Solid State Chemistry: A Contemporary Overview - American

in Figure 1, encouraged us to attempt to grow (CH)^ epitaxially on chain-aligned films .... They reported a C-C stretch at 1100 cm' 1 ..... 1978, 68, ...
1 downloads 0 Views 2MB Size
10 Conducting Polymers: A Comparison of the Properties of Polythiazyl (SN) and Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

x

Polyacetylene (CH)x and Their Derivatives G. B.

STREET

and T .

C.

CLARKE

IBM Research Laboratory, San Jose, CA 95193

The

properties

of the

to exhibit metallic discussed.

Although

tine (CH) gens.

pristine

a low-band

x

becomes

only two

intriguingly

The

gap

l

(SN) (SN)

polymers

semiconductor,

effects of halogens

electronic,

and

their

after treatment and

are

x

is a semimetal

x

known

and doped (CH) ,

x

analogous

cussed from a structural, of

synthetic

conductivity,

pris-

behavior with

other dopants

halo-

are

dis-

and spectroscopic

point

view.

h e interest i n s y n t h e t i c m e t a l s , w h i c h h a d its o r i g i n s i n

Little's

t

-•-theoretical w o r k on room temperature superconductors

has

(1,2)

m a i n t a i n e d its i m p e t u s , e n c o u r a g e d b y systematic advances i n m a t e r i a l s r e s u l t i n g f r o m the s t r o n g l y i n t e r a c t i v e efforts of chemists a n d p h y s i c i s t s . T h e earliest m a t e r i a l s of interest w e r e the K r o g m a n n t y p e of salts

(3)

and

(4).

t h e o r g a n i c c h a r g e transfer salts e x e m p l i f i e d b y T T F - T C N Q

F o l l o w i n g these m a t e r i a l s c a m e (SN)

(5-7)

X

(8-11),

a n d its h a l o g e n d e r i v a t i v e s

t h e first p o l y m e r i c metals a n d s t i l l t h e o n l y examples of s u p e r ­

conducting polymers. exhibit a range

of

Most recently polyacetylene conductivity from

has b e e n s h o w n to

semiconductor

c h e m i c a l l y t r e a t e d w i t h a v a r i e t y of dopants

(12,13).

to

metal

when

A s t h i s class of

s y n t h e t i c metals has e x p a n d e d , so has the p o s s i b i l i t y of a c h i e v i n g m e t a l l i c a n d s e m i c o n d u c t i n g p r o p e r t i e s i n p o l y m e r s w h i l e r e t a i n i n g the t e c h n o ­ l o g i c a l l y d e s i r a b l e characteristics of

plastics.

I n this p a p e r

we

will

e x a m i n e t h e p r o p e r t i e s of ( S N ) * a n d its d e r i v a t i v e s together w i t h those of t h e m e t a l l i c d e r i v a t i v e s of

(CH)^.

T h e c h e m i s t r y (6)

a n d physics

0-8412^0472r-l/80/33-186-177$05.00/1 © 1980 American Chemical Society Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

178

SOLID S T A T E

(5,7)

of

CHEMISTRY:

A

CONTEMPORARY OVERVIEW

( S N ) a . h a v e b e e n r e v i e w e d p r e v i o u s l y a n d its p r o p e r t i e s

have

b e e n c o m p a r e d w i t h those of t h e o r g a n i c c h a r g e t r a n s f e r salts (14).

The

p o l y t h i a z y l h a l i d e s h a v e b e e n the subject of a m o r e r e c e n t r e v i e w

(15).

T h e early w o r k on linear and substituted polyacetylenes cussed b y M e i e r

has b e e n d i s ­

(16).

History

Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

B o t h ( S N ) a . a n d ( C H ) ^ were w e l l k n o w n i n the c h e m i c a l literature f o r m a n y years p r i o r to t h e i r r e l a t i v e l y recent e x p l o i t a t i o n b y t h e s o l i d state c o m m u n i t y . most

I t is p e r t i n e n t to n o t e t h a t a n a p p r e c i a t i o n of t h e i r

significant properties

h a d to a w a i t extensive

materials w o r k

p r o d u c e h i g h - q u a l i t y crystals of ( S N ) a . a n d films of ( C H ) ^ .

to

S i n c e 1953

( S N ) a . has b e e n k n o w n to e x h i b i t i n t e r e s t i n g e l e c t r i c a l p r o p e r t i e s b u t i t w a s n o t u n t i l 1973 (18)

(17),

t h a t crystals of sufficient q u a l i t y t o d e m o n ­

strate its i n t r i n s i c m e t a l l i c p r o p e r t i e s w e r e o b t a i n e d . T h e difficulties w i t h ( C H ) a . , w h i c h is p r e p a r e d b y p o l y m e r i z i n g a c e t y l e n e i n p r e s e n c e of a Z i e g l e r - N a t t a catalyst, w e r e p e r h a p s h a v e n o t yet b e e n p r e p a r e d .

more

severe.

B e r e t s a n d S m i t h (19)

C r y s t a l s of

l e m s of p r o d u c i n g p o l y a c e t y l e n e free f r o m c a t a l y s t a n d o x y g e n . i t w a s t h e extensive w o r k of S h i r i k a w a a n d h i s c o - w o r k e r s finally

(CH)^

discussed the p r o b ­ However, that

(20,21)

l e d to t h e o p t i m i z a t i o n of this process a n d the first h i g h l y p u r e

p o l y a c e t y l e n e , i n t h e f o r m of t h i n

films.

Nevertheless, Berets a n d S m i t h

w e r e a b l e to s h o w t h a t the c o n d u c t i v i t y of c o m p r e s s e d pellets of powder

c o u l d b e v a r i e d o v e r 7 orders of m a g n i t u d e .

(CH)a.

The conductivity

w a s i n c r e a s e d b y a factor of 1 0 b y t r e a t m e n t w i t h acceptors s u c h as B F , 3

3

w h e r e a s t r e a t m e n t w i t h a m m o n i a r e d u c e d the c o n d u c t i v i t y b y a f a c t o r of 10 . 4

C h i a n g et a l . (13)

i n conjunction w i t h Shirakawa, using donors

as w e l l as acceptors, h a v e v a r i e d t h e c o n d u c t i v i t y of p o l y a c e t y l e n e o v e r 12 o r d e r s of m a g n i t u d e .

We

have

films

shown that certain transition

m e t a l salt solutions, for e x a m p l e , A g C 1 0 / t o l u e n e , are also effective 4

c h a n g i n g the c o n d u c t i v i t y of

( C H ) ^ films (22).

E x a m i n a t i o n of

in

these

s i l v e r d e r i v a t i v e s of ( C H ) ^ has b e e n h e l p f u l i n e l u c i d a t i n g t h e m e c h a n i s m b y w h i c h other acceptors i n f l u e n c e the c o n d u c t i v i t y of ( C H ) ^ , a n d t h e y w i l l b e d i s c u s s e d i n some d e t a i l .

Structures

and Bonding

of

(SN)

X

and

(CH)

X

T h o u g h this r e v i e w w i l l b e c o n c e r n e d l a r g e l y w i t h t h e p r o p e r t i e s o f d e r i v a t i v e s of (SN)-,. a n d ( C H ) ^ r a t h e r t h a n the p r i s t i n e m a t e r i a l s , t h e similarities

between

the

structures of

(SN)*

and

(CH)*

themselves

deserve some a t t e n t i o n a n d are also significant to t h e d i s c u s s i o n of t h e i r

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

10.

