18 High-Temperature Electrolysis/Fuel Cells:
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
Materials Problems H. OBAYASHI and T. KUDO Central Research Laboratory, Hitachi, Ltd., Higashi-Koigakubo, Kokubunji, Tokyo, 185, Japan The motivation for electrolysis/fuel cell technology is sum marized, and problems regarding the development of high -temperature electrolysis cells and medium-temperature fuel cells are discussed: (a) a suitable solid electrolyte, (b) a cathode for operating in a highly oxidizing atmosphere mechanically compatible with the electrolyte, (c) a cell design that minimizes material and heat transfer problems, and (d) an electronic conductor stable in a wide range of oxygen partial pressures (1-10 atm PO2) for series connec tion. Materials research addressed to solving these problems is reviewed. -20
T 7 u e l cells convert
chemical energy
d i s s i p a t i o n of heat;
electrolysis
e n e r g y i n t o c h e m i c a l energy.
i n t o e l e c t r i c a l energy
cells c o n v e r t
w i t h the
heat a n d e l e c t r i c a l
I f t h e e n t h a l p y of t h e c h e m i c a l r e a c t i o n is
AH = AG + Τ AS, the electrical energy derived f r o m a fuel c e l l ( o r consumed i n a n electrol ysis c e l l ) is AG a n d t h e heat d i s s i p a t e d ( o r c o n s u m e d ) is Τ AS.
I n the
absence of overvoltages a n d other c i r c u i t losses a n e n g i n e c o n s i s t i n g of a h i g h - t e m p e r a t u r e electrolysis c e l l a n d a l o w - t e m p e r a t u r e f u e l c e l l w o u l d c o n v e r t heat to e l e c t r i c i t y a n d / o r f u e l w i t h a n efficiency a p p r o a c h i n g t h e C a r n o t factor.
I n p r a c t i c e , losses at t h e electrodes are c o m p a r a b l e
with
t h e n e t e n e r g y d e r i v e d f r o m s u c h a c y c l e , so s u c h h e a t engines h a v e n o t been developed.
H o w e v e r , as t h e s u p p l y of c h e a p f o s s i l fuels b e c o m e s
e x h a u s t e d , t h e r e is r e n e w e d
i n c e n t i v e to d e v e l o p
cells w i t h
reduced
e l e c t r o d e loss, f o r t h e v e r s a t i l i t y o f a n e n g i n e that c a n c o n v e r t h e a t t o e i t h e r e l e c t r i c i t y o r f u e l w o u l d h a v e t r e m e n d o u s advantages i n a n u c l e a r 316
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
18.
OBAYASHi
energy
A N D
High-Temperature
K U D O
economy.
Two
approaches
to
Electrolysis/Fuel this
problem
d e v e l o p m e n t of b e t t e r c a t a l y t i c electrodes a n d ( b )
Cells
are
(a)
317 the
o p e r a t i o n at h i g h e r
temperatures.
B e c a u s e l i q u i d electrolytes b e c o m e too corrosive at h i g h
temperatures,
s o l i d electrolytes
offer
great
advantages
for
use
with
l i q u i d a n d gaseous fuels. T w o factors h a v e i n h i b i t e d the use of s o l i d e l e c t r o l y t e s : ( a )
adequate
c e l l d e s i g n a n d ( b ) a d e q u a t e i o n i c m o b i l i t y . B e c a u s e ions m o v e t h r o u g h
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
solids v i a a d i f f u s i o n process, the i o n i c m o b i l i t y contains a n e x p o n e n t i a l f a c t o r e x p ( — EJkT), Unless E
&
where E
&
is r e f e r r e d to as t h e a c t i v a t i o n e n e r g y .
is u n u s u a l l y s m a l l ( 0 . 1 - 0 . 3 e V ) , the i o n i c m o b i l i t y gives a j o u l e
loss i n t h e e l e c t r o l y t e that is t o l e r a b l e o n l y at h i g h t e m p e r a t u r e s .
This
s i t u a t i o n is a c c e p t a b l e for a h i g h - t e m p e r a t u r e electrolysis c e l l , a n d t h e reasons s u c h cells h a v e not b e e n d e v e l o p e d are, essentially, ( a )
inade
q u a t e c e l l d e s i g n a n d ( b ) insufficient i n c e n t i v e g i v e n a n a v a i l a b l e s u p p l y of c h e a p fossil fuels. W e s h o u l d a n t i c i p a t e b e t t e r designs of h i g h - t e m p e r a t u r e electrolysis cells as t h e i n c e n t i v e for d e v e l o p i n g s y n t h e t i c fuels b e c o m e s m o r e intense. T o date, e n g i n e e r i n g d e s i g n has c o n c e n t r a t e d o n f u e l cells, since t h e y offer the p o s s i b i l i t y of c o n v e r t i n g the c h e m i c a l e n e r g y of a n a v a i l a b l e f u e l into electrical a n d m e c h a n i c a l energy w i t h o u t the customary restriction of the C a r n o t efficiency factor. M a n y types h a v e b e e n p r o p o s e d ( I , 2, 3, 4, 5 ) , a n d e a c h has advantages f o r a p a r t i c u l a r a p p l i c a t i o n .
However,
f u e l cells f o r extensive t e r r e s t r i a l a p p l i c a t i o n a r e o n l y n o w
becoming
commercially available from a single supplier ( 6 ) .
T h e y use a l i q u i d
electrolyte a n d c a n a c c e p t a f a i r l y w i d e r a n g e of fuels. T h e i r efficiency is h m i t e d b y t h e t e m p e r a t u r e of o p e r a t i o n , w h i c h is r e s t r i c t e d b e c a u s e of t h e corrosive c h a r a c t e r of the electrolyte.
C e l l s that e m p l o y e i t h e r s o l i d
or m o l t e n - s a l t electrolytes f o r o p e r a t i o n a b o v e 3 0 0 ° C are c a l l e d h i g h t e m p e r a t u r e ( or m e d i u m - t e m p e r a t u r e ) f u e l cells ( 7, 8, 9 ). S i n c e m o l t e n salt electrolytes are corrosive, a t t e n t i o n is g i v e n i n this a r t i c l e to cells u t i l i z i n g s o l i d electrolytes. T h e h i g h - t e m p e r a t u r e o p e r a t i o n m a d e p o s s i b l e b y s o l i d electrolytes has several advantages, acceptably
(a)
I m p r o v e d k i n e t i c s at the electrodes a l l o w
h i g h c u r r e n t densities w i t h m e t h a n e ,
propane,
and
other
h y d r o c a r b o n fuels that d o n o t react s m o o t h l y at a m b i e n t t e m p e r a t u r e s , (b)
I n the absence of a l i q u i d phase i n t h e system, m a i n t a i n i n g the
" t e r n a r y phase b o u n d a r y r e g i o n " to a v o i d w e t t i n g of t h e e l e c t r o d e n e e d not be considered, system (d)
is m a d e
(c)
F a b r i c a t i o n , o p e r a t i o n , a n d m a i n t e n a n c e of t h e
easier b y
reduced
corrosion
and
sealing
problems,
C o n t r o l of t h e w a t e r / f u e l b a l a n c e is easier b e c a u s e t h e c o m p o s i t i o n
of the e l e c t r o l y t e is i n v a r i a n t a n d i n d e p e n d e n t of the c o m p o s i t i o n of t h e f u e l gas.
(e)
A r e d u c e d p o l a r i z a t i o n of the system p e r m i t s o p e r a t i o n at
h i g h e r c u r r e n t densities, a n d h e n c e h i g h e r p o w e r densities.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
318
SOLID
STATE
CHEMISTRY
O n t h e other h a n d , w o r k i n g at e l e v a t e d temperatures has d i s a d v a n tages: a l o w e r o u t p u t v o l t a g e a n d p r o b l e m s w i t h m i s m a t c h of the t h e r m a l e x p a n s i o n of e l e c t r o d e a n d e l e c t r o l y t e m a t e r i a l s . A l t h o u g h the l a t t e r problem can be engineered around b y appropriate cell design,
both
p r o b l e m s m a k e i t d e s i r a b l e to operate a f u e l c e l l at as l o w a t e m p e r a t u r e as possible, c o m p a t i b l e w i t h the p o w e r r e q u i r e m e n t s . A m e d i u m - t e m p e r a t u r e r a n g e ( 2 0 0 ° - 4 0 0 ° C ) appears m o s t d e s i r a b l e w e r e i t p o s s i b l e to Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
find a s o l i d e l e c t r o l y t e h a v i n g a c c e p t a b l e i o n i c m o b i l i t i e s i n this t e m p e r a t u r e r a n g e . T h e m o b i l e i o n i c species of t h e s o l i d e l e c t r o l y t e w o u l d b e either O ' or K 2
+
ions ( m o s t fuels offering H
+
as t h e m o b i l e c o m p o n e n t ) .
Because no k n o w n proton conductors w i t h acceptable H - i o n mobilities +
are stable a b o v e 2 0 0 ° C , t h e e v a l u a t i o n of s o l i d electrolytes i n f u e l cells has b e e n c o n f i n e d to 0 " - i o n c o n d u c t o r s . 2
Unfortunately, acceptable O ' 2
ion mobilities occur only above 800°C, a temperature considerably above the o p t i m u m f o r f u e l - c e l l o p e r a t i o n .
Nevertheless, the materials con
siderations f o r a h i g h - t e m p e r a t u r e f u e l c e l l are s i m i l a r to those f o r a h i g h - t e m p e r a t u r e electrolysis c e l l , a n d the 0 " - i o n c o n d u c t o r s 2
h e r e are excellent c a n d i d a t e s for this latter a p p l i c a t i o n .
considered Clearly
the
d i s c o v e r y of a s o l i d e l e c t r o l y t e c a p a b l e o f t r a n s p o r t i n g O ' or H ions w i t h 2
+
a c c e p t a b l e m o b i l i t i e s i n the t e m p e r a t u r e r a n g e 2 0 0 ° - 4 0 0 ° C w o u l d r e v o l u t i o n i z e the d e s i g n a n d use of f u e l cells. Development
of a c o m m e r c i a l e l e c t r o l y s i s / f u e l c e l l u s i n g a s o l i d
e l e c t r o l y t e r e q u i r e s the s o l u t i o n of s e v e r a l p r o b l e m s : ( a ) s u i t a b l e m a t e r i a l f o r the s o l i d e l e c t r o l y t e ; ( b )
s e l e c t i o n of a
i d e n t i f i c a t i o n of a c h e m
i c a l l y a n d m e c h a n i c a l l y c o m p a t i b l e c a t h o d e that r e m a i n s a g o o d elec t r o n i c c o n d u c t o r i n a h i g h l y o x i d i z i n g atmosphere, is t h e r m o d y n a m i c a l l y stable, a n d contains a b u n d a n t , i n e x p e n s i v e elements; d e s i g n t h a t a l l o w s series
connection
of
(c)
simple cell
i n d i v i d u a l units a n d
makes
a c c e p t a b l e a n y m i s m a t c h i n t h e r m a l e x p a n s i o n of the electrolyte a n d the electrodes; a n d ( d ) i d e n t i f i c a t i o n of a n i n e x p e n s i v e e l e c t r o n i c c o n d u c t o r stable i n a w i d e r a n g e of o x y g e n p a r t i a l pressures ( 1 - 1 0 " series c o n n e c t i o n .
