Solubility, Density, Refractive Index, and Viscosity for the Polyhydric

10 May 2013 - The mean deviations between calculated and experimental compositions were low, showing the good descriptive quality and applicability of...
6 downloads 0 Views 842KB Size
Article pubs.acs.org/jced

Solubility, Density, Refractive Index, and Viscosity for the Polyhydric Alcohol + CsBr + H2O Ternary Systems at Different Temperatures Yanjie Li,† Shu’ni Li,† Quanguo Zhai,† A. Marcilla,‡ Yucheng Jiang,† and Mancheng Hu*,† †

Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. China ‡ Chemical Engineering Department, University of Alicante, Apartado 99, Alicante 03080, Spain

ABSTRACT: The solubility, density, refractive index, and viscosity data for the ethylene glycol + CsBr + H2O, 1,2-propanediol + CsBr + H2O, and glycerin + CsBr + H2O ternary systems have been determined at (288.15, 298.15, and 308.15) K. In all cases, the solubility of CsBr in aqueous solutions was decreased significantly due to the presence of polyhydric alcohol. The liquid− solid equilibrium experimental data were correlated using the NRTL (nonrandom two-liquid) activity coefficient model, considering nondissociation of the dissolved salt in the liquid phase, and new interaction parameters were estimated. The mean deviations between calculated and experimental compositions were low, showing the good descriptive quality and applicability of the NRTL model. The refractive indices, densities, and viscosities for the unsaturated solutions of the three ternary systems have also been measured at three temperatures. Values for all of the properties were correlated with the salt concentrations and proportions of polyhydric alcohol in the solutions.



INTRODUCTION Adding a new component such as an organic solvent to an aqueous salt solution normally decreases the solubility of salt in the original solution. The thermodynamic data about these systems play an important role in many industrial applications.1,2 Compared with the traditional procedure such as cooling or evaporation, this crystallization technique has many advantages, for example, it could be carried out at ambient temperature and has high selectivity, and so on.3 To date, many systems including alkali metal halide have attracted lots of attention because of their wide applications. Gomis et al.4−6 studied the solubilities of MCl (M = Na and K) in different mixtures of organic solvent and water; for instance, butanol, propanol, and pentanol. They have obtained the complete phase diagrams for the systems. Boruńet7 determined the liquid−liquid equilibria of the NaX (X = Cl, Br, and I) and KCl + 2-ethoxyethanol + water system at 298.15 K. Taboada and co-workers3,8−10 measured the equilibria for the ternary system composed of PEG 4000 + NaCl/KCl + H2O at (298.15 and 333.15) K. They also studied ethanol + NaCl/KCl + H2O at the same temperature. Wagner et al.11 reported the solubilities of NaCl in various mixtures of organic solvent and water at 298.15 K, for example, cyclohexane/cyclohexanol + water or (ethanol + cyclohexanol)/(benzyl alcohol + cyclohexanol) + water. © XXXX American Chemical Society

In recent years, our group focused on the study of phase behavior of monohydric alcohol + rubidium or cesium salts + water ternary systems at different temperatures to investigate the salting effect of monohydric alcohol, such as ethanol,12−14 1-propanol,15 or 2-propanol.16,17 To extend our work, the polyhydric alcohol is chosen instead of monohydric alcohol in this work. Herein, we report the solubility, refractive index, density, and viscosity for the ternary systems polyhydric alcohol + CsBr + H2O at various temperatures. To the best of our knowledge, no such data have been reported yet. All of these thermodynamic properties are helpful for understanding the process in crystallization. Meanwhile, these data could be used to apply the salting-out technique to increase the yield of cesium bromide and to develop thermodynamic models for the effects of salt on liquid−solid equilibrium.