STREET

Conducting

AND CLARKE

physical properties.

179

Polymers

T h o u g h ( S N ) a . is f o r m e d v i a t h e s o l i d state p o l y ­

m e r i z a t i o n of S N , t h e r e s u l t i n g crystals a r e n o t h i g h l y p e r f e c t 2

2

(6).

T h e y a r e fibrous a n d u s u a l l y h i g h l y t w i n n e d besides c o n t a i n i n g a l a r g e n u m b e r of defects (23).

B y contrast, e v e n t h e best films of ( C H ) * a r e

p o l y c r y s t a l l i n e a n d n o t v e r y o r d e r e d (20), w e a k reflections i n X - r a y (24)

s h o w i n g o n l y a b o u t 10 b r o a d

a n d e l e c t r o n d i f f r a c t i o n . T h e films a r e

a c t u a l l y a m a t of r a n d o m l y a l i g n e d

fibers

p a c k e d w i t h o n l y 3 0 % of

t h e o r e t i c a l d e n s i t y ( 2 5 ) . E l e c t r o n d i f f r a c t i o n studies of i n d i v i d u a l

fibers

Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

s h o w p r e f e r r e d o r i e n t a t i o n e v e n t h o u g h t h e i n d i v i d u a l fibers are p o o r l y c r y s t a l l i n e (26).

B y c o m b i n i n g the information from X - r a y diffraction

studies w i t h t h e p r e s u m e d g e o m e t r y of t h e ( C H ) a . c h a i n a n d m o l e c u l a r p a c k i n g c o n s i d e r a t i o n s , B a u g h m a n et a l . (24) for ds-polyacetylene.

have proposed a structure

T h e structures of b o t h (SN)-,. (27)

and

cis-(CH)

a}

are g i v e n i n F i g u r e 1. ( S N ) a . a n d ( C H ) ^ consist of essentially flat c h a i n s , t h e l e n g t h of w h i c h is u n k n o w n . I n t h e case of ( S N ) * , t h e c h a i n s p a c k i n p a r a l l e l p l a n e s , w h e r e a s t h e c h a i n s i n successive p l a n e s of (CH)

X

r o t a t e d s u c h t h a t t h e i r ?r c l o u d s

are

are almost orthogonal, r e d u c i n g the

nonbonded electron interaction. O b v i o u s l y , i t w o u l d b e d e s i r a b l e t o p r e p a r e ( C H ) a , i n t h e f o r m of s i n g l e crystals o r e v e n as o r i e n t e d films i n o r d e r to o b t a i n a m o r e

com­

p l e t e u n d e r s t a n d i n g of m a n y of t h e p h e n o m e n a t h a t a r e of interest i n t h i s m a t e r i a l . I t o et a l . (20)

w e r e a b l e to p a r t i a l l y a l i g n films b y s t r e t c h i n g .

T h i s t e c h n i q u e has b e e n s i g n i f i c a n t l y i m p r o v e d r e c e n t l y b y S h i r a k a w a and Ikeda

(28)

to g i v e films t h a t e x h i b i t a n i s o t r o p i c p r o p e r t i e s .

The

s i m i l a r i t y i n t h e c h a i n axis r e p e a t i n g u n i t of ( S N ) a . a n d ( C H ) ^ , as s h o w n i n F i g u r e 1, e n c o u r a g e d

us to a t t e m p t to g r o w ( C H ) ^ e p i t a x i a l l y o n

c h a i n - a l i g n e d films of ( S N ) ^ . H o w e v e r , t h e n a t u r e of t h e p o l y m e r i z a t i o n process is s u c h t h a t i t o c c u r s at t h e a c e t y l e n e - c a t a l y s t s o l u t i o n i n t e r f a c e , a n d no epitaxy took place.

A t t e m p t s t o g r o w o r i e n t e d ( C H ) ^ films o n

s t r e t c h e d M y l a r f a i l e d f o r s i m i l a r reasons.

Intercalation

of

(SN)

X

and

(CH)

X

T h e comparatively weak interchain bonding i n ( S N ) ^ a n d ( C H ) a , i n d i c a t e s t h a t b o t h m a t e r i a l s m i g h t b e subject to i n t e r c a l a t i o n b y a p p r o ­ p r i a t e guest m o l e c u l e s . T h e r e a d y f o r m a t i o n of a d d u c t s (29,30) S N 4

4

or S N 2

2

between

a n d L e w i s a c i d s , t o g e t h e r w i t h t h e o b s e r v a t i o n t h a t these

t y p e s o f m o l e c u l e s i n t e r a c t w i t h ( C H ) ^ as w e h a v e d e s c r i b e d , suggests t h a t t h e y c o u l d i n t e r c a l a t e i n b o t h c h a i n structures.

Exposing

(SN)a-

to m a n y s u c h m o l e c u l e s g a v e n o e x p a n s i o n c h a r a c t e r i s t i c of i n t e r c a l a t i o n , e x c e p t i n t h e case of b r o m i n e (31—40).

H o w e v e r , X - r a y studies of ( C H ) ^

e x p o s e d to a v a r i e t y o f m o l e c u l e s , i n c l u d i n g b r o m i n e , s h o w e d t h a t i n t e r ­ c a l a t i o n takes p l a c e r e a d i l y i n this system.

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

180

CHEMISTRY: A

CONTEMPORARY OVERVIEW

Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

SOLID S T A T E

Figure I .

Comparison

of the structures of (SN) the chain configurations

X

and cis-(CH)

x

showing

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

10.

STREET AND

Conducting

CLARKE

B e r n a r d et a l . (31)

first

181

Polymers

reported that b r o m i n e c o u l d be intercalated

i n t o ( S N ) a - . T h o u g h t h e o r i g i n a l shape of t h e ( S N ) a . crystals is r e t a i n e d , at r o o m t e m p e r a t u r e b r o m i n e v a p o r causes t h e m to e x p a n d a p p r o x i m a t e l y 50%

i n v o l u m e p e r p e n d i c u l a r to the c h a i n axis, to g i v e a c o m p o s i t i o n

(SNBr .4)*. 0

D e s p i t e this e x p a n s i o n i n the v o l u m e of t h e c r y s t a l s , the

( S N ) a . u n i t c e l l v o l u m e contracts b y 6 % t h e c h a i n axis (32).

i n d i r e c t i o n s p e r p e n d i c u l a r to

N e i t h e r the crystals n o r the u n i t c e l l s h o w a n y

c h a n g e i n d i m e n s i o n s a l o n g t h e c h a i n axis. T h e fact t h a t t h e s e p a r a t i o n

Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

b e t w e e n 102 p l a n e s decreases o n b r o m i n a t i o n s t r o n g l y suggests t h a t t h e b r o m i n e is i n t e r c a l a t i n g b e t w e e n t h e c h a i n s i n t h e 102 p l a n e a n d n o t b e t w e e n t h e 102 p l a n e s themselves. I n t e r c a l a t i o n of ( C H ) ^ w a s first d e m o n s t r a t e d b y B a u g h m a n et a l . They showed

(24).

f r o m X - r a y d a t a that i n t h e i o d i n e - d o p e d

r e p o r t e d b y C h i a n g et a l . (11-13) (100) films

planes.