20
atm p
)
0 2
f
o r
O f these, t h e most i m p o r t a n t i m m e d i a t e p r o b l e m is
t h e s o l i d electrolyte. A t a n o p e r a t i n g t e m p e r a t u r e n e a r 3 5 0 ° C the s o l i d 0 " - i o n electrolyte s h o u l d h a v e a h i g h 0 " - i o n m o b i l i t y a n d a h i g h 0 " - i o n 2
2
2
transference n u m b e r ( r a t i o of 0 " - i o n c o m p o n e n t to t o t a l e l e c t r i c a l c o n 2
d u c t i v i t y ) o v e r a w i d e r a n g e of o x y g e n p a r t i a l pressures.
It must be
c h e m i c a l l y stable o v e r a w i d e t e m p e r a t u r e range, m a d e of i n e x p e n s i v e m a t e r i a l s , a n d easily f a b r i c a t e d i n t o dense c e r a m i c m e m b r a n e s of a r b i t r a r y shape. T h i s p a p e r r e v i e w s the present status of m a t e r i a l s r e s e a r c h i n t o 0 " - i o n s o l i d electrolytes, electrodes, a n d c e l l interconnectors. 2
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
18.
OBAYASHi
A N D
High-Temperature
K U D O
Electrolysis/Fuel
319
Cells
&~-Ion Solid Electrolytes General Considerations. The d i s c o v e r y a n d u t i l i z a t i o n of o x y g e n - i o n c o n d u c t i o n i n a c e r a m i c o x i d e dates b a c k to b e f o r e 1900, w h e n N e r n s t used yttria-stabilized zirconia, χ Υ 0 · ( 1 — 2 x ) Z r 0 2
fluorite
3
2
crystallizing i n the
structure, as a g l o w e r element, k n o w n as t h e N e r n s t mass
M a n y w o r k e r s h a v e c o n t r i b u t e d to this field since t h e n (11).
(10).
Although
N e r n s t ' s g l o w e r element was n o t a c o m m e r c i a l success, oxides c o n d u c t i n g O " ions h a v e b e e n i n v e s t i g a t e d for a v a r i e t y of other a p p l i c a t i o n s , i n c l u d Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
2
i n g t h e n o w c o m m e r c i a l l y a v a i l a b l e o x y g e n sensors u s e d f o r the s t u d y of the t h e r m o d y n a m i c p r o p e r t i e s of oxides at e l e v a t e d t e m p e r a t u r e s
(8,12).
T h e use of c e r a m i c 0 " - i o n c o n d u c t o r s as s o l i d electrolytes i n f u e l cells 2
has b e e n s t u d i e d i n t e n s i v e l y at several institutes (13, 14, 15, 16), c i a l l y d u r i n g the late 1960s.
A l t h o u g h the c e l l designs w e r e
espe
inadequate
a n d the h i g h - t e m p e r a t u r e a p p l i c a t i o n is b e t t e r s u i t e d to electrolysis, these studies h a v e p r o v i d e d i m p o r t a n t i n f o r m a t i o n a b o u t the p e r f o r m a n c e
of
0 " - i o n c o n d u c t o r s u n d e r o p e r a t i n g c o n d i t i o n s a n d s o m e of the p r o b l e m s 2
to b e e n c o u n t e r e d because of m a t e r i a l s m i s m a t c h b e t w e e n electrodes a n d electrolyte.
T h e 0 " - i o n conductors
extensively s t u d i e d are
the
O t h e r systems w i t h the fluorite s t r u c t u r e , f o r
2
e x a m p l e those b a s e d o n T h 0 The
most
2
Z r 0 - b a s e d systems (13).
a n d C e 0 , h a v e also b e e n i n v e s t i g a t e d .
2
2
0 ~ - i o n conductors
that have been
2
s t u d i e d most i n t e n s i v e l y
g e n e r a l l y e x h i b i t a n e g l i g i b l e c a t i o n i c c o n d u c t i v i t y (17, e r a l m o d e l for s u c h a n 0 " - i o n 2
conductor
consists of
18, 19). a
A gen
fixed
cation
s u b a r r a y w i t h i n w h i c h the anions m o v e b y j u m p i n g f r o m one e n e r g e t i c a l l y e q u i v a l e n t site to another. The mobility μ cient D
0
of t h e i o n i c m o t i o n is r e l a t e d to t h e d i f f u s i o n coeffi
t h r o u g h the N e r n s t - E i n s t e i n r e l a t i o n ,
0
μ
ο
=
2eD /kT
(1)
0
w h e r e —2e is the charge o n the m o b i l e O " i o n a n d the s i g n of μο is 2
chosen f o r c o n v e n i e n c e . D where n
D
0
=
F r o m r a n d o m - w a l k theory,
0
=
(2n
D O
(2)
)- [Vo' ]^o vo 1
,
2
1, 2, or 3 is the d i m e n s i o n a l i t y of the i o n i c m o t i o n ,
[V "] 0
is the c o n c e n t r a t i o n of d o u b l y i o n i z e d o x y g e n vacancies ( e a c h of w h i c h is c a p a b l e of t r a p p i n g t w o e l e c t r o n s ) , z
0
nearest-neighbor
is t h e n u m b e r of
equivalent
sites a j u m p distance flo a w a y , a n d vo is t h e
jump-
a t t e m p t f r e q u e n c y of the O " ions. T h e e x t r i n s i c 0 " - i o n c o n d u c t i v i t y is 2
a o
( e x t ) — Nod
2
-
[V "])e/io 0
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
(3)
320
SOLID
STATE
CHEMISTRY
w h e r e JV is t h e d e n s i t y of e n e r g e t i c a l l y e q u i v a l e n t o x y g e n sites o n w h i c h 0
t h e ions m o v e . K i n g e r y et a l . ( 2 0 ) h a v e d e m o n s t r a t e d (see below) t h a t 0 " - i o n c o n d u c t i o n i n Zro.85Cao.15O1.s5 takes p l a c e v i a t h e d o u b l y i o n i z e d 2
o x y g e n v a c a n c i e s V " , a n d w e assume this to b e t r u e for a l l 0 ~ - i o n 2
0
c o n d u c t o r s c o n s i d e r e d here. F i n a l l y , since a free e n e r g y A G = 0
TaS
0
vo = Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
Δί/
0
—
is r e q u i r e d to m a k e a j u m p , t h e j u m p f r e q u e n c y is
where E = a
v e x p ( — AGo/kT)
— v o o e x p ( A S / f c ) e x p ( — EJkT)
o 0
ΔΗ
0
0
(4)
is r e f e r r e d to as the a c t i v a t i o n e n e r g y f o r i o n i c m o b i l i t y .
F r o m the f a c t o r ( 1 — [ V " ] ) [ V " ] a p p e a r i n g i n a o ( e x t ) , i t is c l e a r 0
0
t h a t t h e i o n i c c o n d u c t i v i t y vanishes i f the N o e q u i v a l e n t sites are e i t h e r c o m p l e t e l y o c c u p i e d or c o m p l e t e l y e m p t y . S u c h a s i t u a t i o n is analogous to a s t o i c h i o m e t r i c s e m i c o n d u c t o r or i n s u l a t o r i n w h i c h i n t r i n s i c elec t r o n i c c o n d u c t i v i t y r e q u i r e s t h e c r e a t i o n of m o b i l e electrons a n d holes b y t h e t h e r m a l e x c i t a t i o n of electrons f r o m t h e v a l e n c e b a n d to the c o n d u c t i o n b a n d . I n t h e e l e c t r o n i c a n a l o g y , t h e p r o d u c t of the concentrations of i n t r i n s i c electrons a n d holes is [e]i„ [h] t
where K
l n t
-
tf exp[-
E /kT] g
0
is a n e q u i l i b r i u m constant a n d E
0
(5)
is the e n e r g y g a p b e t w e e n
g
t h e t o p of t h e v a l e n c e b a n d a n d the b o t t o m of t h e c o n d u c t i o n b a n d . S i m i l a r l y , i n t r i n s i c i o n i c c o n d u c t i v i t y r e q u i r e s t h e r m a l e x c i t a t i o n of O ' 2
ions f r o m n o r m a l positions to i n t e r s t i t i a l positions across a n e n t h a l p y barrier Δ ί ^ :
O " ^± V o " +
Oi "
2
(6)
2
w h e r e O i " is a n i n t e r s t i t i a l i o n a n d t h e e q u i h b r i u m constant is 2
KdT)
-
[Vc/'HOi -] 2
X
i 0
e x p ( - ΔΗι/kT)
(7)
A s i g n i f i c a n t c o n c e n t r a t i o n of m o b i l e e l e c t r o n i c c h a r g e carriers at n o r m a l temperatures can be i n t r o d u c e d into a semiconductor b y a suitable c h e m i c a l s u b s t i t u t i o n . S i m i l a r l y , i t is c u s t o m a r y i n i o n i c c o n d u c t o r s to i n t r o duce m o b i l e ionic charge carriers b y appropriate c h e m i c a l substitutions. I n t h e s t a b i l i z e d z i r c o n i a s a l r e a d y m e n t i o n e d , the f o l l o w i n g s u b s t i t u t i o n s were made: Zr 2Zr
4 +
4 +
+
O " by C a
+
O " by 2 Y
2
2
2 +
3 +
+ +
V "
(8a)
Vo'
(8b)
0
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
18.
OBAYASHi
A N D
High-Temperature
K U D O
Electrolysis/Fuel
321
Cells
A n o x y g e n p o s i t i o n adjacent to a s u b s t i t u t i o n a l c a t i o n is n o t c r y s t a l l o g r a p h i c a l l y , a n d h e n c e e n e r g e t i c a l l y , e q u i v a l e n t to
one
t h a t is
not.