EXPERIMENTAL SECTION

Materials. The chemical source, supply manufacturer, and mass fraction of all reagents were given in Table 1. All reagents were used in this work without further purification. The twice

Received: November 14, 2012 Accepted: April 29, 2013

A

dx.doi.org/10.1021/je301222e | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 1. Information on Samples chemical

source

mass fraction

cesium bromide ethylene glycol sodium chloride basic reagent 1,2-propanediol

Sichuan Shanghai Xi’an

0.995 0.99 0.9995

Shanghai

0.99

chemical

source

mass fraction

silver nitrate glycerin potassium chromate

Shanghai Shanghai Shanghai

0.998 0.99 0.99

τij =

g S,E =

∑j Gjixj

+

(4)

Δhf ⎛ Tf ⎞ ΔμS GS,E ⎜1 − ⎟ = = ⎝ RT RT RTf T⎠ Tf Tf ΔC 1 1 P + ΔC P dT − dT RT T R T T



(5)

where Δhf is the enthalpy of fusion at the normal melting temperature, ΔCP is the difference heat capacity of CsBr, and Tf is the normal melting temperature. The value obtained for Gibbs energy of pure solid CsBr at (288.15, 298.15, and 308.15) K using eq 5 were S,E S,E g288.15K = −10.99, g298.15K = −10.04, S,E and g308.15K = −9.15

The optimization of the binary parameters (Aij) of the model and the objective function are defined as given below in eq 6. nLS

OF(LS) =

3

∑ ∑ [((xi)n,L )exp − ((xi)n,L )cal ]2 n=1 i=1

(6)

where (xi)n is the molar fraction of component i on tie-line n and nLS denotes the number of tie-lines in the LS region. The subscript L denotes the liquid phases. The subscripts exp and cal respectively denote the experimental and calculated equilibrium data. The values of ((xi)n,L)cal are obtained as the composition where the plane passing through the point xS = 1, xW = 0 (xPA = 0), μS is tangent to the GM/RT surface in the directions given by the pure solid (common to all tie lines) and experimental equilibrium point.



RESULTS AND DISCUSSION The solubility, density and refractive index of 1,2-propanediol + CsBr + H2O, ethylene glycol + CsBr + H2O, and glycerin + CsBr + H2O ternary systems at (288.15, 298.15, and 308.15) K are summarized in Table 2. The solubility was used to estimate the NRTL binary interaction parameters shown in Table 3. Herein, we take the polyhydric alcohol + CsBr + H2O ternary system at 288.15 K as an example to explain the results since the other two temperatures have a similar behavior. The experimental and calculated equilibrium data are shown in Figure 1. As shown in Figure 1, the solubility of CsBr at the

c

∑j τjiGjixj

(3)

T



⎡ ⎛ Δh ΔCp ⎞⎛ Tf ⎞ ΔCp ⎛ Tf ⎞⎤ = s⎢ − ⎜ f − ln⎜ ⎟⎥ ⎟⎜ − 1⎟ − ⎠ ⎝ T ⎠⎥⎦ ⎢⎣ ⎝ RTf R ⎠⎝ T R

ln γi =

Aij

This model has three adjustable parameters for each binary pair (Δgij, Δgji, and αij). The parameters Δgij and Δgji are related to the characteristic energy of interaction between the molecules of types i and j, while the parameter αij is related to the nonrandomness of the mixture. These parameters can be estimated from experimental data by minimizing an objective function through a suitable minimization procedure. s is the ratio (moles of solid phase)/(moles of mixture), (1 − s) is the ratio (moles of liquid phase)/(moles of mixture), and μS and μL are the chemical potentials of the pure solid and of component i in the liquid phase, respectively, using the same reference state, namely, the pure liquid at the same temperature and pressure of the system. xi represents the mole fraction, and the subindex i represents the component. The upper index S refers to the solid phase and L to the liquid one.

M c M G liquid μL Gsolid μS GM = + =s + (1 − s) ∑ xiL i RT RT RT RT RT i=1

i=1

RT

=

Gij = exp( −αijτij)