We

films

the i o d i n e intercalates b e t w e e n

h a v e also p r e p a r e d

(CHIo^)^ by

exposing

the

(CH)^

to the r o o m t e m p e r a t u r e v a p o r pressure of i o d i n e o v e r n i g h t .

In

a g r e e m e n t w i t h B a u g h m a n , o u r X - r a y d a t a ( T a b l e I ) s h o w t h a t the i o d i n e enters the ( C H ) ^ l a t t i c e s u c h t h a t it causes a n e x p a n s i o n of t h e plane spacing.

The

(100)

(100)

p e a k , n o r m a l l y of z e r o i n t e n s i t y i n p r i s t i n e

( C H ) ^ , b e c o m e s q u i t e s t r o n g a n d shifts i n v a l u e , o w i n g to t h e i o d i n e o c c u p y i n g t h e ( C H ) ^ c h a i n sites i n t h e ( 1 0 0 )

a n d (200) planes i n an or­

d e r e d f a s h i o n . S i m i l a r studies of ( C H B r o ^ y ) * (22) i n d i c a t e t h a t these I n the case of d(002)

and [ C H ( AsF ) .i5]# 5

species i n t e r c a l a t e i n a f a s h i o n s i m i l a r to

0

iodine.

( C H I 0 . 2 ) * w e w e r e also a b l e to m e a s u r e t h e s e p a r a t i o n

a n d s h o w t h a t the v o l u m e of the u n i t c e l l h a d e x p a n d e d

about 9 . 5 % .

by

F r o m the d a t a i n T a b l e I i t is p o s s i b l e to c a l c u l a t e the

v a n d e r W a a l s d i a m e t e r , D , of t h e i n t e r c a l a n t b y u s i n g t h e f o r m u l a D(A) =

2 d (200) 1

w h e r e d ? ( 2 0 0 ) is the v a l u e of d ( 2 0 0 )

3.80

after i n t e r c a l a t i o n . T h e

values

o b t a i n e d for i o d i n e a n d b r o m i n e , 4.06 A a n d 3.46 A r e s p e c t i v e l y , are i n g o o d a g r e e m e n t w i t h the l i t e r a t u r e (41).

T h e v a l u e o b t a i n e d for A s F

5

is 4.98 A , c o m p a r e d to 4.75 A d e t e r m i n e d f o r a n A s F - g r a p J i i t e i n t e r ­ 5

calation compound

(42).

It is i n t e r e s t i n g to note t h a t b r o m i n e causes a

c o n t r a c t i o n i n u n i t c e l l p a r a m e t e r s for b o t h ( S N ) * a n d ( C H ) ^ .

Table I.

X - r a y D a t a for Pristine and Intercalated d(WO)

(A)

( C H ) .

(CHBro.47)*

(CHIo.2)^

[CH(ASF )O.IG]. b

7.31 7.96 8.83

&(200) (A) 3.80 3.63 3.93 4.39

(CH)j, &(002)

(A)

2.19 2.30

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

182

SOLID S T A T E

Structure

of the

CHEMISTRY: A

CONTEMPORARY OVERVIEW

Intercalants

F r o m X - r a y d i f f r a c t i o n , e l e c t r o n d i f f r a c t i o n (9,34), a n d R a m a n s p e c t r o s c o p y (32-36),

(37),

infrared

(IR)

magnetic susceptibility

(38),

a n d e x t e n d e d X - r a y a b s o r p t i o n fine structure ( E X A F S )

data (39),

it

appears t h a t the b r o m i n e i n ( S N B r o . ) * is present as B r ~ ions as w e l l as 4

neutral B r molecules (15). 2

3

Besides b e i n g i n t e r c a l a t e d i n t h e 102 p l a n e s ,

the b r o m i n e species are also d i s t r i b u t e d i n t h e i n t e r f i b r i l l a r

regions.

B e c a u s e of the s m a l l d i a m e t e r (30 A ) of the fibers of ( S N ) * after b r o m i Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

n a t i o n (9,34), total.

t h e i n t e r f i b r i l l a r b r o m i n e m a y b e as m u c h as 9 0 % of t h e

E l e c t r o n d i f f r a c t i o n (9)

show that the bromine

a n d diffuse X - r a y - s c a t t e r i n g d a t a

gives rise to a o n e - d i m e n s i o n a l

(40)

(1-D)

com­

m e n s u r a t e s u p e r l a t t i c e o r i e n t e d a l o n g the c h a i n axis w i t h a p e r i o d

of

2b, t w i c e t h a t of the ( S N ) ^ c h a i n . F r o m g e o m e t r i c a l considerations, i t seems p l a u s i b l e t h a t the 2b s u p e r l a t t i c e is d u e to B r " o r i e n t e d p a r a l l e l 3

to t h e ( S N ) * . c h a i n s . I n o r d e r to g i v e rise t o t h e 1-D s u p e r l a t t i c e , t h e B r ~ m u s t be a t t a c h e d to t h e

( S N ) ^ chain i n a regular manner.

3

As

halogens are u s u a l l y a t t a c h e d to s u l f u r atoms i n p o l y t h i a z y l h a l i d e s , i t seems l i k e l y t h a t the B r ~ ions o r d e r w i t h t h e i r axes p a r a l l e l to the ( S N ) * 3

c h a i n s , i n a m a n n e r t h a t m a x i m i z e s s u l f u r - b r o m i n e i n t e r a c t i o n s , as s h o w n i n F i g u r e 2. Br

2

S i m i l a r p r i n c i p l e s w o u l d d e t e r m i n e the a r r a n g e m e n t of t h e

molecules. R a m a n s p e c t r o s c o p y shows that t h e b r o m i n e i n t e r c a l a t e d i n t o ( C H )

also exists as B r " ions (22,43).

x

F r o m X - r a y studies the axes of t h e B r "

3

3

ions w o u l d also a p p e a r to b e p a r a l l e l to the c h a i n (22).

However, in

this, case there is no e v i d e n c e of a n y o r d e r i n g of the B r " ions a l o n g t h e 3

c h a i n d i r e c t i o n , n o r is there a n y significant a m o u n t of n e u t r a l B r . A s 2

the ( C H ) a . fibers are a b o u t 200 A i n d i a m e t e r , almost a n o r d e r of m a g n i ­ t u d e l a r g e r t h a n ( S N ) ^ , t h e a m o u n t of b r o m i n e o n the o u t s i d e of t h e fibers

is s m a l l c o m p a r e d

w i t h that intercalated between

the c h a i n s .

D e s p i t e these differences, t h e m o d e l s of b r o m i n a t e d ( S N ) ^ a n d

(CH)^

are r e m a r k a b l y s i m i l a r . I n b o t h cases the b r o m i n e oxidizes the c h a i n to give an extended polymeric

c a t i o n , a n d the l i n e a r B r " anions a l i g n 3

p a r a l l e l to the axis of the c h a i n s . IC1, I B r , a n d I

2

a l l react w i t h ( S N ) * (8,10,45),

b u t the p r o d u c t s

are not s i m p l e i n t e r c a l a t i o n c o m p o u n d s a n d t h e y h a v e n o t b e e n exten­ s i v e l y s t u d i e d . T h e s e differences m a y relate to the l a r g e r size of i o d i n e r e l a t i v e to b r o m i n e , b u t the l a c k of affinity of s u l f u r for i o d i n e m a y m o r e significant. I n the case of I C 1 b o t h e l e c t r o n d i f f r a c t i o n (44) R a m a n studies ( 3 3 )

be and

i n d i c a t e that the I C 1 is a b s o r b e d p r i m a r i l y o n t h e

surface as the n e u t r a l m o l e c u l e

a n d t h a t no

o x i d a t i o n of

the

chain

takes p l a c e . IC1, I B r , a n d I

2

a l l react w i t h ( C H ) ^ also, a n d i n t h e case of i o d i n e

the r e a c t i o n is o x i d a t i v e i n t e r c a l a t i o n , as w e h a v e a l r e a d y d i s c u s s e d f o r

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

10.