H o w e v e r , w i t h sufficient c a t i o n s u b s t i t u t i o n V o " is a b l e to m i g r a t e to a p o s i t i o n n e i g h b o r i n g another s u b s t i t u t i o n a l c a t i o n v j a a n e a r e s t - n e i g h b o r j u m p , a n d the b i n d i n g energy b e t w e e n d o p a n t a n d V " m a y b e n e g l e c t e d 0
at o p e r a t i n g temperatures. T h e s i t u a t i o n b e c o m e s analogous to e x t r i n s i c e l e c t r o n i c or h o l e c o n d u c t i o n i n a h i g h l y d o p e d s e m i c o n d u c t o r ,
except
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
that the c h a r g e - c a r r i e r m o b i l i t y μο is a c t i v a t e d ( E q u a t i o n s 1-4)
as i n
t h e case of a s m a l l - p o l a r o n c o n d u c t o r . T h e p o p u l a t i o n s of o x y g e n v a c a n c i e s a n d m o b i l e electrons a n d holes i n s u c h a c a t i o n - s u b s t i t u t e d 0 ' - i o n c o n d u c t o r are also i n f l u e n c e d b y t h e 2
c h e m i c a l e q u i l i b r i u m of the s a m p l e w i t h gaseous o x y g e n 0 ( g ) 2
*0 (g) +
V
2
0
" i
h
0
- +
2
(21):
2h
(9a)
0 - S i 0 ( g ) + V " + 2e 2
2
(9b)
0
F r o m the l a w of mass a c t i o n the e q u i l i b r i u m constants a r e
=
K (T) h
K (T) e
where p
02
[h] =
2
• [Vo"]"
[e]
2
• Po -
1
2
· [Vo"] • p
m
0 2
1 / 2
-
#
-
K^expiAHJkT)
h o
e x p ( - AHJkT)
(10b)
is the p a r t i a l pressure of o x y g e n a n d A / / , AH
are t h e e n t h a l
e
h
(10a)
pies f o r o x i d a t i o n a n d r e d u c t i o n , r e s p e c t i v e l y . T h e c o r r e s p o n d i n g
elec
t r o n i c c h a r g e - c a r r i e r concentrations are
[h] = X [e] -
h
1 / 2
Xe
[V "]
1 / 2
0
1 / 2
[V "]0
p
1 / 2
0 2
Po 2
e
(Hb)
1 / 4
I f the v a l e n c e b a n d of the o x i d e is a n 0 " : 2 p b a n d , A f / 2
(Ha)
1 / 4
h
is l a r g e a n d
[h]
is n e g l i g i b l e . H o w e v e r , i f the v a l e n c e b a n d is a n a r r o w d or f b a n d , as m a y o c c u r i n t r a n s i t i o n - m e t a l a n d r a r e - e a r t h oxides, A H
h
m a y be small
e n o u g h to g i v e a significant c o n c e n t r a t i o n of m o b i l e holes [ h ] at h i g h e r o x y g e n p a r t i a l pressures.
S i m i l a r l y , i f t h e c o n d u c t i o n b a n d associated
w i t h t h e l o w e s t e m p t y orbitals o n the c a t i o n a r r a y is r e l a t i v e l y stable, Aff
e
m a y b e s m a l l e n o u g h to g i v e a significant c o n c e n t r a t i o n of m o b i l e
electrons [e] at l o w e r o x y g e n p a r t i a l pressures.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
322
SOLID STATE
CHEMISTRY
T h e total electrical conductivity is the s u m of the partial
conduc
t i v i t i e s c a u s e d b y holes, electrons, a n d O " i o n s : 2
«n, = σ
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
σ where N
tf [h]
e/x
h
= i V [ e ] e/x
β
e
(12a)
h
(12b)
e
— ΛΓ (1 — [ V ' ' ] )2e/*o + ^ [ ( V ^ e / V
0
0
(12c)
0
i s the d e n s i t y o f c r y s t a l l o g r a p h i c sites a v a i l a b l e t o c h a r g e -
m
c a r r i e r species m , e is t h e m a g n i t u d e o f the e l e c t r o n i c c h a r g e , a n d t h e signs of the m o b i l i t i e s /A are so d e f i n e d (see E q u a t i o n 1) t h a t the p r o d u c t m
of t h e m o b i l i t y a n d t h e c h a r g e c a r r i e d is a l w a y s p o s i t i v e . T h e m o b i l i t y /Ao refers t o t h e i n t e r s t i t i a l O i ' ions, a n d N is t h e d e n s i t y o f i n t e r s t i t i a l 1
2
{
sites. T h e transference n u m b e r for 0 " - i o n c o n d u c t i o n is d e f i n e d as 2
to = σ / ( a 0
h
+ σ + σ ) β
(13)
0
F o r a s o l i d e l e c t r o l y t e i t is d e s i r a b l e t o h a v e t =
1. T h i s i d e a l m a y b e
0
a p p r o a c h e d i n oxides w i t h l a r g e b a n d gaps (E
> 100&Γ), p r o v i d e d A H
G
and Δ Η
β
h
are also l a r g e .
F o r a g i v e n AH a n d Δ Η , the transference n u m b e r o f a n e x t r i n s i c h
β
0 " - i o n c o n d u c t o r is 2
to =
(«Po
1 / 4 2
[V '']-
1 / 2
0
+
/W
/
4
[V
0
"]-
3
/
2
1
+
D"
(14)
where a = K^W^HO
a n d β = Κ"*μ*/2μο
(15)
F i g u r e 1 shows s c h e m a t i c a l l y the d e p e n d e n c e o f ίο o n the o x y g e n p a r t i a l pressure p
0 2
(22).
S i g n i f i c a n t l y , the r a n g e o f o x y g e n pressures at w h i c h — —
• u n d o p e d oxide = doped -
ff
NX
y /
6" ion
\--/
1.0
n i / / 1
.20.5 Figure 1. Schematic show ing the effect of doping on conductivity and ionic trans ference number
\
1
I'
*
/ '
»
//
\
P
0
y
\
-
\ \
\
2
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
18.
OBAYASHi
High-Temperature
A N D K U D O
Electrolysis/Fuel
c o n d u c t i o n is p r e d o m i n a n t l y i o n i c c a n , f o r a g i v e n A i /
h
323
Cells and Δίί , β
be
widened b y increasing [Vo"] w i t h chemical doping. Schmalzried (23)
has d e f i n e d p * σ
h
to =
a n d p * as t h e o x y g e n
h
pressures at w h i c h a =
0
{1 +
and σ =
σ
β
(Po /Ph*) 2
e
(i.e. t
0
0
1 / 4
+
=
0.5).
WPe*)"
1 7 4
a n d i t is sufficient to k n o w p * a n d p * to c a l c u l a t e t
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
h
}-
(16)
1
at a n y g i v e n o x y g e n
0
e
partial
Then
p a r t i a l pressure. C o n v e r s e l y , p * a n d p ° c a n b e o b t a i n e d f r o m c o n d u c h
e
tivity measurements that give t
0
pressures (24, 2 5 ) .
u n d e r a f e w different o x y g e n
S c h m a l z r i e d ' s (23, 26)
partial
o r i g i n a l e q u a t i o n t o estimate
these p a r a m e t e r s is b a s e d o n t h e e m f of a n o x y g e n c o n c e n t r a t i o n c e l l :
(17)
w h e r e F is F a r a d a y ' s constant a n d ρ
θ 2
' , P o " are, r e s p e c t i v e l y , t h e o x y g e n 2
p a r t i a l pressures at t h e a n o d e a n d c a t h o d e
(po " 2
>
Ρο ')· 2
If the ionic
defects are f u l l y i o n i z e d , as is g e n e r a l l y t h e case at e l e v a t e d t e m p e r a t u r e s (20), η
y .
—
4
T h e " e l e c t r o l y t i c d o m a i n " is d e f i n e d as the d o m a i n of o x y g e n p a r t i a l pressures i n w h i c h to is greater t h a n some s p e c i f i e d v a l u e s u c h as 0.99 (27, 28).
M o s t 0 " - i o n conductors have a n 0 " : 2 p 2
h e n c e a large &H . h
2
e
valence b a n d a n d
I n these cases i t is p r a c t i c a l l y m o r e i m p o r t a n t to
d e t e r m i n e the v a l u e of p * i n o r d e r to c h e c k t h e s u i t a b i l i t y of a m a t e r i a l e
for a f u e l / e l e c t r o l y s i s c e l l or a n o x y g e n sensor (29, 30,
31).
I n a d d i t i o n t o c h e m i c a l s t a b i l i t y against o x i d i z i n g a n d r e d u c i n g atmopsheres ( l a r g e AH
a n d Δ Η ) a n d a large intrinsic electronic energy
h
β
g a p E g , a l l to m i n i m i z e a n y e l e c t r o n i c c o n t r i b u t i o n to t h e c o n d u c t i v i t y , a good 0 " - i o n electrolyte must have a h i g h μ , a n d hence a l o w activation 2
0
energy E
a
for i o n i c m o b i l i t y . E x t e n s i v e studies o n 0 " - i o n electrolytes 2
h a v e s h o w n t h a t the 0 ' - i o n m o b i l i t i e s m a y v a r y g r e a t l y w i t h c r y s t a l 2
s t r u c t u r e . A l t h o u g h l i t t l e a t t e n t i o n has b e e n g i v e n to l e a r n i n g w h y c e r t a i n c r y s t a l structures are m o r e f a v o r a b l e t h a n others f o r h i g h i o n i c m o b i l i t y , i t has b e e n f o u n d e m p i r i c a l l y t h a t m o s t of t h e g o o d 0 " - i o n 2
k n o w n crystallize i n the The B i 0 2
3
fluorite,
conductors
p e r o v s k i t e , o r p y r o c h l o r e structures.
a n d C - t y p e l a n t h a n i d e structures, w h i c h are r e l a t e d to
fluorite
w i t h V " i n a n o r d e r e d a r r a y , are also g o o d host structures. I n w h a t 0
f o l l o w s , r e p r e s e n t a t i v e s o l i d electrolytes f r o m e a c h s t r u c t u r a l g r o u p are d i s c u s s e d i n some d e t a i l . Fluorites.
S T R U C T U R E .
The cubic
fluorite
s t r u c t u r e corresponds
c h e m i c a l f o r m u l a M X . I t consists of a f a c e - c e n t e r e d - c u b i c 2
to
a r r a y of
cations M w i t h anions X o c c u p y i n g a l l of t h e t e t r a h e d r a l interstices. T h e
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
324
S O L I D
S T A T E
C H E M I S T R Y
o c t a h e d r a l sites are e m p t y ; t h e y represent i n t e r s t i t i a l positions f o r
the
anions. I n t r o d u c t i o n of v a c a n c i e s i n t o the t e t r a h e d r a l sites p e r m i t s a n i o n m o b i l i t y , a n d the most p r o b a b l e j u m p p a t h is v i a a n o c t a h e d r a l site t h a t shares c o m m o n faces w i t h t h e t w o n e i g h b o r i n g t e t r a h e d r a l sites. activation energy E
a
The
increases as t h e e n e r g y r e q u i r e d t o p l a c e a n a n i o n
i n t o a n adjacent i n t e r s t i t i a l site increases. T h e C - t y p e l a n t h a n i d e s t r u c t u r e ( M X ) contains 2 5 % a n i o n v a c a n 2
3
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
cies t h a t are o r d e r e d a m o n g the t e t r a h e d r a l sites.
