16 Storage of Hydrogen Isotopes in Intermetallic Compounds
Downloaded by UNIV OF QUEENSLAND on June 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch016
S. A. STEWARD, J. F. LAKNER, and F. URIBE Lawrence Livermore Laboratory, University of California, Livermore, Calif. 94550
Reaction of LaCo under high pressure has produced a hydride with the LaCo H composition, which is the expected maximum stoichiometry. A comparison of hydrogen solubility in ErCo with solubilities of previous studies in PrCo5, PrCo3, and ErCo3 show that hydride stability decreases with lanthanide atomic number and with increasing atom ratio of transition metal to lanthanide metal. Empirical methods for estimating ternary hydride enthalpies and free energies are evaluated and are found inadequate for calculating approximate hydrogen plateau pressures. 5
5
9
5
T h e
o i l e m b a r g o i m p o s e d i n 1973 b y t h e O r g a n i z a t i o n of P e t r o l e u m
Exporting Countries ( O P E C ) quickly impressed upon the industri a l i z e d countries t h e i r d e p e n d e n c y o n c h e a p , a b u n d a n t sources of e n e r g y , p r i n c i p a l l y fossil fuels, p a r t i c u l a r l y o i l . A l t h o u g h a p r e - e m b a r g o i n d i f f e r ence has settled u p o n t h e w o r l d a g a i n , a large segment of t h e t e c h n i c a l c o m m u n i t y r e m a i n s a c u t e l y a w a r e of o u r inefficiencies a n d l a c k of b i l i t y i n t h e amounts a n d types of fuels c o n s u m e d .
flexi
Consequently, the
options a v a i l a b l e over t h e next s e v e r a l decades h a v e b e e n
examined.
I m p o r t a n t areas f o r c o n s i d e r a t i o n h a v e b e e n c o n s e r v a t i o n , greater effi c i e n c y i n p r o d u c t i o n a n d u t i l i z a t i o n of e x i s t i n g fuels, a l t e r n a t i v e fuels, a n d t h e n e w technologies
needed
for their development.
This book
focuses o n a d v a n c e d e n e r g y research s u c h as s o l i d state batteries, c a t a l y sis, a n d t h e subject of this p r e s e n t a t i o n , h y d r o g e n . W h i l e h y d r o g e n is often c o n s i d e r e d a n a l t e r n a t i v e f u e l , i t is a
sec
o n d a r y source. I t is a b u n d a n t , c l e a n , a n d p r o d u c e s w a t e r as a c o m b u s t i o n product.
T h e h y d r o g e n isotopes
w i l l also b e u s e d as f u e l f o r f u s i o n
reactors, w h i c h are e x p e c t e d to b e i n o p e r a t i o n b y t h e e n d of this c e n t u r y . 284
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
16.
S T E W A R D
E T
Hydrogen
A L .
in Intermetallic
285
Compounds
A l t h o u g h h y d r o g e n a n d d e u t e r i u m are u s u a l l y p r o d u c e d b y trolysis, t h e r m o c h e m i c a l cycles are also b e i n g c o n s i d e r e d .
elec
F o r nuclear
a p p l i c a t i o n s t r i t i u m is g e n e r a t e d b y n e u t r o n i r r a d i a t i o n of L i . 6
The gen
e r a t i o n of l a r g e q u a n t i t i e s of the gases creates a storage p r o b l e m , a n d u n t i l r e c e n t l y , h i g h pressure or c r y o g e n i c m e t h o d s of storage w e r e t h e o n l y solutions. B o t h m e t h o d s are costly; c r y o g e n i c storage uses c o n s i d e r a b l e energy for l i q u i f i c a t i o n , w i t h s u b s t a n t i a l e v a p o r a t i v e losses. T h e use of m e t a l h y d r i d e s as storage m a t e r i a l s has b e e n of i n c r e a s i n g interest. M a n y h a v e greater h y d r o g e n densities ( m o l H / c m 2
Downloaded by UNIV OF QUEENSLAND on June 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch016
rial)
3
mate
t h a n l i q u i d h y d r o g e n ( I ). T o b e a g o o d storage m e d i u m , a h y d r i d e
s h o u l d : ( a ) h a v e i n its a b s o r p t i o n c u r v e a reasonable t w o - p h a s e p l a t e a u pressure ( 1 - 1 0 a t m ) d e s o r b gas, ( c )
at r o o m t e m p e r a t u r e , ( b )
r e v e r s i b l y absorb
have a h i g h hydrogen density, a n d ( d )
and
be relatively
i n s e n s i t i v e to gaseous i m p u r i t i e s s u c h as c a r b o n , n i t r o g e n , a n d o x y g e n . T h e hydride should be economical.