STREET

AND

Conducting

CLARKE

Polymers

183

Figure 2. Model for brominated (SN) showing possible orientation of Br ~ relative to the (SN) chain. The van der Waals dimensions of the Br ~ ion are shown to scale with the (SN) chain. X

s

X

3

X

b r o m i n e . T h e i o d i n e is present as I " a n d also as a s e c o n d species, either 3

I " or I 5

(25).

2

Though A s F

5

does not react s i m p l y w i t h ( S N ) * , i t does

give a n i n t e r c a l a t i o n c o m p o u n d

with

(CH)^

k n o w n a b o u t the final state of the A s F

5

H o w e v e r , m u c h less is

after i n t e r c a l a t i o n . I f the i n t e r ­

c a l a t i o n i n v o l v e s o x i d a t i o n of the c h a i n , as the e l e c t r i c a l p r o p e r t i e s suggest a n d as is t h e case for b r o m i n e a n d i o d i n e , the e x p e c t e d r e a c t i o n w o u l d b e 3AsF (where

e =

electron).

5

+ 2e -> 2 A s F " + 6

AsF

3

T h e experimental evidence

m e c h a n i s m is s u m m a r i z e d elsewhere

(46).

i n s u p p o r t of t h i s

E X A F S measurements

sug-

gst t h a t this r e a c t i o n also occurs i n t h e i n t e r c a l a t i o n of g r a p h i t e b y A s F

5

(47). Spectroscopy T h e I R (48,49)

a n d R a m a n spectra of

( S N ) * ( 4 9 , 5 0 ) have

been

i n v e s t i g a t e d s e v e r a l t i m e s ; h o w e v e r , m u c h of the e a r l y I R d a t a (51) c o m p l i c a t e d b y the presence of i m p u r i t i e s . R e c e n t studies b y et a l . (37)

is

Macklin

s h o w that o n b r o m i n a t i o n the I R a n d R a m a n s p e c t r a c h a n g e

i n a s i m i l a r m a n n e r : the peaks b r o a d e n a n d shift s o m e w h a t i n f r e q u e n c y . I n a d d i t i o n , s t r o n g I R peaks a p p e a r i n the R a m a n spectra a n d v i c e v e r s a because of the loss of the i n v e r s i o n c e n t e r r e l a t i n g t h e t w o c h a i n s i n t h e u n i t c e l l of p r i s t i n e ( S N ) * .

A l l these changes c a n b e e x p l a i n e d b y t h e

increase i n d i s o r d e r that takes p l a c e o n b r o m i n a t i o n . A f t e r b r o m i n a t i o n , the

difference

between

corresponding

IR

a n d R a m a n frequencies

is

r e d u c e d , r e f l e c t i n g the d e s t r u c t i o n of t h e v i b r a t i o n a l association b e t w e e n the ( S N )

x

chains. T h e 2 0 - 6 0 - c m "

1

shift i n the I R peaks r e l a t i v e to p r i s t i n e

(SN)-,. is a measure of the s t r o n g i n t e r a c t i o n b e t w e e n t h e ( S N ) * l a t t i c e

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

184

SOLID S T A T E

CHEMISTRY: A

CONTEMPORARY OVERVIEW

a n d b r o m i n e . T h e o b s e r v e d increase i n f r e q u e n c y of t h e S N s t r e t c h i n g m o d e s o n b r o m i n a t i o n is consistent w i t h t h e o x i d a t i o n of t h e c h a i n b y t h e b r o m i n e , w h i c h w o u l d r e m o v e a n t i b o n d i n g ir*

(SN)*

electrons.

A l t h o u g h no n e w b a n d s a p p e a r t h a t c a n b e r e l a t e d to S - B r o r N - B r b o n d s , the p r e s e n c e of b r o m i n e as B r " a n d B r c a n b e d e t e r m i n e d f r o m 3

2

b a n d s i n t h e r e g i o n b e l o w 400 cm"" . I n the R a m a n (33,36)

the presence

1

of B r " is i d e n t i f i e d b y its s y m m e t r i c a n d a s y m m e t r i c s t r e t c h i n g f r e q u e n ­ 3

cies at 150 a n d 190 c m "

Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

i n t e r p r e t e d as B r

2

respectively.

(37),

1

A p e a k at 230 c m "

is

1

T h e l a r g e shift, f r o m the v a l u e of 325 c m '

(33,37).

1

o b s e r v e d f o r gaseous b r o m i n e , is a m e a s u r e of the s t r e n g t h of its associa­ t i o n w i t h the ( S N ) * l a t t i c e . U n l i k e ( S N ) * , t h e ( C H ) * c h a i n exists i n b o t h cis a n d trans f o r m s . A s p r e p a r e d at — 78 ° C , the stable f o r m has the cis g e o m e t r y , b u t o n h e a t i n g to 2 0 0 ° C , i t is c o n v e r t e d to the t h e r m o d y n a m i c a l l y m o r e stable trans f o r m (20,21).

T h e s e isomers are r e a d i l y d i s t i n g u i s h a b l e b y t h e i r c h a r a c ­

teristic I R a n d R a m a n s p e c t r a , as s h o w n i n T a b l e I I . T h e s e d a t a w e r e r e p o r t e d b y I t o et al. (21).

T h e y r e p o r t e d a C - C s t r e t c h at 1100 c m '

1

f o r t h e trans, b u t w e h a v e o b s e r v e d that this b a n d is a c t u a l l y a d o u b l e t at 1080 c m " a n d 1120 c m " 1

S y m m e t r y analysis (52)

(22).

1

a n d I R m o d e s leads to assignment of

of t h e R a m a n

cis-transoid a n d trans-transoid

geometries f o r the cis a n d trans forms of p o l y a c e t y l e n e , as s h o w n i n F i g u r e 3. O n a p p r o p r i a t e d o p i n g ( C H ) * b e c o m e s m e t a l l i c a n d absorbs s t r o n g l y i n t h e I R (12);

thus R a m a n t e c h n i q u e s h a v e p r o v i d e d m o s t i n f o r m a t i o n

a b o u t these m e t a l l i c d e r i v a t i v e s .

H o w e v e r , i n our experience

as

the

a m o u n t of a c c e p t o r ( B r , I , A s F , A g C 1 0 ) increases, t h e R a m a n b a n d s 2

2

5

4

associated w i t h p r i s t i n e ( C H ) * b e c o m e s p r o g r e s s i v e l y w e a k e r , a n d n o n e w b a n d s c h a r a c t e r i s t i c of the e l e c t r o n - d e p l e t e d

Table II.