I n such an
ordered
s t r u c t u r e the tetrahedral-site vacancies are not c r y s t a l l o g r a p h i c a l l y e q u i v a l e n t a n d m u s t b e c o n s i d e r e d i n t e r s t i t i a l positions. D O P E D
ZR0 . 2
Pure Z r 0
has t w o c r y s t a l l o g r a p h i c m o d i f i c a t i o n s :
2
it
is m o n o c l i n i c at l o w t e m p e r a t u r e s a n d t e t r a g o n a l at h i g h temperatures (32, 3 3 , 3 4 ) .
I n t r i n s i c e l e c t r o n i c c o n d u c t i v i t y competes w i t h i n t r i n s i c
i o n i c c o n d u c t i v i t y , a n d the e l e c t r o n i c m o b i l i t i e s are m u c h greater t h a n t h e i o n i c m o b i l i t i e s . E l e c t r o n i c c o n d u c t i v i t y d o m i n a t e s the phase
monoclinic
(35, 36, 3 7 ) ; the t e t r a g o n a l m o d i f i c a t i o n s h o w s a m i x e d i o n i c /
e l e c t r o n i c c o n d u c t i o n of c o m p a r a b l e m a g n i t u d e
(38).
t h e i o n i c a n d e l e c t r o n i c c o n d u c t i v i t i e s of p u r e Z r 0 p a r t i a l pressure of o x y g e n p o
2
2
F i g u r e 2 shows
as a f u n c t i o n of the
for t w o temperatures, 6 0 0 ° C a n d 9 0 0 ° C .
A t h i g h e r p , i n t e r s t i t i a l o x y g e n ions O i " are i n t r o d u c e d ; these are the 2
0 2
m o b i l e i o n i c species. A t l o w e r p o , o x y g e n vacancies V o " are i n t r o d u c e d , 2
a n d t h e n o r m a l - s i t e O " ions are m o b i l e .
A t intermediate po
2
2
b o t h the
i o n i c a n d e l e c t r o n i c c o n d u c t i v i t i e s are i n t r i n s i c . O n the other h a n d , i o n i c c o n d u c t i v i t y dominates i n c a t i o n - s u b s t i t u t e d Z r 0 , e v e n i n the m o n o c l i n i c phase. 2
a transference n u m b e r t
0
>
F o r example, 0 . 0 1 Y O 0 . 9 9 Z r O 2
three orders of m a g n i t u d e l a r g e r t h a n that of p u r e Z r 0
0
-4
3
2
has
0.9 at 6 0 0 ° C a n d a t o t a l c o n d u c t i v i t y n e a r l y
-8
-12
-16
-20
-24
2
(37).
-28
Figure 2. Electronic and ionic partial conductivity isotherms for pure Zr0 . Adapted from Ref. 37. 2
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
18.
OBAYASHi
A N D
High-Temperature
K U D O
Τ
ίο-·-
1
Electrolysis/Fuel
1
1
325
Cells
Γ
Calculated from electrical conductivity
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
10 - 7
10-·
10-·
io-
-L
1 0
0.7
0.6
0.5
10
0.9
0.8
U
îoocvr Figure 3. Comparison of directly measured diffusion constants with a line calculated from electrical conductivity and the Nernst-Einstein relation. Adapted from Ref. 20.
K i n g e r y et a l . ( 2 0 ) ductivity i n doubly mobility
h a v e d e m o n s t r a t e d t h a t the h i g h 0 ~ - i o n 2
Zro.s5Cao.15O1.85
ionized oxygen
vacancies
at 7 0 0 ° - 1 1 0 0 ° C
employing
con
is c a u s e d b y n o r m a l - s i t e Ό " ions h o p p i n g to 2
by
mass-spectrometer
[Vo"].
They
introducing O analysis.
They
1 8
measured
the
oxygen
v i a i o n exchange also m e a s u r e d
and
the total
e l e c t r i c a l c o n d u c t i v i t y a n d c o m p a r e d i t w i t h the i o n i c c o n d u c t i v i t y c a l c u l a t e d f r o m the m e a s u r e d i o n i c m o b i l i t y a n d E q u a t i o n 3. T h e c o m p a r i s o n is s h o w n i n F i g u r e 3.
W i t h i n e x p e r i m e n t a l error, t h e entire e l e c t r i c a l
c o n d u c t i v i t y c a n b e a t t r i b u t e d to a n e x t r i n s i c i o n i c c o n d u c t i v i t y i n w h i c h t h e i o n i c m o b i l i t y is p r o p o r t i o n a l to the c o n c e n t r a t i o n of d o u b l y i o n i z e d vacancies, [ V " ] . 0
S i m p s o n a n d C a r t e r ( 1 8 ) o b t a i n e d s i m i l a r results w i t h
s i n g l e - c r y s t a l a n d p o l y c r y s t a l l i n e Zr .858Ca .i42Oi.858. 0
0
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
326
SOLED
STATE
CHEMISTRY
W i t h l a r g e r c a t i o n s u b s t i t u t i o n s a c u b i c fluorite s t r u c t u r e is s t a b i l i z e d r e l a t i v e to t h e m o n o c l i n i c a n d t e t r a g o n a l m o d i f i c a t i o n s of p u r e Z r 0 . T h e 2
a n i o n - d e f i c i e n t fluorite s t r u c t u r e has a s i g n i f i c a n t l y l a r g e r O ^ - i o n c o n d u c t i v i t y , a n d i t is this phase that is of interest f o r s o l i d electrolytes.
I n the
s y s t e m C a . Z r i . 0 . . , t h e c u b i c phase is s t a b i l i z e d a b o v e 1 7 0 0 ° C f o r χ > a?
a
2
a
0.12, a b o v e 1 3 0 0 ° C f o r χ >
0.16 ( 3 9 ) .
M a x i m u m c o n d u c t i v i t i e s are
o b s e r v e d i n t h e r a n g e 0.13 > χ > 0.15 (40).
T h e systems M
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
w h e r e M is a t r i v a l e n t c a t i o n of c o m p a r a b l e size ( M = G d . . .) h a v e also b e e n e x t e n s i v e l y i n v e s t i g a t e d (41).
2 a ;
Zri. .0 . , 2 a
2
a r
Se, Y , N d , S m , F i g u r e 4 shows
c o n d u c t i v i t y v s . d o p a n t c o n c e n t r a t i o n at 8 0 0 ° C f o r several of these sys tems
I n most
(42).
cases t h e c o n d u c t i v i t y m a x i m u m o c c u r s at t h e
m i n i m u m d o p a n t l e v e l n e e d e d to s t a b i l i z e t h e c u b i c phase. T h i s o b s e r v a t i o n seems to i n d i c a t e that t h e m a g n i t u d e of t h e m o b i l i t y is n o t o b t a i n e d b y o p t i m i z i n g t h e p r o d u c t [ V o " ] ( 1— [ V " ] ) w i t h t h e s i m p l i f i e d a s s u m p 0
t i o n of r a n d o m o x y g e n v a c a n c i e s i n t h e fluorite s t r u c t u r e (43, 44). =
0.15/2 =
In
f o r e x a m p l e , t h e o x y g e n - v a c a n c y c o n c e n t r a t i o n is [ V o " ]
Cao.15Zro.85O1.g5,
0.075.
A t the large vacancy
concentrations
required for
s t a b i l i z a t i o n o f t h e c u b i c phase, t h e d i l u t e - s o l u t i o n a p p r o x i m a t i o n , w h i c h neglects i n t e r a c t i o n s b e t w e e n t h e vacancies, m a y n o t h o l d . I n d e e d i t has b e e n suggested t h a t a c u b i c phase w i t h
disordered
o x y g e n vacancies is n o t stable b e l o w a b o u t 1 0 0 0 ° C ( 4 5 , 46, 47, 48, 49). Baukal
f o u n d that a decrease w i t h t i m e i n t h e c o n d u c t i v i t y of
(50)
( Z r 0 ) 0 . 9 1 ( Y 0 ) 0 . 0 9 o n l o w e r i n g t h e t e m p e r a t u r e to 8 0 0 ° C c o u l d b e 2
2
3
described b y
first-order
kinetics a n d that the activation energy E
for
&
ionic conduction remained unchanged
d u r i n g t h e a g i n g process.
This
r e s u l t p r o v i d e s c l e a r e v i d e n c e f o r some k i n d of o r d e r i n g o f t h e o x y g e n vacancies,
a n d this i n f e r e n c e
observation specimens
from
has b e e n
partially confirmed
x-ray a n d neutron-diffraction
studies
by
for the
(40, 48, 4 9 ) . T h i s a g i n g effect, o b s e r v e d f o r m a n y
direct aged
systems,
a p p e a r s b e l o w a c r i t i c a l t e m p e r a t u r e b u t has a cutoff at l o w t e m p e r a t u r e s w h e r e t h e i o n i c m o b i l i t y b e c o m e s too l o w f o r a g i n g to t a k e p l a c e . I n t h e s y s t e m CSL ZT . 0 .X, X
1 x
2
χ (47, 48, 51, 52); occur for Τ >
o r d e r i n g occurs m o r e r e a d i l y at h i g h e r v a l u e s of i t has a m a x i m u m rate of 1 0 0 0 ° C ( 5 3 ) , i t does n o t
1 2 5 0 ° C , a n d i t is too s l o w to b e o b s e r v a b l e
for Τ
3
Pr
349
Cells
2.5) causes s p a l l i n g of t h e
cathode during cooling. S h i r a i et a l . (130)
investigated C e 0
C r , C o , a n d N i as w e l l as L a 0 2
wt % Zr0
2
3
2
doped with Y 0 , F e 0 , L a 0 , 2
3
2
3
2
doped with C r , Co, and N i . A
3
60-40
L a 0 - C o s a m p l e h a d the l o w e s t r e s i s t i v i t y , a n d adhesiveness to 2
was
3
much improved by
substituting Y
for
L a i n the
system
L a . . Y 0 - C o . T h e y c l a i m that a f u e l c e l l e m p l o y i n g this c a t h o d e c o u l d
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
2
a
; c
3
b e o p e r a t e d a b o v e 1000°C, b u t details w e r e n o t g i v e n . I t w o u l d a p p e a r t h a t t h e i r c o m p o s i t i o n contains L a C o 0 , i n w h i c h case r e a c t i v i t y w i t h 3
the solid w o u l d be a problem. S v e r d r u p et a l . ( 13, 128) %
f o u n d a r e s i s t i v i t y m i n i m u m n e a r 1-2 m o l
S n , S b , or T e as a d o p a n t i n l n 0 2
at 1000°C, a n d S n - d o p e d l n 0 2
d u c t o r . It has t h e C - t y p e L n 0 2
r e l a t e d to
fluorite.
3
In 0 2
3
is stable
s t r u c t u r e of F i g u r e 2 1 , w h i c h is closely
3
=
0
sions of the t w o c o m p o u n d s 2
Figure 25).
