f r o m [001] to [110]. T h i s v e l o c i t y c h a n g e of a p p r o x i m a t e l y 2 0 % is a p p a r e n t l y t h e largest c o n t i n u o u s l y v a r i a b l e surface v e l o c i t y c h a n g e r e p o r t e d t o date. E x a m i n a t i o n of R E F e at N R L a n d N S W C
polycrystalline a n d single-crystal materials
2
f o r use i n m a g n e t o a c o u s t i c
transducers has b e e n c a r r i e d o u t b y groups D a t a o b t a i n e d o n t h e same m a t e r i a l s
(17,25,26).
b y different t e c h n i q u e s a r e i n g o o d agreement. T h e p a r a m e t e r t h a t is most c o m m o n l y t a k e n as a m e a s u r e of t h e quality of a magnetoacoustic
t r a n s d u c e r element is K
m e c h a n i c a l c o u p l i n g coefficient.
3 3
, the magneto-
T h i s q u a n t i t y is a measure
of the
efficiency w i t h w h i c h m a g n e t i c e n e r g y s u p p l i e d to t h e t r a n s d u c e r e l e m e n t is c o n v e r t e d t o m e c h a n i c a l
( o r acoustic)
energy.
Another important
p a r a m e t e r is t h e strain d e v e l o p e d i n t h e t r a n s d u c e r element.
T h e larger
the a v a i l a b l e s t r a i n , t h e h i g h e r is t h e a t t a i n a b l e s o u n d pressure f o r a given geometrical configuration of the transducer. efficiency
S o u n d pressure a n d
a r e p a r a m e t e r s of some c o n s e q u e n c e to designers
o f sonar
equipment.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
15.
Intermetallics
MILSTEIN
for Magnetostrictive
F i g u r e 8 d e p i c t s the r e l a t i o n s h i p b e t w e e n field
for
polycrystalline and oriented
i n c l u d e d as a reference v a l u e (27). oriented
Tb .23Ho .77Fe 0
0
REFe
K
and magnetic
w h i c h is
greater t h a n the values for the p o l y c r y s t a l l i n e specimens.
bias
with nickel
T h e c o u p l i n g coefficient for
is a p p r o x i m a t e l y 0.75,
2
3 3
specimens,
2
305
Devices
[111]-
appreciably T h i s v a l u e is
a m o n g t h e largest c o u p l i n g coefficients ever r e p o r t e d . T y p i c a l values f o r p i e z o e l e c t r i c c e r a m i c t r a n s d u c e r elements, t h e most w i d e l y u s e d
type,
are a b o u t 0.6.
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
T h e strain as a f u n c t i o n of bias field (27) s h o w n i n F i g u r e 9. [lll]-oriented
Tb . 3Ho .77Fe 0
for t h e same m a t e r i a l s is
T w o features are n o t i c e d r e a d i l y . T h e first is t h a t 2
0
saturates, w h i l e p o l y c r y s t a l l i n e T b . 5 -
2
0
2
H o . 7 5 F e does not saturate i n the l o w fields a p p l i e d . T h e second is t h a t 0
2
s a t u r a t i o n occurs r a p i d l y i n t h e o r i e n t e d s p e c i m e n .
T h u s the oriented
s p e c i m e n y i e l d s f a r h i g h e r strain w i t h a h i g h rate of c h a n g e
i n the
l o w - f i e l d r e g i o n . T h e i m p l i c a t i o n s of these p r o p e r t i e s is t h a t the use of
0
20
40
60
80
100 120 140
Magnetic Bias Field
160
180
(kA/m)
Figure 9. Room-temperature magnetostrictive strain as a function of magnetic field for several REFe materials in polycrystalline and oriented form (25) 2
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
306
SOLID S T A T E
oriented
CHEMISTRY: A
CONTEMPORARY OVERVIEW
m a t e r i a l results i n a s u p e r i o r m a g n e t o a c o u s t i c
device.
The
d e s i g n e r w o u l d l i k e to use o r i e n t e d m a t e r i a l , w h i c h places a c o n s t r a i n t o n the f a b r i c a t o r of the m a g n e t o s t r i c t i v e elements. b e o p e r a t e d b y m a g n e t i c a l l y b i a s i n g t h e elements
T h e device w o u l d to a p o i n t
roughly
h a l f w a y u p t h e steep rise i n strain a n d b y a p p l y i n g a n o s c i l l a t i n g m a g n e t i c field to d r i v e the elements o v e r the f u l l d y n a m i c strain r a n g e .