( C H ) * chain appear

Infrared and Raman Spectra of and fr*MM-Polyacetylene

cis-

Observed Frequency Assignment C — H stretch C — H i n plane deformation C — H o u t of p l a n e d e f o r m a t i o n C — C — C bond deformation C = C stretch C — C stretch

1

trans

CIS

3057 3044 1329 1249 740 446 1552* 1262* 920*

(cm' )

(vw) (w) (s) (w) (vs) (vs)

3013 (m) 1292 ( w w ) 1015 (vs) 1474* 1080*, 1120* 1016*

° Raman bands.

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

10.

STREET

AND

H H \ / C=C /

Conducting

CLARKE

H \

\

/

H / C=C

c=c / \ H H

\

/ H

185

Polymers

/

c=c \ H

(a) H

H

Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

I

H

I

I

I

I

H

I

H

H

(

t

h

Figure 3. The cis-transoid (a) and trans-transoid (b) forms of (CH)

e

X

T h i s m a y result f r o m a s c r e e n i n g effect associated w i t h the free

(22).

e l e c t r o n a b s o r p t i o n of the m e t a l l i c p o l y m e r .

D o p i n g mixed cis-trans

films leads to i n t e r e s t i n g effects o n the r e l a t i v e rates of d i s a p p e a r a n c e of cis a n d trans b a n d s . D o p i n g w i t h halogens or A s F

5

causes a decrease i n

t h e cis b a n d s r e l a t i v e to trans, w h i l e the reverse effect is o b s e r v e d treatment w i t h silver perchlorate.

on

T h i s does not result f r o m a c i s - t r a n s

i s o m e r i z a t i o n c a t a l y z e d b y the d o p a n t , because the absolute i n t e n s i t y of the trans b a n d s does not a c t u a l l y increase o n d o p i n g . I n s t e a d , the r e l a t i v e intensities of the cis a n d trans b a n d s c h a n g e ; b o t h g r a d u a l l y decrease w i t h increasing dopant concentration.

It appears m o r e l i k e l y t h a t this

is a k i n e t i c p h e n o m e n o n , t h e c i s - ( C H ) * r e a c t i n g faster t h a n trans w i t h AsF

5

a n d the halogens, w h e r e a s the reverse is t r u e for A g C 1 0 . 4

This

i n t e r p r e t a t i o n is r e i n f o r c e d b y the o b s e r v a t i o n t h a t o n t r e a t m e n t w i t h a m m o n i a the cis a n d trans R a m a n b a n d s of b o t h A s F - a n d A g C 1 0 5

4

t r e a t e d ( C H ) * films r e a p p e a r w i t h a p p r o x i m a t e l y the same r e l a t i v e a n d a b s o l u t e intensities as i n t h e u n d o p e d s t a r t i n g m a t e r i a l . T h e t w o C - C stretch b a n d s of trans-(CH)* also b e h a v e

differently w i t h different dopants.

p e r c h l o r a t e causes the 1120-cm"

1

at 1080 a n d 1120 c m "

1

Treatment w i t h silver

b a n d to decrease m o r e r a p i d l y t h a n t h e

1080-cm" b a n d . S u b s e q u e n t t r e a t m e n t w i t h a m m o n i a restores b o t h b a n d s 1

to t h e i r o r i g i n a l intensities. B r o m i n e s e l e c t i v i t y reduces t h e b a n d r e l a t i v e t o t h e b a n d at 1120 c m " . 1

1080-cm"

T h e s e results w o u l d seem

1

to

suggest the presence of t w o different types of trans e n v i r o n m e n t s , a l t h o u g h t h e n a t u r e of this difference is not clear. Bonding

in

(SN)

X

and

(CH)

X

B e f o r e d i s c u s s i n g t h e e l e c t r i c a l p r o p e r t i e s of these p o l y m e r s , i t is i n s t r u c t i v e to discuss t h e i r b o n d i n g .

F r o m simple linear combination

of a t o m i c o r b i t a l s a n d m o l e c u l a r o r b i t a l ( L C A O - M O ) t h e o r y a n d f r o m

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

186

SOLID S T A T E

CHEMISTRY: A

CONTEMPORARY OVERVIEW

e l e m e n t a r y b a n d t h e o r y , it is possible to r a t i o n a l i z e t h e i r o b s e r v e d trical properties. treatment (SN),

elec­

A m o r e r i g o r o u s , b u t to m a n y chemists less s a t i s f y i n g ,

is o b t a i n e d

from

detailed

band

structure c a l c u l a t i o n s

for

(7) and ( C H ) * (53-55).

I n the s i m p l e s t m o d e l for a n i s o l a t e d S N u n i t , b o t h s u l f u r a n d n i t r o g e n c a n b e a s s u m e d to be

sp

2

h y b r i d i z e d , w i t h the r e m a i n i n g p o r b i t a l

p e r p e n d i c u l a r to the p l a n e of the c h a i n . E i g h t electrons c a n b e m o d a t e d i n t h e t w o b o n d i n g a n d one n o n b o n d i n g s p

Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

atom.

2

accom­

orbitals o n

each

T w o electrons w o u l d t h e n go i n t o a ir o r b i t a l f o r m e d b y the p

orbitals o n the s u l f u r a n d n i t r o g e n a n d one e l e c t r o n w o u l d reside i n a n unfilled 7T*

antibonding orbital.

I n a c h a i n of s u c h S N u n i t s t h e

orbitals f o r m a d e l o c a l i z e d ir n e t w o r k a l o n g the c h a i n , r o u g h l y

p

corre­

s p o n d i n g to t h e 7T a n d T T * o r b i t a l s of t h e i n i t i a l S N u n i t . T h e ir b a n d w i l l be

filled

b y t w o electrons p e r S N u n i t a n d t h e ir* l e v e l w i l l r e m a i n

h a l f - f i l l e d , w i t h one

electron per

(SN)

unit.

I t is this h a l f - f i l l e d ir*

o r b i t a l that, i n this s i m p l e m o d e l , is responsible f o r the m e t a l l i c c o n ­ ductivity i n ( S N ) * .

B a n d structure c a l c u l a t i o n s r e v e a l t h a t ( S N ) * is

actually a semimetal (7). I n the case of ( C H ) * e a c h c a r b o n of t h e basic C H u n i t m a y a g a i n b e c o n s i d e r e d to b e s p h y b r i d i z e d , w i t h one e l e c t r o n f o r m a l l y i n v o l v e d 2

i n e a c h of the o- b o n d s to n e i g h b o r i n g atoms a n d t h e f o u r t h

valence

e l e c t r o n i n the p o r b i t a l p e r p e n d i c u l a r to the p l a n e of the c h a i n . W i t h i n e a c h basic C H 2

and

2

u n i t the p orbitals w i l l t h e n c o m b i n e to f o r m a filled w

a n e m p t y T T * o r b i t a l . I n a n e x t e n d e d p o l y o l e f i n these

molecular

orbitals t h e n g i v e rise to a filled ir b a n d a n d a n u n f i l l e d ir* b a n d . I n the l i m i t of c o m p l e t e e l e c t r o n d e r e a l i z a t i o n a n d u n i f o r m c a r b o n carbon bond

lengths, L C A O - M O

t h e o r y p r e d i c t s t h a t the

separation

b e t w e e n the ir a n d ir* b a n d s w o u l d a p p r o a c h zero, c a u s i n g ( C H ) * itself to

exhibit metallic behavior.