A t 25 ° C , its p s e u d o f l u o r i t e l a t t i c e p a r a m e t e r , a
5.06 A , m a t c h e s w e l l that of Z r 0 Moreover, l n 0
(see
3
is u s e d as a t r a n s p a r e n t e l e c t r o n i c c o n
3
2
(a
=
0
5.10 A ) , a n d t h e t h e r m a l e x p a n
are s i m i l a r (131),
as seen i n F i g u r e 26.
is essentially u n r e a c t i v e w i t h Z r 0
2
at 1000°C.
Polariza
t i o n losses at t h e e l e c t r o d e c a n b e s i g n i f i c a n t l y r e d u c e d b y a s i m p l e r e v e r s e - c u r r e n t t r e a t m e n t , as c a n b e seen i n the v o l t a g e - c u r r e n t curves of F i g u r e 27 for a film of l n 0 2
3
deposited on stabilized Z r 0
2
by chemical
v a p o r t r a n s p o r t . P o l a r i z a t i o n losses w e r e also r e d u c e d w i t h a c o m p o s i t e electrode
c o n s i s t i n g of a d o p e d - I n 0 2
1
1
1
3
current collector covered b y 1
1
1
a
Γ
Temperature, ° C
Figure 26. A comparison of the linear thermal expansion characteristics and stabilized zirconia. Adapted from Ref. 13.
of
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
In O t
s
350
SOLID
STATE
CHEMISTRY
'600
1 Ί Test In 10 Electrode weight: 21 mg/cm Operating ρ/δ -0.68Ω 1400H Τ • 1000°C
î
N
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
e
Q
- 200cc/min (26 C, latm)
Acuve electrode area.- 1.3 cm
1200
>
2
Total drop before treatmen
1000
1
2
Total drop following reverse current treatment
800
ιι a.
UJ
o 600
Resistive drop following reverse current treatment R -0.67Q
o 400
ÛJ
^ ^ ^ ^ Resistive drop prior to reverse current treatment
200
200
400 600 800 Electrode Current, ma
1000
1200
Figure 27. Voltage-current characteristic of In O air electrodes. "Re verse-current" treatment reduces the potential drop. Adapted from Ref. 13. s
p o r o u s l a y e r of Z r 0
2
i m p r e g n a t e d w i t h o n e of t h e " c u b i c " p e r o v s k i t e s
P r C o 0 , N d C o 0 , P r N i 0 , or N d N i 0 3
3
doped l n 0 2
3
s
3
3
(13).
F r o m these observations,
is a p r o m i s i n g a i r e l e c t r o d e f o r h i g h - t e m p e r a t u r e f u e l /
electrolysis cells o p e r a t i n g at a b o u t 1000°C. A n a l t e r n a t i v e to a p o r o u s e l e c t r o d e is a m i x e d e l e c t r o n i c / i o n i c conductor. A s illustrated i n F i g u r e 28 for a n anode ( a similar argument a p p l i e s to c a t h o d e s ) , T a k a h a s b i et a l . (124)
have p o i n t e d out that w i t h
s u c h a n o n p o r o u s e l e c t r o d e t h e e l e c t r o d e r e a c t i o n takes p l a c e o v e r t h e entire electrode surface; i t is n o t c o n f i n e d t o t h e p o r t i o n a d j a c e n t to t h e
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
18.
OBAYASHi
electrolyte.
High-Temperature
A N D K U D O
T h i s s i t u a t i o n has b e e n
c a t h o d e h a v i n g a d i f f u s i o n constant D 119).
I f the D
0 "-ion
0
Cells
351
demonstrated w i t h a molten A g 0
— 10~ — 10" c m / s e c 5
4
2
(117,118,
o f t h e e l e c t r o d e is c o m p a r a b l e w i t h t h a t o f t h e e l e c t r o l y t e ,
d i f f u s i o n t h r o u g h t h e electrode
2
Electrolysis/Fuel
i n c r e a s i n g t h e effective
electrode
is n o t r a t e - d e t e r m i n i n g , a n d
area reduces
t h e p o l a r i z a t i o n losses.
S i n c e d o p e d a n d n o n s t o i c h i o m e t r i c perovskites h a v e b e e n s h o w n t o h a v e h i g h 0 - i o n conductivities 2 _
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
cathode materials,
and P r C o 0
(101, 102, 103)
to b e good
3
i t is reasonable to suspect t h a t " P r C o 0 " is a m i x e d 3
electronic/ionic conductor. Kudo
e t a l . (132)
have
shown
that
electronically
conducting
Ndi^Sra-CoOa-e a n d s i m i l a r p e r o v s k i t e systems a r e g o o d c a t h o d e m a t e r i a l s
Electrolyte
Particle of the electronic conductor
/H 2
L-H20
Electrolyte
(b)
Particle of the mixed conductor
Figure 28. Models of the anodic reaction zone showing the superiority of a mixed conductor: (a) electronic conductor, (b) mixed conductor. (The hatched parts indicate the active reaction zone.) A simihr model is applicable to the cathodic reaction. Adapted from Ref. 124.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
352
SOLID
STATE
CHEMISTRY
f o r r o o m - t e m p e r a t u r e , a l k a l i n e - s o l u t i o n a i r batteries; a n d O b a y a s h i et a l . (133)
h a v e m e a s u r e d 0 M o n diffusivities at 2 5 ° C i n t h e r a n g e
ÎO^-IO
2
- 1 1
c m / s e c , w h i c h are v e r y m u c h l a r g e r t h a n those of o r d i n a r y oxides. 2
S i m i l a r results h a v e b e e n o b t a i n e d f o r " L a C o 0 " (134). 3
I t is reasonable
to assume t h a t t h e 0 ~ - i o n c o n d u c t i o n is h i g h e n o u g h at e l e v a t e d t e m 2
peratures to c h a r a c t e r i z e these systems as m i x e d e l e c t r o n i c / i o n i c ductors. Schwarz a n d A n d e r s o n (105) have reported a D
=
0
5
c m / s e c i n r e d u c e d r u t i l e i n t h e i n t e r v a l 700° < Γ < 950 C (see Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
3
4
above).
2
O b a y a s h i a n d K u d o ( 1 3 5 ) h a v e s h o w n that L a N i 0
con
10" -10"
loses o x y g e n
s t e p w i s e o n r a i s i n g t h e t e m p e r a t u r e i n a r e v e r s i b l e , v e r y fast r e a c t i o n , s u g g e s t i n g that this m e t a l l i c c o m p o u n d is also a m i x e d c o n d u c t o r . has b e e n s u c c e s s f u l l y u s e d at 8 0 0 ° C as t h e c a t h o d e of a oxygen meter using stabilized Z r 0 compares
t h e a g i n g of L a N i 0
3
as t h e s o l i d electrolyte.
2
It
flow-through
a n d p o r o u s - P t electrodes
F i g u r e 29 The
(136).
d e v i a t i o n w i t h t i m e of t h e m e a s u r e d f r o m t h e t h e o r e t i c a l e m f at t h e p o r o u s - P t electrodes porous L a N i 0 Anodes.
3
is c a u s e d b y a g g r e g a t i o n of t h e p l a t i n u m . N o n -
cathodes c a n b e u s e d successfully f o r m o r e t h a n 1 0 h o u r s . 4
T h e c o n d i t i o n s u n d e r w h i c h a n o d e m a t e r i a l s operate are
m u c h less severe, a n d g o o d p e r f o r m a n c e has b e e n r e p o r t e d f o r v a r i o u s m e t a l s s u c h as T i , M n , F e , N i , C u , a n d P t (137)
as w e l l as s e v e r a l oxides
s u c h as N i O , C r 0 , C o O , F e 0 , r e d u c e d T i 0
(J38), V 0
3
U0
2
3
T a k a h a s h i et a l . (140)
(139).
reported
2
excellent
2
2
(138),
3
a n d T e d m o n et a l . (138)
depolarization i n the mixed electronic/ionic
and have con
d u c t o r s C e 0 - L a 0 a n d C e 0 - Y 0 , as s h o w n i n F i g u r e 30. 2
2
3
Interconnectors.
2
2
3
I n p r a c t i c e , i n d i v i d u a l e l e c t r o l y s i s / f u e l cells m u s t
b e c o n n e c t e d i n series to m a k e a c e l l stack (8, 13). o n e p o s s i b l e c o n f i g u r a t i o n (141).
F i g u r e 3 1 illustrates
T h e m a t e r i a l u s e d to i n t e r c o n n e c t t h e
0,
one y e a r ± 3 i
-201
102 time ( h )
10
10
3
10*
Figure 29. Comparison of a LaNiO and a porousplatinum cathode: deviation of observed emf s from the theoretical value of the cell p . = 10' atm, (Pt)/Zr Ca O /cathode, air. s
0
015
4
085
lm85
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
18.
OBAYASHi
A N D
High-Temperature
K U D O
Electrolysis/Fuel
353
Cells
06
S 0 4
g
02
Φ
ο
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
è
οι
I
10
100 (m A/cm )
Current density
2
Electrode material (I) ( C e 0 2 W Y 0 , . ) o 4
(2) ( C e 0 W
(3)Pt
(4)(Zr02)o«(YO,.5)o.,8
Figure
30. Anodic polarization trode materials at 1000°C.
a i r a n d f u e l electrodes
of
L
2
5
a
0
i 5>04
characteristics of various Adapted from Ref. 124.
adjacent
cells m u s t b e
elec
a good
electronic
c o n d u c t o r stable at o p e r a t i n g t e m p e r a t u r e s i n b o t h the r e d u c i n g atmos p h e r e of the a n o d e a n d the o x i d i z i n g a t m o s p h e r e of t h e c a t h o d e .
It
m u s t also b e r e a d i l y m a d e n o n - p o r o u s , since n e i t h e r f u e l n o r a i r s h o u l d penetrate through it. S v e r d r u p et a l . (13)
have
studied the normal spinel C o C r 0 , 2
w h i c h is stable at o x y g e n p a r t i a l pressures ρ
> 10"
θ2
it b e c o m e s a p - t y p e s e m i c o n d u c t o r ; at l o w p
15
atm. A t h i g h
4
p
02
i t is a n η-type s e m i c o n
02
d u c t o r . F i g u r e 32 shows r e s i s t i v i t y isotherms at 1000°C as a f u n c t i o n of Po
2
(141,
D o p i n g w i t h V or M n l o w e r s the r e s i s t i v i t y one to t w o
142).
orders of m a g n i t u d e , e s p e c i a l l y at l o w e r po .
A n i r r e v e r s i b l e loss of
2
occurs f o r ρ
θ2
>
1 2 3 4 5
10~
10
V
a t m v i a o x i d a t i o n a n d v a p o r i z a t i o n , w h i c h raises
interconnecter electrolyte cathode anode support
^ connection of a high-temperature cell. Adapted from f
F
i
g
m
e
3
1
F o
Re
f c f e
1
4
s e r i e s
1
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
354
SOLID
STATE
CHEMISTRY
1000°C
-
-
Undoped CoC r0 Cr/Co= 1 9; ?