T h e most i n t e r e s t i n g regions of t h e
a b s o r p t i o n curves are the p l a t e a u s , w h e r e the h y d r i d e s a b s o r b or release q u a n t i t i e s of
gas over a c o n s i d e r a b l e
composition
r a n g e at
constant
pressure. P r i o r to 1968 most of the h y d r i d e s a v a i l a b l e w e r e those of
the
m e t a l l i c elements. T h e saline h y d r i d e s are q u i t e stable a n d i n some cases v e r y difficult or i m p o s s i b l e to p r e p a r e b y d i r e c t c o m b i n a t i o n of the ele ments.
T r a n s i t i o n metals of G r o u p s I I I a n d I V also f o r m q u i t e stable
hydrides (2).
G r o u p V metals ( v a n a d i u m , n i o b i u m , a n d t a n t a l u m ) d i s
solve l a r g e q u a n t i t i e s of h y d r o g e n .
T h e i r two-phase
(mono- and d i -
h y d r i d e ) p l a t e a u regions are i n the 1-10 a t m ranges n e a r r o o m t e m p e r a ture.
I m p u r i t i e s , e s p e c i a l l y o x y g e n , c a n increase the p l a t e a u pressure
c o n s i d e r a b l y a n d i n h i b i t h y d r i d e f o r m a t i o n at l o w pressures a n d c o m p o sitions. E x c e p t for
p a l l a d i u m , reactions of
other t r a n s i t i o n metals
with
h y d r o g e n are e n d o t h e r m i c , w i t h little or n o gas d i s s o l v e d at l o w t e m p e r a tures.
T h e l i g h t e r rare e a r t h elements h a v e v e r y stable i s o s t r u c t u r a l
d i h y d r i d e s a n d t r i h y d r i d e s . H o w e v e r , w i t h the e x c e p t i o n of e u r o p i u m a n d y t t e r b i u m , t h e d i h y d r i d e s of s a m a r i u m t h r o u g h l u t e t i u m c h a n g e s t r u c t u r e as the M H
3
c o m p o s i t i o n is a p p r o a c h e d .
I n e v e r y case t h e
e q u i l i b r i u m h y d r o g e n pressures are b e l o w one a t m at temperatures n e a r 500°C.
T h e v a n a d i u m , n i o b i u m , a n d t a n t a l u m h y d r i d e s are the o n l y
b i n a r y m e t a l h y d r i d e s w i t h s u i t a b l e a b s o r p t i o n pressures at t e m p e r a t u r e s of interest. T h e i r cost a n d s e n s i t i v i t y to i m p u r i t i e s , h o w e v e r , i n h i b i t t h e i r use as storage m a t e r i a l s . Intermetallic
Compounds
Studies of h y d r o g e n a b s o r p t i o n b y
intermetallic compounds
alloys w e r e r e p o r t e d o n l y i n t e r m i t t e n t l y u n t i l the e a r l y 1960s.
and
M o s t of
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
286
S O L I D
S T A T E
C H E M I S T R Y
the e a r l y w o r k d e a l t w i t h alloys of p a l l a d i u m w i t h p l a t i n u m , n i c k e l , c o p p e r , a n d e s p e c i a l l y s i l v e r . A n a l l o y of p a l l a d i u m a n d 3 0 %
s i l v e r is
u s e d as a d i f f u s i o n m e m b r a n e i n h y d r o g e n purifiers. T h i s a l l o y is m o r e resistant to d e f o r m a t i o n t h a n p u r e p a l l a d i u m w h e n e x p o s e d to h y d r o g e n (3).