distilled water was used to prepared solutions in all experiments. Apparatus and Procedure. The saturated solution was prepared by dissolving excess cesium bromide into mixture solvent at fixed mass ratios of polyhydric alcohol and water. All of the samples were weighed with an analytical balance with a precision of ± 0.1 mg. The prepared solutions were placed in a water bath at constant temperature, stirred for 2 days, and then left to stand for 1 day. When precipitation and dissolution equilibrium was obtained, saturated solutions were taken out by 5 mL syringes. The concentrations of salts in the above-mentioned solution were determined by titration with silver nitrate. An average value of three independent measurements was obtained for each solution. The error of this method in the measurement is less than 0.5 %. The density and refractive index of the solution were measured using Anton Paar DMA4500 and Anton Paar RXA170 instruments, respectively. Twice distilled water and air were used as reference substances to calibrate the instruments under atmospheric pressure. The precision of the two instruments are ± 1.0 × 10−5 g·cm−3 and ± 4.0 × 10−5. An average value of three independent measurements was obtained for each solution. The viscosity of the unsaturated solution was determined using Anton paar Automated Micro Viscometer. The instrument was calibrated with double-distilled water. An average value of three independent measurements was obtained each solution. The estimated precision in kinematic viscosity measurements in the whole temperature range is ± 1 × 10−4 mm2·s−1. NRTL Model. The solubility of CsBr in polyhydric alcohol + water mixed solvent at (288.15, 298.15, and 308.15) K was calculated by the NRTL model18−21 to test the accuracy of the experimental data, assuming nondissociation of the dissolved salt in the liquid phase.

+ (1 − s) ∑ xiL ln(γi LxiL)

Δgij

(1)

⎡ xG ⎛ ∑k xkτkjGkj ⎞⎤ j ji ⎢ ⎜ ⎟⎥ τ − ∑⎢ ij ∑k Gkjxk ⎟⎠⎥⎦ ∑ G x ⎜ j ⎣ k kj k ⎝ (2)

where xj is the molar fraction of component j and the quantities τij and Gij are given by B

dx.doi.org/10.1021/je301222e | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. Mass Fraction, Density (ρ), and Refractive Index (nD) for the polyhydroxy alcohol (1) + CsBr (2) + H2O (3) Saturated Systems at (288.15, 298.15, and 308.15) K with Pressure P = 0.1 MPaa ρ w1′

w2

nD

288.15 K 1,2-Propanediol (1) + CsBr (2) + H2O (3) 0.0000 0.5069 1.39955 0.1000 0.4683 1.40031 0.2000 0.4267 1.40208 0.3000 0.3920 1.40401 0.3999 0.3549 1.40835 0.5000 0.3101 1.41307 288.15 K Ethylene Glycol + CsBr (2) + H2O (3) 0.0000 0.5069 1.39955 0.0999 0.4821 1.40206 0.2001 0.4517 1.40362 0.3001 0.4113 1.40658 0.4001 0.3784 1.41088 0.4999 0.3459 1.41508 288.15 K Glycerin (1) + CsBr (2) + H2O (3) 0.0000 0.5069 1.39955 0.1000 0.4897 1.40462 0.2000 0.4660 1.41019 0.3000 0.4325 1.41697 0.3999 0.4093 1.42429 0.5000 0.3829 1.43272 298.15 K 1,2-Propanediol (1) + CsBr (2) + H2O (3) 0.0000 0.5515 1.40425 0.1000 0.5167 1.40505 0.2000 0.4745 1.40639 0.3000 0.4232 1.40860 0.4000 0.3865 1.41148 0.5001 0.3348 1.41475 298.15 K Ethylene Glycol (1) + CsBr (2) + H2O (3) 0.0000 0.5515 1.40425 0.0999 0.5244 1.40543 0.1999 0.4885 1.40695 0.3000 0.4565 1.40927 0.3999 0.4143 1.41239 0.4999 0.3756 1.41586 298.15 K Glycerin (1) + CsBr (2) + H2O (3) 0.0000 0.5515 1.40205 0.1000 0.5238 1.40869 0.2002 0.5031 1.41388 0.3000 0.4707 1.41988 0.4000 0.4371 1.42641 0.4998 0.4082 1.43325 308.15 K 1,2-Propanediol (1) + CsBr (2) + H2O (3) 0.0000 0.5856 1.40729 0.0998 0.5487 1.40821 0.1999 0.5148 1.40929 0.3001 0.4779 1.41088 0.4000 0.4282 1.41259 0.5000 0.3798 1.41540 308.15 K Ethylene Glycol (1) + CsBr (2) + H2O (3) 0.0000 0.5856 1.40729 0.1001 0.5530 1.40782 0.2000 0.5174 1.40956 0.3002 0.4855 1.41173 0.3999 0.4441 1.41429 0.4997 0.4064 1.41752 308.15 K Glycerin (1) + CsBr (2) + H2O (3) 0.0000 0.5856 1.40729 0.1001 0.5632 1.41095 0.2000 0.5344 1.41654 0.3001 0.4987 1.42172