4
1 1
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
10'
>pe
•
-
r
-
10'
10°
-8 log
P Q
-12 2
-16
(atm.)
Figure 32. Comparison of resistivities of two types of cobalt chromite. Adapted from Ref. 141. the resistivity. O n the other h a n d , M n - d o p e d C o C r 0 2
(2-4 mol %
4
Μη)
w a s stable f o r o v e r 26 days i n t h e r e d u c i n g f u e l a t m o s p h e r e , a n d its r e s i s t i v i t y w a s i n d e p e n d e n t of c y c l i n g to a n o x i d i z i n g a t m o s p h e r e F i g u r e 33)
(141).
I t appears t h a t M n - d o p e d C o C r 0 2
(see
has t h e c h e m i c a l
4
s t a b i l i t y a n d a n e a r l y t o l e r a b l e r e s i s t i v i t y at 1 0 0 0 ° C f o r u s e as a n i n t e r connector material i n a high-temperature electrolysis/fuel cell. K l e i n s c h m a g e r a n d R e i c h (143)
have investigated the electronically
c o n d u c t i n g perovskites d o p e d a n d / o r r e d u c e d L a N i 0 w e l l as t h e i n t e r l a y e r c o m p o u n d L a N i 0 . 2
4
3
and L a C r 0
as
3
A t 1 0 0 0 ° C the resistivities
of t h e n o m i n a l c o m p o s i t i o n s L a . 8 S r . C r o . 8 N i o . 0 a n d L a i ^ N i . 9 C o . i O . 6 0
0
2
2
3
0
0
c h a n g e d v e r y l i t t l e o v e r the r a n g e of o x y g e n p a r t i a l pressures 10~
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
3
17
ι
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
Ζ 100
Figure 35. Performance of a 100W solid-electrolyte fuel-cell battery operated at 1020°C. Adapted from
g
50 u.o
υ
13.
Ref.
IJU
CURRENT
(A)
systems h a v e b e e n e v a l u a t e d b y W e s t i n g h o u s e E l e c t r i c C o . o n a 1 0 0 - W scale ( 1 3 , 1 4 1 ) . T h e institutions where cell-performance
studies h a v e b e e n c a r r i e d
out i n c l u d e G e n e r a l E l e c t r i c C o . , W e s t i n g h o u s e
Electric Co., B r o w n -
B o v e r i C o . , B a t t e l l e L a b o r a t o r i e s at F r a n k f u r t a n d G e n e v a , a n d A . E . R . E . Harwell.
W e select t h e f u e l cells f a b r i c a t e d b y W e s t i n g h o u s e E l e c t r i c
C o . a n d B r o w n - B o v e r i C o . to i l l u s t r a t e c e l l - p e r f o r m a n c e d a t a . T h e W e s t i n g h o u s e u n i t consisted of t w o c e l l stacks c o n n e c t e d p a r a l l e l to s u p p l y p o w e r to a l o a d . connected
cells.
in
E a c h stack c o n t a i n e d 200 series-
F r o m the p e r f o r m a n c e
d a t a of F i g u r e 35, the
open-
c i r c u i t v o l t a g e at 1020°C is 190 V , a n d t h e m a x i m u m p o w e r is 110 W . T h e B r o w n - B o v e r i C o . has d e v e l o p e d b o t h p l a n a r a n d c y l i n d r i c a l f u e l cells, e s p e c i a l l y t h e latter. T h e cells use a s t a b i l i z e d z i r c o n i a electro lyte ( Z r 0 cathode.
2
— Y 0 2
3
F i g u r e 36
c o n n e c t e d cells (146,
— Yb 0 ) 2
w i t h a N i anode a n d a
3
complex-oxide
illustrates a c y l i n d r i c a l s t r u c t u r e of 147).
100
series-
A i r is i n t r o d u c e d to the i n n e r s i d e of the
e l e c t r o l y t e tubes a n d p u r g e d at the t o p of t h e c e l l stack. F u e l gas, w h i c h is o x i d i z e d n o n - e l e c t r o c h e m i c a l l y , is i n t r o d u c e d to t h e outer c o m p a r t m e n t . B o t h t h e i n l e t a n d t h e f u e l gas are p r e h e a t e d i n a c o u n t e r - f l o w
heat
e x c h a n g e r b y the exhaust. F i g u r e 37 gives the c e l l c h a r a c t e r i s t i c ; p o w e r densities of 105 m W / c m
2
decreased to 35 m W / c m
2
after 1 0
4
h o u r s of
operation. E l e c t r o l y s i s C e l l s . O p e r a t i o n of a h i g h - t e m p e r a t u r e electrolysis c e l l to o b t a i n h y d r o g e n f r o m w a t e r is essentially the same as that of a f u e l c e l l , b u t i n reverse. W a t e r v a p o r is i n t r o d u c e d i n t o t h e " f u e l " c o m p a r t m e n t , a n d a n e x t e r n a l v o l t a g e is a p p l i e d across the electrodes to the f o l l o w i n g reactions. cathode: H 0 + 2 e - » H 2
anode: 0 ~ - > \0 2
2
2
+
O " 2
+2e
S u c h cells h a v e b e e n d e m o n s t r a t e d b y m a n y w o r k e r s
(148,149,150).
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
give
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
18.
OBAYASHi
A N D
K U D O
High-Temperature
Electrolysis/Fuel
357
Cells
Figure 36. Structure of a stack containing 100 series-connected ceils developed by Brown-Boveri Co. (a) Mixing nozzle, (b) thermal isolation, (c) afterburning catalyst layer, (d) reforming catalyst layer, (e,h) current collector, (f) flue gas recycling, (g) fuel-cell module. B r o w a l l a n d H a n n e m a n (151)
have used a m i x e d e l e c t r o n / 0 " - i o n 2
c o n d u c t o r a n d a r e d u c i n g gas to p r o d u c e h y d r o g e n f r o m w a t e r w i t h o u t t h e n e e d f o r electrodes.
T h e y h a v e n a m e d t h e process G E Z R O .
The
f u n c t i o n of the r e d u c i n g gas is to l o w e r the t e m p e r a t u r e at w h i c h w a t e r dissociates. W i t h C O , for e x a m p l e , the reactions Inside: H 0 + 2e-> H 2
2
+
Outside: C O + Ο " - » C 0 2
2
0 " 2
+
2e
J 0 0
160 |AO
I
20
Figure 37. Performance of H + 3% HJD/air high-temperature fuel cell using a Zr0 -Y 0 Yb O solid electrolyte 0.8 mm thick operated at 830°C. Adapted from Ref. 147. 2
0
J 0
100
2
200
300
400
current density ( m Acm"2 )
2
s
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2
5
358
SOLID
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
2
0-2+C0—C0J+ 2f
2
NET REACTION* HgO • CO—> H • C0 2
Figure 38. production
proceed
2
Schematic of self-dnven mode of hydrogen using an oxygen-ion/electron mixed con ductor. Adapted from Ref. 151.
at 1000°C w i t h o u t any a p p h e d voltage.
a " s e l f - d r i v e n " c e l l i s s h o w n i n F i g u r e 38. of 6 0 - 7 0 %
CHEMISTRY
"ANOOE" REACTION
"CATHOOE" REACTION H 0 +2Γ—H^O'
STATE
A schematic of such
O v e r a l l t h e r m a l efficiencies
a r e a n t i c i p a t e d . T h e o p t i m u m transference n u m b e r s f o r t h e
m i x e d e l e c t r o n i c / 0 " - i o n c o n d u c t o r are t 2
0
= U = 0.5, b u t l i t t l e w o r k has
been done to obtain an o p t i m u m material. Summary R e a l i z a t i o n o f c o m m e r c i a l h i g h - t e m p e r a t u r e cells a w a i t s t h e s o l u t i o n of s e v e r a l m a t e r i a l s p r o b l e m s .
I d e a l l y , h i g h - t e m p e r a t u r e cells w o u l d b e
u s e d f o r e l e c t r o l y s i s , m e d i u m - t e m p e r a t u r e cells f o r p o w e r
generation.
Development o f a medium-temperature cell u t i l i z i n g a solid electrolyte p r o b a b l y awaits t h e discovery
and development
c o n d u c t o r , a p r o b l e m n o t d i s c u s s e d i n this p a p e r .
of a suitable proton However, with the
r i s i n g cost o f f o s s i l fuels, t h e m o t i v a t i o n f o r d e v e l o p i n g a h i g h - t e m p e r a t u r e electrolysis c e l l i s s t r o n g , a n d s u c h cells c a n p r o v i d e a t e s t - b e d f o r o p t i m i z i n g c e l l designs. T h e 0 " - i o n c o n d u c t o r s u s e d as s o l i d electrolytes are n o t satisfactory 2
at present. too
T h e most w i d e l y investigated, the stabilized zirconias, have
h i g h a r e s i s t i v i t y ( 1 0 - 2 0 Ω-cm
at 1000°C),
a n d efforts
to
find
a l t e r n a t e electrolytes o f l o w e r r e s i s t i v i t y h a v e b e e n o n l y p a r t i a l l y s u c cessful. T h e d o p e d cerias s u c h as C e i _ a , G d 2
2iP
0 _ , ( x = 0.115) h a v e b e t t e r 2
p
0 " - i o n c o n d u c t i o n b u t are n o t sufficiently r e s i s t i v e t o r e d u c i n g a t m o s 2
pheres. Gd
2 a ;
(a) 0 . 2
A satisfactory e l e c t r o l y t e m u s t h a v e t h e f o l l o w i n g p r o p e r t i e s : a n 0 " - i o n c o n d u c t i o n a t 7 0 0 ° C greater t h a n t h e best a n d w i t h a n o x y g e n transference n u m b e r to-*1.0; 2
i p
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Cei. «2
18.
OBAYASHi
A N D
High-Temperature
K U D O
Electrolysis/Fuel
359
Cells
( b ) c h e m i c a l s t a b i l i t y over a w i d e r a n g e of o x y g e n p a r t i a l pressures, £ P02 * 1 a t m ; (c) mechanical stability, especially no crystallographic modification o v e r a w i d e r a n g e of t e m p e r a t u r e s ; ( d ) c h e m i c a l inertness to f u e l a n d electrodes as w e l l as a t h e r m a l e x p a n s i o n m a t c h i n g that of the electrodes; a n d ΙΟ"
30
(e)
i n v a r i a n c e d u r i n g c u r r e n t transfer.
T h e c h o i c e of electrode m a t e r i a l s is i n f l u e n c e d b y t h e
electrolyte
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
u s e d . I n a d d i t i o n to m a t c h e d t h e r m a l expansions the electrodes m u s t b e c h e m i c a l l y stable a n d c a t a l y t i c a l l y r e a c t i v e at the o p e r a t i n g t e m p e r a t u r e of t h e c e l l .
K n o w n electrode
temperatures
of
inadequate.