This
m o d e of o p e r a t i o n w o u l d a l l o w the greatest e c o n o m y i n r e q u i r e d p o w e r s u p p l i e s , coils, v o l u m e , a n d mass, a l l of w h i c h are factors i n the p o t e n t i a l
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
a p p l i c a t i o n of s u c h systems. Conclusions T h e efforts of s e v e r a l w o r k e r s h a v e l e d to t h e a b i l i t y t o
prepare
materials that e x h i b i t i m p r o v e d m a g n e t o s t r i c t i v e b e h a v i o r at r o o m t e m perature.
M a j o r advances h a v e b e e n m a d e i n o u r u n d e r s t a n d i n g of t h e
basic m a g n e t i c interactions i n the R E F e Areas
that require
2
a d d i t i o n a l effort
intermetallic compounds. include
the
examination
of
a d d i t i o n a l i n t e r m e t a l l i c s y s t e m s — f o r e x a m p l e , those b a s e d o n S m r a t h e r t h a n T b — a n d the d e s i g n of t r a n s d u c e r devices that u t i l i z e the u n u s u a l c h a r a c t e r i s t i c s of these m a t e r i a l s .
Literature Cited 1. Nassau, K.; Cherry, L. V.; Wallace, W. E. J. Phys. Chem. Solids 1960, 16, 131. 2. Koon, N . C.; Schindler, A. I.; Carter, F. L. Phys. Lett. A 1971, 37, 413. 3. Clark, A. E. Belson, H. S. Phys. Rev. B 1972, 5, 3642. 4. Ray, A. E. Proc. Rare Earth Res. Conf. 1968, 2, 473. 5. Clark, A. E. AIP Conf. Proc. 1974, 18, 1015. 6. Williams, C. M . Koon, N . C.; Milstein, J. B. AIP Conf. Proc. 1976, 29, 191. 7. Clark, A. E.; Belson, H. S.; Tamagawa, N. Phys. Lett. A 1972, 42, 160. 8. Milstein, J. B.; Koon, N . C.; Johnson, L. R.; Williams, C. M. Mater. Res. Bull. 1974, 9, 1617. 9. Milstein, J. B. AIP Conf. Proc. 1976, 29, 592. 10. Milstein, J. B. "Crystallographic Quality of RFe Crystals Containing Ho," In "Rare Earths in Modern Science and Technology"; McCarthy, G. J.; Rhyne, J. J.; Eds.; Plenum: New York, 1978; p. 315. 11. McMasters, O. D.; Holland, G. E.; Gschneider, K. A., Jr. J. Cryst. Growth 1978, 43, 577. 12. Buschow, K. H. J.; van der Goot, A. S. Phys. Stat. Sol. 1969, 35, 515. 13. Meyer, A. J. Less-Common Metals 1969, 18, 41. 14. Kolesnikov, V. E.; Trekhova, V. F.; Savitskii, E. M . Izv. Akad. Nauk SSSR, Neorg. Mat. 1971, 7, 495. 15. Nicklow, R. M.; Koon, N. C.; Williams, C. M.; Milstein, J. B. Phys. Rev. Lett. 1976,36, 532. 16. Hukin, D. A.; Jones, D. W. Proc. Rare Earth Res. Conf. 1976, 891. 17. Meeks, S. W.; Timme, R. W. J. Accoust. Soc. Am. 1977, 62, 1158. 18. Pfann, W. G. "Zone Melting"; Wiley: New York, 1966. 19. Miller, A. E.; D'Silva, T.; Rodrigues, H . IEEE Trans. Mag. 1976, MAG12, 1006. ;
;
2
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
15.
MILSTEIN
Intermetallics
for Magnetostrictive
Devices
307
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch015
20. Koon, N.C.;Williams, C. M. J. Appl. Phys. 1978, 49, 1948. 21. Koon, N . C.; Williams, C. M. U.S. Navy Journal of Underwater Acoustics 1977, 27, 127. 22. Rhyne, J. J.; Koon, N . C.; Milstein, J. B.; Alperin, H. A. Proc. Conf. Neu tron Scattering 1976, CONF-760601-P2, 783. 23. Rhyne, J. J.; Koon, N. C. J. Appl. Phys. 1978, 49, 2133. 24. Ganguly, A. K.; Webb, D. C.; Davis, K. L.; Koon, N . C.; Milstein, J. B. Proc. IEEE Ultrasonics Symposium, Phoenix, 1977, p. 785. 25. Timme, R. W. J. Acoust. Soc. Am. 1976, 59, 459. 26. Savage, H . T.; Abbundi, R.; Clark, A. E.; McMasters, O. D. Proc. Conf. on Magnetism and Magnetic Materials, Cleveland, OH, 1978, in press. 27. Timme, R. W.; Meeks, S. J. de Physique, in press. RECEIVED November 3, 1978.
Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.