ρ

g·cm−3

w1 ′

w2

nD

g·cm−3

1.66044 1.58475 1.50950 1.43280 1.37625 1.31887

0.5999 0.7000 0.7999 0.8998 1.0000

0.2708 0.2167 0.1678 0.1119 0.0703

1.41823 1.42319 1.42776 1.43327 1.43828

1.26749 1.21505 1.16845 1.12544 1.09095

1.66044 1.61630 1.56059 1.51203 1.47225 1.42971

0.6000 0.7000 0.7998 0.9000 1.0000

0.3097 0.2725 0.2364 0.2026 0.1669

1.42032 1.42601 1.43212 1.43812 1.44477

1.39165 1.35739 1.32585 1.29714 1.27378

1.66044 1.63526 1.61017 1.58543 1.56117 1.54054

0.6000 0.7000 0.7999 0.8999 1.0000

0.3493 0.3182 0.2791 0.2515 0.2113

1.44170 1.45199 1.46266 1.47455 1.48661

1.51776 1.49999 1.48256 1.46966 1.45805

1.72270 1.64719 1.57205 1.49000 1.42975 1.36148

0.6000 0.6999 0.7999 0.9000 1.0000

0.2910 0.2462 0.1937 0.1352 0.0874

1.41894 1.42299 1.42704 1.43166 1.43593

1.30547 1.23979 1.18655 1.13578 1.09483

1.72270 1.67145 1.62032 1.57067 1.52418 1.48066

0.6000 0.7001 0.8000 0.8999 1.0000

0.3372 0.2940 0.2577 0.2178 0.1833

1.42017 1.42448 1.42944 1.43458 1.44031

1.43763 1.39380 1.35768 1.32203 1.29263

1.72270 1.69218 1.66404 1.63460 1.61095 1.58178

0.6000 0.7000 0.7998 0.9000 1.0000

0.3712 0.3393 0.3036 0.2685 0.2287

1.44100 1.44983 1.46044 1.47154 1.48340

1.55981 1.53742 1.51278 1.49293 1.47740

1.78808 1.70569 1.61589 1.55782 1.47853 1.39816

0.6000 0.6999 0.7999 0.8998 1.0000

0.3281 0.2787 0.2215 0.1570 0.1029

1.41940 1.42211 1.42567 1.42931 1.43294

1.33924 1.26966 1.20583 1.14813 1.10190

1.78808 1.73357 1.68223 1.62708 1.57337 1.51711

0.6000 0.7000 0.7999 0.8999 1.0000

0.3604 0.3232 0.2804 0.2477 0.1992

1.42118 1.42511 1.43096 1.43611 1.44169

1.46833 1.41717 1.37262 1.33084 1.29502

1.78808 1.74603 1.71368 1.68909

0.5999 0.7000 0.8000 0.9000

0.4016 0.3662 0.3240 0.2870

1.44174 1.44873 1.45788 1.46776

1.60424 1.57484 1.54529 1.51882

C

dx.doi.org/10.1021/je301222e | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued ρ w1′

w2

ρ −3

nD

g·cm

308.15 K Glycerin (1) + CsBr (2) + H2O (3) 0.4000 0.4627 1.42654 0.5000 0.4309 1.43406

1.65137 1.62753

w1 ′

w2

nD

g·cm−3

1.0000

0.2462

1.47780

1.49595

w1′ is the mass fraction of poly-hydroxy alcohol in the salt-free solvent. w2 is the mass fraction of CsBr in the mixed solution. Standard uncertainties u are u(w) = 0.0056, u(ρ) = 0.00005 g·cm−3, u(nD) = 0.00004, u(T) = 0.03 K, and u(p) = 10 kPa.

a

Table 3. Correlation Results Using NRTL for the Polyhydric Alcohol (1) + CsBr(2) + H2O(3) Saturated System at (288.15, 298.15, and 308.15) K, Binary Parameters Aij (K) and the Objective Function OF(LS) j 288.15 K 1,2-propanediol + CsBr+ H2O i