700°C,
materials are acceptable
for
operating
b u t at 1 0 0 0 ° C t h e i r c h e m i c a l stabilities are
T h e most p r o m i s i n g c a t h o d e
m a t e r i a l s are e l e c t r o n i c a l l y
c o n d u c t i n g oxides, a n d the m i x e d e l e c t r o n / 0 " - i o n c o n d u c t o r s give e x c e l 2
l e n t d e p o l a r i z a t i o n . A s e a r c h for m o r e s u i t a b l e m i x e d c o n d u c t o r s s h o u l d be encouraged. Interconnectors
m u s t b e c h e m i c a l l y stable o v e r a w i d e r a n g e
of
o x y g e n p a r t i a l pressures, a n d a s e a r c h for a c c e p t a b l e m a t e r i a l s has b a r e l y begun.
T h e c o n d u c t i v i t y of d o p e d C o C r 0 2
4
is m u c h too l o w . A l t h o u g h
several institutions have studied fuel-cell performance,
c e l l d e s i g n has
n o t b e e n o p t i m i z e d for heat transfer a n d m e c h a n i c a l s t r e n g t h . H i g h - t e m p e r a t u r e a n d m e d i u m - t e m p e r a t u r e cells u t i l i z i n g s o l i d elec trolytes offer great p o t e n t i a l for t h e e c o n o m i c m a n u f a c t u r e of s y n t h e t i c fuels
a n d for
more
efficient
power
generation
with
built-in
storage
c a p a c i t y for l o a d a v e r a g i n g . T h e r e q u i r e d m a t e r i a l s research s h o u l d b e supported. Acknowledgment H . O b a y a s h i thanks the P e t r o l e u m R e s e a r c h F u n d of t h e A m e r i c a n C h e m i c a l Society f o r
financial
assistance i n a t t e n d i n g the N e w
York
M e e t i n g of the Society.
Literature Cited 1. Liebhafsky, Η. Α., Cairns, E. J., "Fuel Cells and Fuel Batteries—A Guide to Their Research and Development," Wiley, New York, 1968. 2. Young, G. J., Linden, H. R., Eds., "Fuel Cell Systems," Advan. Chem. Ser. (1965) 47. 3. Young, G. J., Ed., "Fuel Cells," Vol. 1, Reinhold, New York, 1960. 4. Young, G. J., Ed., "Fuel Cells," Vol. 2, Reinhold, New York, 1963. 5. Baker, B. S., Εd., "Fuel Cell Systems—II," Advan. Chem. Ser. (1969) 90. 6. Rogers, L. J., "Status of the 4.8 Megawatt Demonstration Program," National Fuel Cell Seminar, Boston, June 21-23, 1977. 7. Markin, T. L., in "Power Sources 4, Research and Development in NonMechanical Electrical Power Sources," D. H . Collins, Ed., p. 583, Oriel Press, New Castle upon Tyne, 1973.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
360
SOLID STATE CHEMISTRY
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
8. Takahashi, T., in "Physics of Electrolytes," J. Hladik, Ed., p. 989, Aca demic, London, 1972. 9. Takahashi, T., Denki Kagaku (1976) 44, 78. 10. Nernst, W., Z. Elektrochem. (1899) 6, 41. 11. For a detailed list of oxide electrolytes and historical aspect see Ref. 1. 12. Etsell, T. H., Flengas, S. N., Chem. Rev. (1970) 70, 339. 13. Sverdrup, E. F., et al., Westinghouse Electric Corp., "1970 Final Report Project Fuel Cell R & D Report No. 57," U.S. Government Printing Office, Washington, D.C., 1970. 14. Antonsen, O., Baukal, W., Fischer, W., Brown Boveri Rev. (1966) 53, 21. 15. Fischer, W., Kleinschmager, H., Rohr, F. J., Steiner, R., Eysel, H . H., Chem. Ing. Tech. (1972) 44, 726. 16. Markin, T. L., Bones, R. J., Dell, R. M., in "Superionic Conductors," G. D. Mahan and W. L. Roth, Eds., p. 15, Plenum, New York and London, 1976. 17. Rhodes, W. H., Carter, R. E., J. Am. Ceram. Soc. (1966) 49, 244. 18. Simpson, L. Α., Carter, R. E., J. Am. Ceram. Soc. (1966) 49, 139. 19. Oishi, Y., Ando, K., in "Reactivity of Solids," Chem. Rev. Ser. No. 9 Tokyo University Press, Tokyo, 1975, p. 31. 20. Kingery, W. D., Pappis, J., Doty, M. E., Hill, D. C., J. Am. Ceram. Soc. (1959) 42, 393. 21. Kröger, F. Α., Vink, H . J., in "Solid State Physics," Vol. 3, F. Seitz and D. Turnbull, Eds., p. 307, Academic Press, New York, 1956. 22. Lasker, M. F., Rapp, R. Α., Ζ. Phys. Chem. (1966) 49, 198. 23. Schmalzried, Η., Z. Phys. Chem. (1963) 38, 87. We replace the notation p and p_ by ph and pe . 24. Tuller, H. L., Nowick, A. S., J. Electrochem. Soc. (1975) 122, 255. 25. Kofstad, P., "Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides," Wiley-Interscience, New York, 1972. 26. Tare, V. B., Schmalzried, Η., Z. Phys. Chem. (1964) 43, 30. 27. Patterson, J., in "Physics of Electronic Ceramics," Vol. 1., Chap. 5, L. L. Hench and D. B. Dove, Eds., Marcel Dekker, New York, 1971. 28. Patterson, J. W., J. Electrochem. Soc. (1971) 118, 1033. 29. Choudhury, N . S., Patterson, J. W., J. Electrochem. Soc. (1971) 118, 1107. 30. Choudhury, N . S., Patterson, J. W., J. Electrochem. Soc. (1970) 117, 1384. 31. Saito, Y., in "Nonstoichiometric Metal Oxides," S. Takeuchi, Ed., p. 423, Metallurgical Society of Japan, Maruzen, Tokyo, 1975 (in Japanese). 32. McCullough, J. D., Trueblood, Κ. N., Acta Cryst. (1959) 12, 507. 33. Domagala, R. F., McPherson, D. J., J. Met. (1954) 6, Trans. Am. Inst. Min., Metall. Pet. Eng. (1954) 200, 238. 34. Ruh, R., Garrett, H. J., J. Am. Ceram. Soc. (1967) 50, 257. 35. Vest, R. W., Tallan, Ν. M., Tripp, W. C., J. Am. Ceram. Soc. (1964) 47, 635. 36. Kumar, Α., Rajdev, D., Douglass, D. L., J. Am. Ceram. Soc. (1972) 55, 439. 37. Nasrallah, M. M., Douglass, D. L., J. Electrochem. Soc. (1974) 121, 255. 38. Vest, R. W., Tallan, Ν. M., J. Am. Ceram. Soc. (1965) 48, 472. 39. Garvie, R. C., J. Am. Ceram. Soc. (1968) 51, 553. 40. Carter, R. E., Roth, W. L., G. E. Res. Rep. No. 63-RL-3479M, 1963. 41. For work done before 1970 see Ref. 14 for details. 42. Tannenberger, H., Schachner, H., Kovas, P., Proc. J. Int. Etude Piles Combust., Brussels, June, 1965, p. 19. 43. Heyne, L., Electrochem. Acta (1970) 15, 1251. 44. Heyne, L., in "Mass Transport in Oxides," J. B. Wachtman and A. D. Franklin, Eds., p. 149, NBS SpecialPubl.296, 1968. ☼
☼
+
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
18. OBAYASHI AND KUDO High-Temper at ure Electrolysis/Fuel Cells 361
45. Michel, D., Jorba, M . P., Collonges, R., C. R. Acad. Sci. (1968) 266, 1602. 46. Rhodes, W. H., Carter, R. E., J. Am. Ceram. Soc. (1966) 49, 244. 47. Tien, T. Y., J. Am. Ceram. Soc. (1964) 47, 430. 48. Tien, T. Y., Subbarao, E. C., J. Chem. Phys. (1963) 39, 1041. 49. Subbarao, E. C., Sutter, P. H., J. Phys. Chem. Solids (1963) 24, 128. 50. Baukal, W., Electrochim. Acta (1969) 14, 1071. 51. Cocco, Α., Danelon, M., Ann. Chim. (Rome) (1965) 55, 1313. 52. Wachtman, J. B., Corwin, W. C., J. Res. Nat. Bur. Stand. (1965) 694, 457. 53. White, D. W., Rev. Energ. Primaire (1966) 2, 10. 54. Carter, R.E., Roth, W. L., in "Electromotive Force Measurements in High-Temperature Systems," C. B. Alcock, Ed., p. 125, Institution of Mining and Metallurgy, London, 1968. 54a.Dixon, J. M., LaGarange, L. D., Merten, U., Miller, C. F., Porter, J. T., J. Electrochem. Soc. (1963) 110, 276. 54b.Nuimin, A. D., Pal'guev, S. F., Tr. Inst. Elektrokhim., Akad. Nauk SSSR, Ural. Fil. (1964) 5, 154; Chem. Abstr. (1965) 62, 8472. 54c.Guillou, M., Rev. Gen. Elec. (1967) 76, 58. 54d.Stricker, D. W., Carlson, W. G., J. Am. Ceram. Soc. (1965) 48, 286. 54e.Tannenberger, H., Schachner, H., Kovacs, P., Rev. Energ. Primaire (1966) 2, 19. 54f.Möbius, H.-H., Proeve, G., Z. Chem. (1965) 5, 431. 55. Schmalzried, H., Z. Electrochem., Ber. Bunsenges. Phys. Chem. (1962) 66, 572. 56. Yanagida, H., reported in Yuan, D., Kröger, F. Α., J. Electrochem Soc. (1969) 116, 594. 57. Etsell, T. H., Flengas, S. N., J. Electrochem. Soc. (1972) 119, 1. 58. Komatsu, S., Yonehara, M., Kouzuka, Z., Bull. Metall. Soc. Jpn. (1972) 36, 674. 59. Patterson, J. W., Bogren, E. C., Rapp, R. Α., J. Electrochem. Soc. (1967) 114, 752. 60. Steele, B. C. H., Alcock, C. B., Trans. Metall. Soc. AIME (1965) 233, 1359. 61. Shores, D. Α., Rapp, R. Α., J. Electrochem. Soc. (1971) 118, 1107. 62. VanHandel, G. J., Blumenthal, R. N., J. Electrochem. Soc. (1974) 121, 1198. 