B o t h spectroscopic

evidence

(56)

and

t h e o r e t i c a l p r e d i c t i o n s ( 5 3 - 5 5 ) suggest, h o w e v e r , t h a t b o n d a l t e r n a t i o n and hence incomplete d e r e a l i z a t i o n w i l l be observed even i n very l o n g chain polyenes.

T h i s i n t r o d u c e s a finite g a p b e t w e e n t h e ir a n d ir* b a n d s ,

c a u s i n g ( C H ) * to b e h a v e

as a s e m i c o n d u c t o r ,

as is i n fact

observed

experimentally. R e c e n t b a n d s t r u c t u r e c a l c u l a t i o n s of G r a n t a n d B a t r a ( 5 5 ) that b o n d - a l t e r n a t e d ( C H ) * is a s e m i c o n d u c t o r .

confirm

I n case of trans-(CH)

^

the c a l c u l a t e d b a n d gap of 0.8 e V is c a u s e d b y b o n d a l t e r n a t i o n . I n t h e a b s e n c e of s u c h a l t e r n a t i o n t h e b a n d s t r u c t u r e of trans- ( C H ) * i n d i c a t e s that it w o u l d be a metal, i n agreement

w i t h our simpler arguments.

H o w e v e r , c i s - ( C H ) * , a c c o r d i n g to the b a n d s t r u c t u r e c a l c u l a t i o n s , w o u l d h a v e a b a n d gap of a b o u t 1.0 e V , r e s u l t i n g f r o m t h e c r y s t a l s y m m e t r y , e v e n f o r the case of u n i f o r m b o n d l e n g t h s . C h e m i c a l o x i d a t i o n of ( C H ) * films to g i v e a p o l y o l e f i n i c c a t i o n leads to r e m o v a l of electrons f r o m the filled ir v a l e n c e b a n d a n d the o b s e r v e d

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

10.

STREET AND

Conducting

CLARKE

increase i n c o n d u c t i v i t y .

187

Polymers

S i m i l a r l y , c h e m i c a l r e d u c t i o n to f o r m a p o l y -

olefinic a n i o n w o u l d l e a d to t h e i n t r o d u c t i o n of electrons i n t o t h e e m p t y 7r* c o n d u c t i o n b a n d , a g a i n g i v i n g rise to c o n d u c t i v i t y .

T o the

that d e r e a l i z a t i o n is i n c r e a s e d i n the i o n i c d e r i v a t i v e s of

extent

( C H ) * , the

w i d t h a n d s e p a r a t i o n of the IT a n d w* b a n d s m i g h t also b e e x p e c t e d t o change on doping.

Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

Electrical

Properties of

(SN)

and

X

(CH)

X

T h e fact that ( C H ) * is a s m a l l - b a n d gap s e m i c o n d u c t o r ,

whereas

( S N ) * is a s e m i m e t a l , makes i t m u c h m o r e sensitive to d o p a n t s . the c o n d u c t i v i t y of ( C H ) * c a n b e v a r i e d o v e r 12 orders of

Indeed,

magnitude,

w h i l e t h a t of ( S N ) * c a n be v a r i e d o n l y b y one o r d e r of m a g n i t u d e .

In

a d d i t i o n , t h e reasons for t h e c o n d u c t i v i t y changes are not t h e same i n b o t h systems.

I n the case of

( C H ) * the observed

changes can

be

e x p l a i n e d i n terms of changes i n t h e n u m b e r of carriers, w h i l e i n ( S N ) * changes i n the l i f e t i m e or t h e m o b i l i t y of the carriers d o m i n a t e

the

conductivity. T h e increase i n t h e c o n d u c t i v i t y of ( S N ) * o n p a r t i a l o x i d a t i o n w i t h b r o m i n e is s h o w n i n F i g u r e 4 ( a )

as a f u n c t i o n of t e m p e r a t u r e

(9).

S i m i l a r changes i n the c o n d u c t i v i t y , p e r p e n d i c u l a r a n d p a r a l l e l to ( S N ) * c h a i n s , h a v e b e e n r e p o r t e d b y C h i a n g et a l . (11).

the

E v e n if a l l the

b r o m i n e w e r e present as B r ~ , the n u m b e r of carriers g e n e r a t e d is n o t 3

sufficient to e x p l a i n the increase i n c o n d u c t i v i t y .

Grant (57)

has c a l c u ­

l a t e d t h e shift of t h e F e r m i l e v e l as a f u n c t i o n of c h a r g e transfer, u s i n g a r i g i d b a n d m o d e l for ( S N ) * . A c h a r g e transfer, consistent w i t h c u r r e n t estimates of the a m o u n t of B r ~ i n ( S N B r o . O * , appears to r e m o v e t h e 3

e l e c t r o n p o c k e t i n the b a n d structure of electron-hole

scattering.

predominant

mechanism

pristine ( S N ) * .

( S N ) * a n d h e n c e eliminates

T h i s t y p e of s c a t t e r i n g is b e l i e v e d to b e responsible

for

limiting the

S u p p r e s s i o n of e l e c t r o n - h o l e

be m a n i f e s t e d b y a c h a n g e f r o m a T

2

to a l i n e a r t e m p e r a t u r e ( T )

of

s c a t t e r i n g process s h o u l d

d e p e n d e n c e of t h e r e s i s t i v i t y

dependence.

the

conductivity

A l t h o u g h the observed

(58) tem­

p e r a t u r e d e p e n d e n c e is not l i n e a r , the t r e n d t o w a r d s m a l l e r t e m p e r a t u r e exponents

is a p p a r e n t for the r e s i s t i v i t y of

F u r t h e r m o r e , the t h e r m o p o w e r ,

brominated

shown i n Figure 4 ( b ) ,

(SN)*

(11).

becomes p-type

o n b r o m i n a t i o n , a g a i n consistent w i t h the r e m o v a l of t h e e l e c t r o n p o c k e t . T h u s the o r d e r - o f - m a g n i t u d e

increase i n c o n d u c t i v i t y o n b r o m i n a t i o n is

p r e d o m i n a n t l y the r e s u l t of a n increase i n the c a r r i e r l i f e t i m e r a t h e r t h a n a n increase i n the n u m b e r of carriers ( 9 ) .

C h e m i c a l l y , one c a n v i e w the

c h a r g e transfer as l e a d i n g to t h e f o r m a t i o n of a n e x t e n d e d p o l y t h i a z y l c a t i o n , w i t h u n i t p o s i t i v e charge for every B r " . 3

G r e e n e et a l . ( 5 9 )

h a v e s h o w n that t h e s u p e r c o n d u c t i n g t r a n s i t i o n

t e m p e r a t u r e of ( S N ) * increases b y a b o u t 1 0 % to 0.316 K o n b r o m i n a t i o n ,

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

188

SOLID

STATE CHEMISTRY:

OVERVIEW

Electrical Conductivity vs. Temperature .for (SN) & (SNBr ) X

10

A CONTEMPORARY

(

Q4

i

x

\

a

Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

-

_

-

•—-—•

_

[ ( C H ) / ( C 1 0 - ) J + yAg° +

4

W e b e l i e v e t h a t other acceptors

behave

(1)

4

similarly, creating simple

p o l y o l e f i n i c cations. T h u s there is n o n e e d to i n v o k e b r o m o n i u m ions or s i m i l a r ir complexes.