1 2 3

288.15 K ethylene glycol + CsBr + H2O i

288.15 K glycerin + CsBr + H2O 1 2 3

−268.61 −1092.12 1562.59 −3243.08 OF(LS) = 6.053 × 10−3 j

298.15 K ethylene glycol + CsBr + H2O i

1 2

2

−521.87 901.74

298.15 K glycerin + CsBr + H2O 1 2 3

−460.85 −621.36

2

3

−499.97

−518.68 −503.89

1

2 −98.29

−1133.54 1319.85 −3032.14 OF(LS) = 8.588 × 10−3 j 1

−1098.65

3 −515.90 552.68

1 2 3

3

−586.96

−247.61 −729.32

i

same temperature decrease with the concentrations of polyhydric alcohol in the salt-free solvent, indicating the salting out effect of the polyhydric alcohol for the salt. And at the fixed concentration of polyhydric alcohol, the sequence of the solubility is glycerin > ethylene glycol >1,2-propanediol. In our opinion, the phenomenon can be explained by two elements: the number of hydroxy and the length of carbon chain in different polyhydric alcohol. For polyhydric alcohol, the more hydroxy number, the stronger hydrophilicity, so the solubility of CsBr is the largest in the glycerin + water mixed solvent. On the other hand, the longer carbon chain, the stronger hydrophobicity of polyhydric alcohol. Therefore, the solubility of CsBr is smallest in the 1,2-propanediol + water mixed solvent.

1 2 3

2

3

1

2 −81.47

−1121.08 1062.09 −2250.74 OF(LS) = 5.089 × 10−3 j 1

2 −162

1 2 3

−1221.18 1393.42 −2339.02 OF(LS) = 1.549 × 10−3 j

308.15 K glycerin + CsBr + H2O

2

3

166.31 −1592.4 1372.11 −1972.58 OF(LS) = 2.776 × 10−3 j

308.15 K ethylene glycol + CsBr + H2O i

2

1

308.15 K 1,2-propanediol + CsBr + H2O i

1

1

384.65 −1882.82 OF(LS) = 2.31 × 10−3 j

3

3

−1365.93 1760.59 −2277.16 OF(LS) = 4.231 × 10−3 j

1 2 3

3

i 1

298.15 K 1,2-propanediol + CsBr + H2O i

2

−624.33 −1113.33 953.59 −2107.38 OF(LS) = 2.204 × 10−3 j

1 2 3

i

1

j 298.15 K ethylene glycol + CsBr + H2O

1

2

−58.31 −1512.26 1183.45 −1971.6 OF(LS) =1.191 × 10−2

−205.67 −667.06

3 −481.07 −373.57

4 −620.78 −291.37

3 −339.39 −610.36

The density data for the polyhydric alcohol + CsBr + H2O ternary system at 288.15 K are demonstrated in Figure 2, which show a similar trend as the solubility. The densities of the solution decrease with the concentration of polyhydric alcohol in the system because the salt concentration was lessen in the solution. Thus, the decreasing trend shows that the content of CsBr is the main contributor for the solution density. The effect of the temperature on the solubility and density is that the higher temperatures, the larger solubility and density. The refractive index of the solution shows the same trend as the solubility and density (Figure 3). The refractive index of the solution increased with the addition of polyhydric alcohol in the mixed solvent. However, a crosspoint was observed for the systems at the three investigated D

dx.doi.org/10.1021/je301222e | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 1. Solubilities for the ternary system of polyhydric alcohol (1) + CsBr (2) + H2O (3) at 288.15 K (■, 1,2-propanediol; ▲, ethylene glycol; ◀, glycerin). The solid points and empty points are obtained by experiments and the NRTL model, respectively. w1′ and w2 are the mass fraction of polyhydric alcohol in the salt-free mixed solvent and CsBr in saturated solution.

Figure 3. Refractive indexes for the ternary system of polyhydric alcohol (1) + CsBr (2) + H2O (3) at 288.15 K (■, 1,2-propanediol; ▲, ethylene glycol; ◀, glycerin). The solid lines in the figure are calculated from eq 7. w1′ is the mass fraction of polyhydric alcohol in the salt-free mixed solvent.