A s t h e s i l v e r c o n c e n t r a t i o n increases, the h y d r o g e n s o l u b i l i t y d e
creases, b u t the d i f f u s i o n constant of the P d / 3 0 % A g a l l o y is s t i l l a b o u t h a l f t h e v a l u e of p u r e p a l l a d i u m ( 3 ) . I n 1 9 6 1 - 6 2 the D e n v e r R e s e a r c h I n s t i t u t e p u b l i s h e d h y d r o g e n s o r p t i o n measurements for over 300 i n t e i m e t a l l i c c o m p o u n d s
ab Al
(4).
Downloaded by UNIV OF QUEENSLAND on June 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch016
t h o u g h m a n y of these measurements h a v e since b e e n r e f u t e d a n d a d d i tional compounds
having high hydrogen
solubility have been
found,
these studies w e r e the first large-scale i n v e s t i g a t i o n of h y d r o g e n i n t e r action w i t h intermetallic compounds. A
l i t e r a t u r e r e v i e w of
metallic ternary and quaternary
hydrides
p u b l i s h e d b y N e w k i r k ( 5 ) covers a w i d e r a n g e of alloys a n d i n t e r m e t a U i c c o m p o u n d s that h a v e b e e n e x a m i n e d r e c e n t l y . S e v e r a l investigators h a v e r e p o r t e d the f o r m a t i o n of a l k a l i a n d a l k a l i n e e a r t h t e r n a r y h y d r i d e s . T h e s e are l i s t e d i n T a b l e I w i t h references a n d are g e n e r a l l y stable i n a i r . S i n c e 1968, research i n this area has c o n c e n t r a t e d o n the f a m i l y of compounds w i t h A B
s t o i c h i o m e t r y , w h e r e A is a l a n t h a n i d e a n d Β is a
5
t r a n s i t i o n m e t a l , u s u a l l y n i c k e l , cobalt, or i r o n . hydrogen absorption by such compounds serendipity (JO). their magnetic
T h e d i s c o y e r y of h i g h
is a classic t a l e of scientific
S o m e of these c o m p o u n d s
h a d been investigated for
p r o p e r t i e s , e s p e c i a l l y as p e r m a n e n t
magnets.
At
the
Philips Laboratories i n T h e Netherlands, acid etching was used i n polish i n g crystals to decrease the surface effects o n c o e r c i v i t y . T h e i n v e s t i g a tors p o s t u l a t e d t h a t h y d r o g e n p r o d u c e d b y the e t c h i n g process m i g h t influence the magnetic properties.
T h e c o e r c i v i t y of S m C o
5
was there
f o r e m e a s u r e d w h i l e the s a m p l e w a s exposed to h y d r o g e n . S u r p r i s i n g l y , the S m C o
5
a b s o r b e d l a r g e q u a n t i t i e s of t h e gas.
This
s e v e r a l studies of h y d r o g e n a b s o r p t i o n b y s i m i l a r A B
5
finding
initiated
compounds
12,13). Table I.
A l k a l i and Alkaline E a r t h Ternary Hydrides
Ternary
Hydride
LiSrH LiEuH Ca IrH Sr IrH Ca RhH Sr RhH Ca RuH Sr RuH Eu RuH 3
3
2
2
5
5
2
2
5
5
2
2
e
6
2
e
Ref. 6 7 8 8 8 8 8 8 9
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
(JI,
16.
S T E W A R D
E T
Hydrogen
A L .
in Intermetallic
287
Compounds
I n a d d i t i o n to t e r n a r y h y d r i d e s to b e d i s c u s s e d later, recent has s h o w n h y d r o g e n
absorption
pounds: T b F e , D y F e , H o F e , E r F e , T b C o 3
3
3
3
2
7
and L a M g i
(14),
2
I n t e r m e t a l l i c c o m p o u n d s of
Structural Relationships.
work
i n several related intermetallic c o m (15).