Conclusions T h e s i m i l a r i t i e s a n d differences b e t w e e n ( S N ) * a n d ( C H ) * a n d t h e i r derivatives have been

examined.

p o l y m e r s are s i m i l a r , b u t semiconductor.

T h e b a s i c c h a i n structures of

( S N ) * is a s e m i m e t a l w h e r e a s

both

( C H ) * is a

A f t e r treatment w i t h b r o m i n e , h o w e v e r , b o t h m a t e r i a l s

e x h i b i t m e t a l l i c c o n d u c t i v i t y . A l t h o u g h the p h y s i c s r e s p o n s i b l e f o r these increases i n c o n d u c t i v i t y is not the same i n b o t h systems, the c h e m i s t r y t a k i n g p l a c e u p o n b r o m i n a t i o n is q u i t e s i m i l a r . T h e chains are o x i d i z e d to p o l y m e r i c cations a n d t h e b r o m i n e is r e d u c e d to B r " . T h e s e l i n e a r 3

B r " ions are i n t e r c a l a t e d b e t w e e n the p o l y m e r c h a i n s , w i t h t h e i r axes 3

p a r a l l e l . I n the case of ( S N ) * this o x i d a t i o n is l i m i t e d to b r o m i n e , b u t ( C H ) * reacts w i t h a v a r i e t y of o t h e r acceptors as w e l l as some donors. T h e p h y s i c s a n d c h e m i s t r y of these processes are b e l i e v e d to be s i m i l a r to b r o m i n a t i o n , w i t h the ( C H ) * f o r m i n g a p o l y o l e f i n i c c a t i o n i n the case of acceptors a n d a p o l y o l e f i n i c a n i o n i n the case of donors. of s i m i l a r d o n o r complexes

T h e absence

f o r ( S N ) * m a y reflect t h e f a c t t h a t

(SN)*

a l r e a d y has one a n t i b o n d i n g e l e c t r o n p e r S N u n i t i n t h e h i g h e s t o c c u p i e d orbital. T h e final s t o i c h i o m e t r y of these i n t e r c a l a t i o n c o m p o u n d s a n d ( C H ) * p r o b a b l y is d e t e r m i n e d b y s e v e r a l factors. bromine, B r

2

of

(SN)*

I n t h e case of

enters the m a t e r i a l a n d o x i d i z e s the c h a i n s to a degree

d e t e r m i n e d b y the respective

oxidation a n d reduction potentials

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

and

192

SOLID S T A T E

CHEMISTRY: A

CONTEMPORARY OVERVIEW

M a d e l u n g energy, f o r m i n g the p o l y m e r i c c a t i o n a n d B r ~ c o u n t e r ions. 3

I f m o r e b r o m i n e c a n fit i n t o the l a t t i c e t h a n c a n b e r e d u c e d b y

the

p o l y m e r , the excess w i l l r e m a i n as n e u t r a l b r o m i n e . S u c h appears to b e t h e case f o r ( S N ) * , w h e r e b o t h B r " a n d B r 3

(SNBro.-i)*.

2

have been identified i n

I n t h e case of ( C H ) * , a l l t h e b r o m i n e is r e d u c e d to B r " . 3

A f u r t h e r f a c t o r that m a y also influence the s t o i c h i o m e t r y as w e l l as the electrical properties b r o m i n e complexes.

of

tions tends to f o r m S N 4

Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

these

polymers

is the m e t a s t a b i l i t y of

these

( S N ) * t r e a t e d w i t h b r o m i n e u n d e r less m i l d c o n d i ­ 3

+

B r " , a n d i n t h e case of ( C H ) * b r o m i n e has a 3

t e n d e n c y to a d d across the e t h y l e n i c d o u b l e b o n d . T h e e l e c t r i c a l p r o p e r t i e s of these c o n d u c t i n g p o l y m e r s offer

many

e x c i t i n g p o s s i b i l i t i e s . Progress t o w a r d a c h i e v e m e n t of t h e i r f u l l p o t e n t i a l s h o u l d b e e n c o u r a g e d b y d e v e l o p m e n t s l e a d i n g to m o r e c h e m i c a l l y a n d t h e r m a l l y stable m a t e r i a l s .

Glossary of Symbols D =- v a n der W a a l s diameter d(hkl)

= s e p a r a t i o n of the hkl planes

ef(hfcZ) == s e p a r a t i o n of t h e hkl planes after i n t e r c a l a t i o n EXAFS =

e x t e n d e d X - r a y a b s o r p t i o n fine structure

m K == m i l l i d e g r e e s K e l v i n R =

resistance

S =

thermopower

1-D — one-dimensional = CI =

microvolts ohms

T T F —»tetrathiasulvalene TCNQ =

tetracyanoquinodimethane

I R = infrared b = l a t t i c e constant i n t h e c h a i n d i r e c t i o n f o r b o t h ( S N )* a n d (CH)* e =

electron

N M R = n u c l e a r m a g n e t i c resonance L C A O = l i n e a r c o m b i n a t i o n of a t o m i c o r b i t a l s M O =— m o l e c u l a r o r b i t a l T =

temperature

Acknowledgments W e thank . W . D . G i l l , P. M . Grant, R. L . Greene, and J . B . Torrance f o r c r i t i c a l l y r e a d i n g this m a n u s c r i p t a n d t h e Office of N a v a l R e s e a r c h for partial support.

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

10.

STREET

A N D

CLARKE

Conducting

Polymers

193

Literature Cited 1. 2. 3. 4. 5. 6. 7.

Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32.