63. Tuller, H. L., Nowick, A. S., J. Electrochem. Soc. (1975) 122, 836. 64. Panlener, R. J., Blumenthal, R. N., Garnier, J. E., J. Phys. Chem. Solids (1975) 36, 1213. 65. Kevane, C. J., Holvesson, E. L., Armstrong, J. B., Proc. Rare Earth Res. Conf., 5th Ames, Iowa, August, 1965, Book 4, 43. 66. Noddack, W., Walch, H., U. Phys. Chem. (1959) 211, 194. 67. Rudolph, J., Z. Naturforsch. (1959) 14A, 727. 68. Greener, E. H., Wimmer, J. M., Hirthe, W. M., in "Rare Earth Research II," K. S. Vorres, Ed., Gordon and Breach, New York, 1964. 69. Blumenthal, R. N., Pinz, Β. Α., J. Appl. Phys. (1967) 38, 2376. 70. Blumenthal, R. N., Lee, P. W., Panlener, R. J., J. Electrochem. Soc. (1971) 118, 123. 71. Kofstad, P., Hed, A. Z., J. Am. Ceram. Soc. (1967) 50, 681. 72. Blumenthal, R. N., Hofmaier, R. L., J. Electrochem. Soc. (1974) 121, 126. 73. Croatto, U., Mayer, Α., Gazz. Shim. Ital. (1943) 73, 199. 74. Takahashi, T., Ito, Κ., Iwahara, Η., Proc. J. Int. Etude Piles Combust. (1965) 1-III, 42. 75. Takahashi, T., Iwahara, H., Denki Kagaku (1966) 34, 254. 76. Singman, D., J. Electrochem. Soc. (1966) 113, 502.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
362
SOLID STATE CHEMISTRY
77. Kudo, T., Obayashi, H., J. Electrochem. Soc. (1975) 122, 142. 78. Blumenthal, R. N., Brugner, F. S., Garnier, J. E., J. Electrochem. Soc. (1973) 120, 2340. 79. Seitz, Μ. Α., Holliday, T. B., J. Electrochem. Soc. (1974) 121, 122. 80. Tuller, H. L., Nowick, A. S., J. Electrochem. Soc. (1975) 122, 255. 81. Pal'guev, S. F., Volchenkova, Z. S., Tr. Inst. Elektrokhim., Akad. Nauk SSSR, Ural. Fil. (1961) 2, 157; Chem. Abs. (1963) 59, 12267. 82. Kudo, T., Obayashi, H., to be published in J. Electrochem. Soc. (1976) 123. 83. Takahashi, T., Ito, K., Iwahara, H., Electrochim. Acta (1967) 12, 21. 84. Alcock, C. B., Steele, B. C. H., in "Science of Ceramics," Vol. II, G. H. Stewart, Ed., Academic, London, 1965; Trans. Br. Ceram. Soc. (1964) 397. 85. Laskar, M. F., Rapp, R. Α., Ζ. Phys. Chem. (1966) 49, 211. 86. Choudhury, N. S., Patterson, J. W., J. Am. Ceram. Soc. (1974) 57, 90. 87. Diness, A. M., Roy, R.,J.Mater. Sci. (1969) 4, 613. 88. Mehrotra, A. K., Maiti, H. S., Subbarao, E. C., Mater. Res. Bull. (1973) 8, 899. 89. Etsell, T. H., Z. Naturforsch. Teil A (1972) 27A, 1138. 90. Volchenkova, Z. S., Pal'guev, S. F., Electrochem. Molten Solid Electrolyte (1964) 2, 53. 91. Möbius, H. -H., Witzmann, H., Witte, W., Z. Chem. (1964) 4, 152. 92. Swinkels, D. A. J., J. Electrochem Soc. (1970) 117, 1267. 93. Hardaway, J. Β., III, Patterson, J. W., Wilder, D. R., Schieltz, J. D., J. Am. Ceram. Soc. (1971) 54, 94. 94. Tretyakov, Y. D., Muan, Α.,J.Am. Ceram. Soc. (1969) 116, 331. 95. Wells, A. F., "Structural Inorganic Chemistry," 3rd Ed., pp. 668-670, Clarendon, Oxford, 1962. 96. Takahashi, T., Iwahara, H., Nagai, Y., Proc. Annu. Meet. Electrochem. Soc. (Jpn.), 37th, Tokyo, May, 1970, Paper A209. 97. Takahashi, T., Iwahara, H., Arao, T., Proc. Annu. Meet. Electrochem. Soc. (Jpn.), 38th, Osaka, May, 1971, Paper D111. 98. Takahashi, T., Iwahara, H., Proc. Annu. Meet. Electrochem. Soc. (Jpn.) 39th, Tokyo, March, 1972, Paper C305. 99. Goodenough, J. B., Longo, J. M., Landolt Börnstein New Series III/4a, p. 126, Springer-Verlag, Berlin, 1970. 100. Galasso, F. S., "Structure, Properties and Preparation of Perovskite-Type Compounds," Int. Ser. of Monographs in Solid State Physics, 5, Pe amon, Oxford, 1969. 101. Takahashi, T., Iwahara, H., Denki Kagaku (1967) 35, 433. 102. Takahashi, T., Iwahara, H., Imaichi, T., Denki Kagaku (1969) 37, 857. 103. Takahashi, T., Iwahara, H., Imaichi, T., Aoyama, H., Annu. Rep. Asahi Glass Found. Contrib. Ind. Technol. (1969) 15, 237. 104. Matsuo, Y., Sasaki, H., Jpn. J. Appl. Phys. (1964) 3, 799. 105. Schwarz, D. B., Anderson, H. U., J. Electrochem. Soc. (1975) 12, 707. 106. Stephenson, C. V., Flanagan, C. E., J. Chem. Phys. (1961) 34, 2203. 107. Roth, R. S., J. Res. Nat. Bur. Stand. (1956) 56, 17. 108. Aleskin, E., Roy, R.,J.Am. Ceram. Soc. (1962) 45, 18. 109. Mazelsky, R., Kramer, W. E., J. Electrochem. Soc. (1964) 111, 528. 110. Wells, A. F., "Structural Inorganic Chemistry," 3rd Ed., p. 465, Clarendon, Oxford, 1962. 111. Etsell, T. H., Flengas, S. N., J. Electrochem. Soc. (1969) 116, 771. 112. Tedmon, C. S., Jr., Spacil, M. S., Mitoff, S. P., J. Electrochem. Soc. (1969) 116, 1170. 113. Yanagida, H., Brook, R. J., Kröger, F. Α., J. Electrochem. Soc. (1970) 117, 593. 114. Etsell, T. H., Flengas, S. N., J. Electrochem. Soc. (1961) 118, 1890.
g
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018
18. OBAYASHI AND KUDO High-Temperature Electrolysis/Fuel Cells 363
115. Kröger, F. Α., J. Electrochem. Soc. (1973) 120, 75. 116. Yanagida, H., Brook, R. J., Kröger, F. Α., J. Electrochem. Soc. (1970) 117, 593. 117. Hirsch, Η. H., White, D. W., Ref. 4 in Tedmon, C. S., Jr., Spacil, H . S. Mitoff, S. P., J. Electrochem. Soc. (1969) 116, 1170. 118. Tannenberger, H., Siegert, H., "Abstracts of Papers," 154th National Meeting, ACS, Sept. 1967, FUEL 042. 119. Tannenberger, H., Siegert, H., in "Fuel Cell Systems—II," B. S. Baker, Ed., Advan. Chem. Ser. 90, 281. 120. Goodenough, J. B., "Metallic Oxides," in Prog. Solid State Chem. (1972) 5, 145. 121. Verwey, E. J. W., Haaijman, P. W., Romeijin, F. C., Van Oosterhout, G. W., Philips Res. Rep. (1950) 5, 173. 122. van Houten, S., J. Phys. Chem. Solids (1960) 17, 7. 123. Takahashi, T., Suzuki, Y., Ita, K., Hasegawa, H., Denki Kagaku (1967) 35, 201. 124. Takahashi, T., Iwahara, H., Suzuki, Y., Proc. J. Int. Etude Piles Combust. (1969) 3, 113. 125. Böhm, R., Kleinschmager, H., Z. Naturforsch. (1971) 26A, 780. 126. Heikes, R. R., Miller, R. C., Mazelsky, R., Physica (1964) 30, 1600. 127. Goodenough, J. B., Raccah, P. M., J. Appl. Phys. (1963) 36, 1031. 128. Sverdrup, E. F., Archer, D. H., Glasser, A. D., in "Fuel Cell Systems— II," B. S. Baker, Ed., Advan. Chem. Ser. (1969) 90, 301. 129. Bosman, A. J., Crevecoeur, C., Phys. Rev. (1966) 144, 763. 130. Shirai, K., Ihara, S., Sato, H., Bull. Electrotech. Lab., Tokyo (1974) 38, 378. 131. Weiher, R. L., Ley, R. P., J. Appl. Phys. (1963) 34, 1833. 132. Kudo, T., Obayashi, H., Gejo, T., J. Electrochem. Soc. (1975) 122, 159. 133. Obayashi, H., Kudo, T., Gejo, T., Jpn. J. Appl. Phys. (1974) 13, 1. 134. Similar results were obtained for LaCoO by G. H . J. Broers, et al., private communication. 135. Obayashi, H., Kudo, T., Jpn. J. Appl. Phys. (1975) 14, 330. 136. Obayashi, H., et al., unpublished data. 137. Eysel, H . H., "Extended Abstracts," No. 36, Electrochem. Soc. Meeting, Atlantic City, Oct., 1970. 138. Tedmon, C. S., Jr., Spacil, H . S., Mitoff, S. P., G. E. Report No. 69-C-056 (1969). 139. Rohland, B., Möbius, H . H., Naturwissenschaften (1968) 55, 227. 140. Takahashi, T., Suzuki, Y., Ito, K., Yamanaka, H., Denki Kagaku (1968) 36, 345. 141. Sun, C. C., Hawk, E. W., Sverdrup, E. F., J. Electrochem. Soc. (1972) 119, 1433. 142. Schmalzried, H., Ber. Bunsenges. Phys. Chem. (1963) 67, 93. 143. Kleinschmager, H., Reich, Α., Z. Naturforsch. (1972) 27A, 363. 144. Boll, R. H., Bhada, R. K., Energy Convers. (1968) 8, 3. 145. Kudo, T., Obayashi, H., Energy Convers. (1976) 15, 121. 146. Fischer, W., Kleinschmager, H., Rohr, F. J., Steiner, R., Eysel, H . H., Chem. Ing. Tech. (1972) 44, 726. 147. Eysel, H. H., Kleinschmager, H., BBC-Nachr. (1972) 54, 13. 148. Spacil, H. S., Tedmon,C.S., Jr., G. Ε. Report No. 69-C-176 (1969). 149. Chem. Eng. News (1968) 46, 48. 150. Allison, H. J., Hughes, W. L., Intersoc. Energy Convers. Eng. Conf., Rec., 10th, 1975 (1975) 104. 151. Browall, K. W., Hanneman, R. E., G. E. Report No. 75CRD012 (1975). 152. Takahashi, T., Iwahara, H., Energy Convers. (1971) 11, 105. 3
RECEIVED
July 26, 1976.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.