7
lanthanide
a n d t r a n s i t i o n metals f o r m a v e r y i n t e r e s t i n g class of structures. T h e A B 5 series crystallizes i n the h e x a g o n a l C a C u (11)
5
(P6/mmm)
t y p e of structure
s h o w n i n F i g u r e 1. G e n e r a l l y , r a d i u s ratios ( r / r ) A
1.30 f o r m the C a C u
5
B
greater t h a n
t y p e c o n f i g u r a t i o n , whereas c o m p o u n d s w i t h r / r A
less t h a n 1.30 p r e f e r the c u b i c U N i
B
s t r u c t u r e . A s c o m p o u n d s are f o r m e d
5
Downloaded by UNIV OF QUEENSLAND on June 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch016
b y r a r e earths to the right of l a n t h a n u m i n the p e r i o d i c chart, t h e s o - c a l l e d l a n t h a n i d e c o n t r a c t i o n results i n a decrease i n A B c a u s e d chiefly b y a c o n t r a c t i o n i n t h e b a s a l p l a n e . g e n e r a l l y stable o v e r the c o m p o s i t i o n range
unit cell
5
The A B
5
volume, p h a s e is
(AB4.8-5.5).
Figure 1. The CaCu (AB ) structure. The large circles represent the Ca (or A) atoms. The small circles represent the Cu (or B) atoms. 5
S
T h e s e m e t a l groups, i n c l u d i n g s o m e of the actinides that consist of structures of s e q u e n t i a l b l o c k s of C a C u f o r m other phases ( 16).
5
a n d Laves phase-type
layers,
A t o m i c s u b s t i t u t i o n c a n l e a d to other structures.
R e p r e s e n t a t i v e structures a n d t h e i r relationships to the L a v e s a n d C a C u arrangements
5
include:
ThMn
i 2
H a l f of t h e c a l c i u m atoms are r e p l a c e d b y
man
ganese p a i r s . Th Zni 2
7
O n e t h i r d of t h e c a l c i u m atoms are r e p l a c e d b y z i n c pairs. T h F e i 2
Th Nii
7
Er Co
7
2
7
and T h C o i 2
7
h a v e this s t r u c t u r e .
S i m i l a r to Th-ΐΖηιτ, b u t t h e l o c a t i o n of t h e r e p l a c e d c a l c i u m atoms is different.
2
T w o d o u b l e layers of C a C u layer
Laves
5
sequence form
packing and a fouran
eight-layer
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
unit
288
S O L I D
S T A T E
C H E M I S T R Y
s t a c k e d i n t h e c u b i c A B C m a n n e r . M a n y rare earths f o r m this s t r u c t u r e . Ce Ni 2
S a m e as E r C o , b u t t h e e i g h t - l a y e r u n i t s h a v e t h e
7
2
7
A B h e x a g o n a l format. NbBe (AB ) 3
A g r o u p of C a C u
3
layers a n d one of a L a v e s t y p e
5
f o r m a s i x - l a y e r u n i t i n a n A C B sequence. CeNi The
hexagonal
S a m e as N b B e , b u t the u n i t s t a c k i n g is B C .
3
3
AB
5
compounds
form
orthorhombic
hydrides.
The
c h a n g e s i n s t r u c t u r e are u n d o u b t e d l y a r e s u l t of e x p a n s i o n of t h e b a s a l Downloaded by UNIV OF QUEENSLAND on June 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch016
p l a n e c a u s e d b y h y d r o g e n a t o m o c c u p a t i o n of t h e i n t e r s t i t i a l sites t h a t He i n the m e t a l layers (17).
These
a s y m m e t r i c sites are t e t r a h e d r a
f o r m e d b y t w o l a n t h a n i d e a n d t w o c o b a l t atoms, a n d o c t a h e d r a
formed
b y t w o l a n t h a n i d e s a n d f o u r c o b a l t atoms. T h e r e are n i n e sites p e r A B formula w i t h two formulas per unit cell.
5
Kuijpers and Loopstra found
b y n e u t r o n d i f f r a c t i o n that the d e u t e r i u m atoms i n P r C o D 5
4
were ordered
o n c e r t a i n a v a i l a b l e o c t a h e d r a l a n d t e t r a h e d r a l sites. T h e p o s s i b l e i n t e r s t i t i a l positions i n the C a C u
5
t y p e s t r u c t u r e are s h o w n i n F i g u r e 2.
Figure 2. The CaCu* structure including asymmetric tetrahedral (Φ) and octahedral sites Estimation of H y d r i d e Stability.
the (Π)
A n empirical method by w h i c h
t h e enthalpies of f o r m a t i o n of alloys m a y b e e s t i m a t e d q u a n t i t a t i v e l y has b e e n f o r m u l a t e d (18,
19, 20).