So the two factors are counteracted. Before the crosspoint, the former should be the key factor, and after it, the latter should be the key factor. Experimental values for the solubility, refractive index, and density of these ternary systems have been being correlated according to the equation22 ln Y = A + Bw1′ + Cw1′ 2 + Dw1′ 3

(7)

where w1′ is the mass fraction of polyhydric alcohol and Y represents the quality percentage content of CsBr (w2) in the saturated solution, the density (g·cm−3) or the refractive index (nD). A, B, C, and D are empirical constants, which were given in Table 4. The refractive indices, densities, and viscosities for unsaturated solutions of these ternary systems were also investigated to accomplish this study. The experiments were carried out via varying the quality percentage of the CsBr in the mixed solvent with fixed mass ratio of polyhydric alcohol to water. The corresponding experimental data for the three unsaturated ternary systems were given in Tables 5 to 7. From Tables 5 to 7, it can be found that the values of densities and refractive indexes for the unsaturated systems increase with the quality percentage of CsBr and decrease with the temperatures. This phenomenon is different from the ethanol + NaCl/KCl + H2O system measured by Galleguillos et al.8 since the polyhydric alcohol used in this work has larger refractive index and density. Values of refractive index and density were also correlated with the CsBr’s concentrations and the mass fraction of polyhydric alcohol in the unsaturated solutions by the following equation:8

Figure 2. Densities for the ternary system of polyhydric alcohol (1) + CsBr (2) + H2O (3) at 288.15 K (■, 1,2-propanediol; ▲, ethylene glycol; ◀, glycerin). The solid lines in the figure are calculated from eq 7. w1′ is the mass fraction of polyhydric alcohol in the salt-free mixed solvent.

temperatures with w1 of about 0.6 for glycerin, 0.7 for ethylene glycol, and 0.7 for 1,2-propanediol systems, respectively. Before the crosspoint, the sequence of the refractive index is 308.15 K > 298.15 K > 288.15 K, and after the crosspoint, the order is 308.15 K < 298.15 K < 288.15 K. In our opinion, the cross can be understood that the refractive index of the saturated solution is mainly determined by two elements: the concentration of the salt and the temperature. The refractive index increased with the increasing mass fraction of CsBr. However, the refractive index decreased with the enhancement of the temperature.

Y = A 0 + A1w2 + A 2 w1 + A3w1w2 + A4 w2w12

(8)

where Y represents the density (ρ) or the refractive index (nD) of the unsaturated solutions, where w1 and w2 are the mass fractions of polyhydric alcohol and CsBr in the mixed solution, E

dx.doi.org/10.1021/je301222e | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. Values of Parameters of eq 7a A

system

a

288.15 288.15 288.15 298.15 298.15 298.15 308.15 308.15 308.15

K K K K K K K K K

1,2-propanediol + CsBr + H2O ethylene glycol + CsBr + H2O glycerin + CsBr + H2O 1,2-propanediol + CsBr + H2O ethylene glycol + CsBr + H2O glycerin + CsBr + H2O 1,2-propanediol + CsBr + H2O ethylene glycol + CsBr+ H2O glycerin + CsBr + H2O

0.5044 0.5088 0.5085 0.5537 0.5520 0.5512 0.5840 0.5853 0.5884

288.15 288.15 288.15 298.15 298.15 298.15 308.15 308.15 308.15

K K K K K K K K K

1,2-propanediol + CsBr + H2O ethylene glycol + CsBr + H2O glycerin + CsBr + H2O 1,2-propanediol + CsBr + H2O ethylene glycol + CsBr + H2O glycerin + CsBr + H2O 1,2-propanediol + CsBr + H2O ethylene glycol + CsBr+ H2O glycerin + CsBr + H2O

1.6618 1.6627 1.6604 1.7235 1.7225 1.7222 1.7856 1.7874 1.7858

288.15 288.15 288.15 298.15 298.15 298.15 308.15 308.15 308.15

K K K K K K K K K

1,2-propanediol + CsBr + H2O ethylene glycol + CsBr + H2O glycerin + CsBr + H2O 1,2-propanediol + CsBr + H2O ethylene glycol + CsBr + H2O glycerin + CsBr + H2O 1,2-propanediol + CsBr + H2O ethylene glycol + CsBr + H2O glycerin + CsBr + H2O