Little, W . A. Phys. Rev. A 1964, 134, 1416. Davis, D . ; Gutfreund, H . ; Little, W . A. Phys. Rev. B 1976, 13, 4766. Zeller, H. R. Adv. Solid State Phys. 1973, 13, 31. Toombs, G. A . Phys. Rep. 1978, 40, 181. Geserich, H. P.; Pintschovious, L. Adv. Solid State Phys. 1976, 16, 65. Street, G. B.; Greene, R. L. IBM J. Res. Dev. 1977, 99, 21. Greene, R. L.; Street, G. B. "Chemistry and Physics of One-Dimensional Metals"; Keller, H. J., Ed.; Plenum: New York, 1977; p. 167. Street, G. B . ; Gill, W . D.; Geiss, R. H.; Greene, R. L.; Mayerle, J. J. J. Chem. Soc., Chem. Commun. 1977, 407. Gill, W . D.; Bludau, W . ; Geiss, R. H.; Grant, P. M . ; Greene, R. L. Mayerle, J. J.; Street, G. B. Phys. Rev. Lett. 1977, 38, 1305. Akhtar, M . ; Kleppinger, J.; MacDiarmid, A. G.; Milliken, J.; Moran, M. J.; Chiang, C. K.; Cohen, M . J.; Heeger, A . J.; Peebles, D . L. J. Chem. Soc., Chem. Commun. 1977, 473. Chiang, C. K.; Cohen, M . J.; Peebles, D . L.; Heeger, A . J.; Akhtar, M.; Kleppinger, J.; MacDiarmid, A . G.; Milliken, J.; Moran, M . J. Solid State Commun. 1977, 23, 607. Chiang, C. K.; Park, Y. W . ; Heeger, A . J.; Shirakawa, H.; Louis, E . J.; MacDiarmid, A . G. Phys. Rev. Lett. 1977, 39, 1098. Chiang, C. K.; Druy, M . A . ; Gau, S. C.; Heeger, A . J.; Louis, E . J.; Mac­ Diarmid, A . G.; Park, Y. W . ; Shirakawa, H . J. Am. Chem. Soc. 1978, 100, 1013. Grant, P. M.; Greene, R. L.; Gill, W . D.; Rudge, W . E . ; Street, G. B. Mol. Cryst. Liq. Cryst. 1976, 32, 171. Street, G. B.; Gill, W . D . "Molecular Metals"; Hatfield, W . E . , E d . ; Plenum: New York, 1979; p. 301. Meier, H. "Organic Semiconductors"; Verlag Chemie: Weinheim, W . Ger­ many, 1974. Goehring, M.; Voigt, D . Naturwissenschaften 1953, 40, 482. Walatka, V . V . ; Labes, M . M.; Perlstein, J. H. Phys. Rev. Lett. 1973, 31, 1139. Berets, D . J.; Smith, D . S. Trans. Faraday Soc. 1968, 823. Ito, T.; Shirakawa, H . ; Ikeda, S. J. Polym. Sci., Polym. Chem. Ed. 1974, 12, 11. Ito, T.; Shirakawa, H . ; Ikeda, S. J. -Polym. Sci., Polym. Chem. Ed. 1975, 13, 1943. Clarke, T. C.; Geiss, R. H.; Kwak, I. F.; Street, G . B. J. Chem. Soc., Chem. Commun. 1978, 489. Baughman, R. H.; Chance, R. R. J. Polym. Sci., Polym. Phys. Ed. 1976, 14, 2019. Baughman, R. H.; Hsu, S. L.; Pez, G. P.; Signorelli, A . J. J. Chem. Phys. 1978, 68, 5405. Hsu, S. L.; Signorelli, A. J.; Pez, G . P.; Baughman, R. H. J. Chem. Phys. 1978, 68, 106. Geiss, R. H.; Clarke, T. C.; Street, G. B., unpublished data. Cohen, M . J.; Garito, A . G.; Heeger, A . J.; MacDiarmid, A . G.; Mikulski, C.M.; Saran, M . S. J. Am. Chem. Soc. 1976, 98, 3844. Shirakawa, H.; Ikeda, S. Synth. Metals 1980, 1, 175. Wynne, K. J.; Jolly, W . L. Inorg. Chem. 1967, 6, 107. Patton, R. L . ; Jolly, W . L . Inorg. Chem. 1969, 8, 1392. Bernard, C.; Herold, A . ; Lelaurain, M.; Robert, G. Compt. rend, (c) 1976, 283, 625. Iqbal, Z.; Baughman, R. H.; Kleppinger, J.; MacDiarmid, A . G . Ann. N.Y. Acad. Sci. 1978, 313, 775.

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch010

194

SOLID

STATE

CHEMISTRY:

A

CONTEMPORARY

OVERVIEW

3 3 . Iqbal, Z.; Baughman, R. H.; Kleppinger, J.; MacDiarmid, A . G . Solid State Commun. 1 9 7 8 , 25, 409. 34. Street, G. B.; Etemad, S.; Geiss, R. H.; Gill, W . D . ; Greene, R. L.; Kuyper, J.; Smith, R. D . Ann. N.Y. Acad. Sci. 1 9 7 8 , 313, 737. 35. Temkin, H.; Fitchen, D . B.; Gill, W. D.; Street, G. B., submitted for publi­ cation in Ann. N. Y. Acad. Sci. 36. Temkin, H.; Street, G. B. Solid State Commun. 1 9 7 8 , 25, 455. 37. Macklin, J.; Gill, W . D . ; Street, G. B. J. Chem. Phys. 1 9 7 9 , 70, 2425. 38. Scott, J. C.; Kulick, J. D . ; Street, G. B., unpublished data. 39. Morawitz, H.; Gill, W . D . ; Grant, P. M.; Sayers, D . E . ; Street, G . B., unpublished data. 40. Comes, R. Bull. Am. Phys. Soc. 1 9 7 8 , 23, 424. 41. Bondi, A . J. Phys. Chem. 1964, 68, 441. 42. Falardeau, E . R.; Hanlon, L . R.; Thomson, T. E . Inorg. Chem. 1 9 7 8 , 17, 301. 43. Lefrant, S.; Lichtmann, L. S.; Temkin, H.; Fitchen, D . B.; Miller, D . C.; Whitwell II, G . B.; Burlitch, J. M. Solid State Commun. 1 9 7 9 , 29, 191. 44. Thomas, J.; Geiss, R. H.; Street, G . B., unpublished data. 45. Philipp, A ; Seeger, K., unpublished data. 46. Clarke, T. C.; Street, G. B. Synth. Metals 1 9 8 0 , 1, 119. 47. Bartlett, N . ; Biagioni, R. N.; McQuillan, B. W.; Robertson, A. S.; Thomp­ son, A. C. J. Chem. Soc., Chem. Commun. 1 9 7 8 , 200. 48. Wendel, H. J. Physics C 1 9 7 7 , 10, L1. 49. Stolz, H. J.; Wendel, H.; Otto, A . ; Pintschovius, L . ; Kahlert, H. Phys. Status Solidi B 1 9 7 6 , 78, 277. 50. Temkin, H.; Fitchen, D . B. Solid State Commun. 1976, 19, 1181. 51. Chapman, D.; Warn, R. J. Trans. Faraday Soc. 1 9 6 4 , 60, 294. 52. Shirakawa, H.; Ito, T.; Ikeda, S. Polym. J. 1 9 7 3 , 4, 460. 53. Kuhn, H. J. Chem. Phys. 1 9 4 9 , 17, 1198. 54. Dewar, M. J. S. J. Chem. Soc. 1 9 5 2 , 3544. 55. Grant, P. M.; Batra, I. Solid State Commun. 1 9 7 9 , 29, 225. 56. Hudson, B.; Kohler, B. Annu. Rev. Phys. Chem. 1974, 25, 437. 57. Grant, P.M.,unpublished data. 58. Chiang, C. K.; Cohen, M . T.; Garito, A . F . ; Heeger, A . J.; MacDiarmid, A. G.; Mikulski, C. M. Solid State Commun. 1976, 18, 1451. 59. Kwak, J. F.; Greene, R. L . ; Fuller, W . W. Phys. Rev. B 1979, 20, 2658. 60. Park, Y. W . ; Druy, M . A . ; Chiang, C. K.; MacDiarmid, A . G.; Heeger, A . J.; Shirakawa, H.; Ikeda, S. J. Polym. Sci., Polym. Lett. Ed. 1 9 7 9 , 17, 195. 6 1 . Kwak, J. F.; Clark, T. C.; Street, G. B.; Greene, R. L. Solid State Commun. 1 9 7 9 , 31, 355. 62. Magistris, A . ; Pezzati, E . ; Sinistria, C. Z . Naturforsch Teil A 1 9 7 2 , 27, 1379.

6 3 . Pearson, W . B. Solid State Phys. 1 9 6 1 , 3, 1411. RECEIVED September 13, 1 9 7 8 .

Holt et al.; Solid State Chemistry: A Contemporary Overview Advances in Chemistry; American Chemical Society: Washington, DC, 1980.