T h e a p p r o a c h assumes t h a t t h e d r i v i n g
f o r c e f o r reactions b e t w e e n metals is a f u n c t i o n of t w o factors: a n e g a t i v e one a r i s i n g f r o m t h e difference i n c h e m i c a l p o t e n t i a l , Δ φ * , of
electrons
associated w i t h e a c h m e t a l a t o m , a n d a p o s i t i v e one t h a t is t h e difference i n t h e e l e c t r o n d e n s i t y , Δη™, at the b o u n d a r i e s of W i g n e r - S e i t z t y p e cells s u r r o u n d i n g e a c h a t o m . V a l u e s of φ* f o r t h e metals are a p p r o x i m a t e d b y the electronic w o r k functions; n
w s
is e s t i m a t e d f r o m c o m p r e s s i b i l i t y d a t a .
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
16.
S T E W A R D
Hydrogen
E T A L .
in Intermetallic
Compounds
289
T h e a t o m i c concentrations i n t h e a l l o y m u s t b e i n c l u d e d i n t h e c a l c u l a t i o n . T h e most recent f o r m u l a s f o r p e r f o r m i n g these c a l c u l a t i o n s ( 2 0 ) are: AH = N f(C »,C *)g(C ,C )[-Ρβ(Δφ*) A
B
A
B
/ ( C A ' A ' )
g(CA,C
B
) =
2
=
(c v ™ A
0
C *C °[1 + A
B
+
A
2
c v B
3
Downloaded by UNIV OF QUEENSLAND on June 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch016
CB
S
=
A
A
C VB
2 / 3
/ (C V
A
2 a
(v
)/
+
A
A
B
8(C °C 2/3
B
pressure data coin cide with those in Ref. 25. s
S T A T E
x
ll
2
4 6 8 H/LaCo-
10
i n c r e a s i n g p l a t e a u pressures o r h y d r i d e i n s t a b i l i t y . E r b i u m is to the f a r right of t h e l a n t h a n i d e series a n d forms E r C o w i t h t h e C a C u s t r u c t u r e . O n e a u t h o r r e p o r t e d t h e p r e p a r a t i o n of E r C o (Ero.8eC05.14) i n s t e a d of E r C o ( 2 6 ) . T h i s m a y b e i n error, since o t h e r investigators ( 2 7 ) h a d p r e v i o u s l y f o u n d E r C o . Α Β p h a s e g e n e r a l l y has a w i d e c o m p o s i t i o n r a n g e a n d the x - r a y d a t a for o u r s a m p l e c o r r e s p o n d e d to b o t h patterns ( E r C o a n d E r C o ) i n p o w d e r files, i n d i c a t i n g t h e y are one i n t h e same c o m p o u n d . T h e existence of E r C o is also d o u b t f u l since A B is n o t r e p o r t e d i n other l a n t h a n i d e - t r a n s i t i o n m e t a l systems a n d there is n o s i n g l e c r y s t a l d a t a a v a i l a b l e to s u p p o r t a n a s s u m p t i o n of o r d e r e d v s . r a n d o m s u b s t i t u t i o n of c o b a l t for e r b i u m . S u r p r i s i n g l y , to t h e best of o u r k n o w l e d g e , the r e a c t i o n of E r C o w i t h h y d r o g e n has n o t b e e n r e p o r t e d . H y d r o g e n a b s o r p t i o n i n s e v e r a l p r a e s o d y m i u m - c o b a l t phases ( 2 8 ) a n d i n E r C o ( 2 9 ) has b e e n r e p o r t e d r e c e n t l y . T h e e x p e r i m e n t a l c o m p l e t i o n of the s i m p l e P r C o , P r C o , E r C o , a n d E r C o m a t r i x w o u l d a l l o w a n e x p e r i m e n t a l d e t e r m i n a t i o n of the 5
5
e
5
5
5
δ
e
e
e
5
3
5
3
3
100
P
#
Figure 4. isotherm
Hydrogen for ErCo 5
at
absorption 25°C
atm
H/ErCo
E
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
5
16.
STEWARD E T AL.
Hydrogen
in Intermetallic
295
Compounds
effect of l a n t h a n i d e c o n t r a c t i o n a n d phase c h a n g e o n t h e h y d r o g e n p l a t e a u pressures. T h e p r e v i o u s d a t a w e r e e x t r a p o l a t e d to 2 5 ° C b y the use of E q u a t i o n 7 a n d c o m p a r e d w i t h t h e present results. T h e Ε τ Ο ο r o o m - t e m p e r a t u r e i s o t h e r m is p r e s e n t e d i n F i g u r e 4. T h e c r i t i c a l t e m >erature seems to b e s o m e w h a t b e l o w 25 ° C , i n d i c a t i n g t h a t E r C o H a , is ess s t a b l e t h a n t h e E r C o ^ ^ . T h e r o o m - t e m p e r a t u r e p l a t e a u pressures a r e s h o w n i n T a b l e V . T h e s e v a l u e s i n d i c a t e t h a t t h e s t a b i l i t y of t h e h y d r i d e s i n these c o m p o u n d s decreases w i t h a n i n c r e a s e i n l a n t h a n i d e a t o m i c n u m b e r a n d also w i t h the c o b a l t - t o - l a n t h a n i d e r a t i o . T h e s t a b i l i t y c h a n g e w i t h p h a s e is seen i n C l i n t o n ' s e x p e r i m e n t s o n Ρ Γ Ο Ο ^ . ( 2 8 ) , except t h a t P r C o a n d P r C o s t a b i l i t i e s are r e v e r s e d . T h e y are v e r y s i m i l a r , h o w e v e r . δ
1
5
2
Downloaded by UNIV OF QUEENSLAND on June 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch016
3
Table V .
Comparison of E q u i l i b r i u m Pressures at Room Temperature Ternary
Equilibrium Pressure (atm)
Hydride
PrCo H 5 PrCoaH ErCo H ErCo H 5
0.9 10" ~ 4 0.09
0
4
e
5
3
3
There is no plateau, indicating that the critical temperature is below room tem perature. The composition and pressure are inferred from the inflection point. β
B o t h observations seem r e a s o n a b l e . A s t h e l a n t h a n i d e r a d i u s d e creases, t h e i n t e r s t i t i a l sites w i l l b e c o m e s m a l l e r , a n d t h u s less v o i d s p a c e is a v a i l a b l e f o r the h y d r o g e n atoms. A s t h e t r a n s i t i o n m e t a l - t o - l a n t h a n i d e a t o m i c r a t i o increases, there is less a t o m - a t o m contact b e t w e e n h y d r o g e n a n d t h e l a n t h a n i d e , w h i c h f o r m s the m o r e stable b i n a r y h y d r i d e . Conclusions T h e use of p r e v i o u s l y p u b l i s h e d e m p i r i c a l theories does n o t p r o v i d e r e l i a b l e estimates of e q u i l i b r i u m pressures of t e r n a r y h y d r i d e s . E i t h e r a s u b s t a n t i a l m o d i f i c a t i o n of these theories or a n o t h e r a p p r o a c h is r e q u i r e d . H i g h pressure e x p e r i m e n t s h a v e s h o w n t h e existence of
LaCo H . 5
9
T h i s h y d r o g e n c o m p o s i t i o n is t w i c e the v a l u e p r e v i o u s l y m e a s u r e d a n d greater t h a n a n y c o m p o u n d w i t h t h e C a C u
5
s t r u c t u r e , i.e., L a N i H . 7 . 5
e
C o m p a r i s o n s of c u r r e n t E r C o e H * d a t a w i t h p r e v i o u s l y p u b l i s h e d results f o r P r C o , P r C o , a n d E r C o 5
3
8
s h o w t h a t h y d r i d e s t a b i l i t y decreases
w i t h l a n t h a n i d e a t o m i c n u m b e r a n d w i t h i n c r e a s i n g a t o m r a t i o of t r a n sition metal-to-lanthanide metal. Acknowledgments T h e a u t h o r s w i s h to t h a n k H e r m a n L e i d e r , w h o p e r f o r m e d m a n y of t h e c a l c u l a t i o n s a n d p a r t i c i p a t e d i n i m p o r t a n t discussions of subjects i n this p a p e r .
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
296
SOLID STATE CHEMISTRY
Downloaded by UNIV OF QUEENSLAND on June 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch016
Literature Cited 1. Libowitz, G. G., J. Nucl. Mater. (1960) 2, 1. 2. Mueller, W. M., Blackledge, J. P., Libowitz, G. G., Eds., "Metal Hydrides," Academic, New York, 1968. 3. Lewis, F. Α., "The Palladium Hydrogen System," Academic, New York, 1967. 4. "Investigation of Hydriding Characteristics of Intermetallic Compounds," Denver Research Institute, University of Denver: Report LAR-55, Nov. 15, 1961; DRI-2059, Oct. 15, 1962. 5. Newkirk, H. W., "A Literature Study of Metallic Ternary and Quaternary Hydrides," UCRL-52110, Aug. 2, 1976, Lawrence Livermore Labora tory, Livermore, CA. 6. Messer, C. E., Eastman, J. C., Hers, R. G., Maeland, A. J., Inorg. Chem. (1964) 3, 776. 7. Messer, C. E., Hardcastle, K., Inorg. Chem. (1964) 3, 1327. 8. Moyer, R. O., Jr., Stanitski, C., Tanaka, J., Kay, M., Kleinberg, R., J. Solid State Chem. (1971) 3, 541. 9. Thompson, J. S., Moyer, R. O., Jr., Lindsay, R., Inorg. Chem. (1975) 14, 1866. 10. Zijlstra, H., Chem. Technol. (1972) 2, 280. 11. van Vucht, J. H . N., Kuijpers, F. Α., Bruning, H . C. A. M., Philips Res. Rep. (1970) 25, 133. 12. Kuijpers, F. Α., van Mal, H. H., J. Less-Common Met. (1971) 23, 395. 13. van Mal, Η. H., Buschow, K. H . J., Kujpers, F. Α., J. Less-Common Met. (1973) 32, 289. 14. Wallace, W. E., Rao, V. U. S., "Thermal, Structural and Magnetic Studies of Metals and Intermetallic Compounds," Annual Report to ERDA, Contract Ε (11-1)-3429, June 1, 1975. 15. Toma, H., "Rare-Earth Info. Ctr. News," X, No. 1, Mar. 1, 1975, Iowa State Univ., Ames, Iowa. 16. Pearson, W. B., "The Crystal Chemistry and Physics of Metals and Alloys," Wiley-Interscience, New York, 1972. 17. Kuijpers, F. Α., Loopstra, Β. O., J. Phys. Chem. Solids (1974) 35, 301. 18. Miedema, A. R., de Boer, F. R., de Chatel, P. F., J. Phys. F. (1973) 3, 1558. 19. Miedema, A. R., J. Less-Common Met. (1973) 32, 117. 20. Miedema, A. R., Boom, R., de Boer, F. R., J. Less-Common Met. (1975) 41, 283. 21. van Mal, H. H., Buschow, K. H . J., Miedema, A. R., J. Less-Common Met. (1974) 35, 65. 22. Flanagan, T. B., Oates, W. Α., Ber. Bunsenges. Phys. Chem. (1972) 76, 706. 23. Buschow, K. H. J., van Mal, Η. H., Miedema, A. R., J. Less-Common Met. (1975) 42, 163. 24. Lakner, J. F., Steward, S. Α., Uribe, F., "High Pressure Hydrogen Appa ratus for PCT Studies to 700 MPa at 200°C. Preliminary Results on LaCo Hydride at 21°C," UCRL-52039, Feb. 27, 1976, Lawrence Liver more Laboratory, Livermore, CA. 25. Kuijpers, F. Α., Philips Res. Rep. Suppl., 1973, No. 2. 26. Buschow, K. H. J., Z. Metallkd. (1966) 57, 728. 27. Wernick, J. H., Geller, S., Acta Crystallogr. (1959) 12, 662. 28. Clinton, J., Bittner, H., Oesterreicher, H., J. Less-Common Met. (1975) 41, 187. 29. Takeshita, T., Wallace, W. E., Craig, R. S., Inorg. Chem. (1974) 13, 2282. 5
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
16. STEWARD ET AL. Hydrogen in Intermetallic Compounds 297 RECEIVED August 16, 1976. This work was performed under the auspices of the U.S. Energy Research & Development Administration under contract No. W-7405-Eng-48.
Downloaded by UNIV OF QUEENSLAND on June 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch016
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research & Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accu racy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.