1.3996 1.3998 1.3996 1.4043 1.4043 1.4024 1.4075 1.4072 1.4071

δ = [∑(Y

cal

−Y

exp)

2

C

D

100δa

−0.0825 −0.1347 −0.1213 −0.0605 −0.2340 −0.1197 −0.2436 −0.1491 −0.0673

−0.0101 0.0720 0.0276 −0.0089 0.1332 0.0358 0.0598 0.0700 0.0016

0.3702 0.1973 0.2673 0.3205 0.1367 0.1876 0.2455 0.2629 0.2761

0.3168 0.1046 −0.0081 0.1242 0.0395 0.0297 0.0512 −0.1254 0.1688

−0.0570 0.0326 0.0587 0.0408 0.0485 0.0228 0.0702 0.1432 −0.0790

0.2638 0.2007 0.0530 0.3158 0.0994 0.1265 0.4977 0.0976 0.2828

0.0765 0.0476 0.0452 0.0496 0.0389 −0.0037 0.0387 0.0319 0.0255

−0.0350 −0.0128 −0.0022 −0.0192 −0.0090 0.0282 −0.0138 −0.0024 0.0060

0.0318 0.0272 0.0118 0.0109 0.0090 0.0330 0.0280 0.0239 0.0396

B Mass Fraction −0.3462 −0.2786 −0.2025 −0.3982 −0.2679 −0.2374 −0.2991 −0.3043 −0.2759 Density −0.8323 −0.5262 −0.2528 −0.7954 −0.5187 −0.2984 −0.8078 −0.5103 −0.3819 Refractive Index −0.0030 0.0101 0.0440 0.0011 0.0060 0.0568 0.0006 0.0051 0.0391

/N ]0.5, where N is the number of experimental points.

Table 5. Density (ρ), Refractive Index (nD), and Viscosity (ν) for the 1,2-Propanediol (1) + CsBr (2) + H2O (3) Unsaturated System at (288.15, 298.15, and 308.15) Ka ρ

ν −3

w1

w2

nD

0.0941 0.0889 0.0844 0.0802

0.0581 0.1103 0.1562 0.1979

1.34914 1.35375 1.35812 1.36241

1.05480 1.10123 1.14545 1.18883

0.2854 0.2717 0.2612 0.2506

0.0489 0.0942 0.1290 0.1648

1.37122 1.37488 1.37775 1.38094

1.06563 1.10507 1.13756 1.17262

0.4812 0.4596 0.4473 0.4322

0.0374 0.0806 0.1052 0.1354

1.39166 1.39583 1.39764 1.39978

1.07155 1.10838 1.13058 1.15876

0.6810 0.6626 0.6471 0.6286

0.0270 0.0533 0.0755 0.1018

1.41214 1.41385 1.41533 1.41712

1.06949 1.09139 1.11051 1.13411

0.8873 0.8752

0.0140 0.0275

1.42314 1.42366

1.05715 1.06803

g·cm

ρ

2 −1

mm ·s

288.15 1.5110 1.4293 1.3276 1.2249 288.15 4.0705 3.7395 3.5836 3.3322 288.15 9.8743 8.5063 8.7155 7.4490 288.15 18.1052 18.5396 17.4240 16.1234 288.15

w1 K w1/w3 = 1/9 0.0763 0.0728 0.0697 0.0668 K w1/w3 = 3/7 0.2408 0.2316 0.2220 0.2144 K w1/w3 = 5/5 0.4187 0.4038 0.3918 0.3805 K w1/w3 = 7/3 0.6141 0.6022 0.5881 0.5737 K w1/w3 = 9/1 0.8404 0.8304 F

ν −3

mm2·s−1

w2

nD

0.2358 0.2711 0.3027 0.3309

1.36646 1.37049 1.37434 1.37803

1.23087 1.27269 1.31261 1.34984

1.1482 1.0852 1.0325 0.9968

0.1973 0.2278 0.2600 0.2848

1.38402 1.38697 1.39027 1.39306

1.20669 1.24010 1.27744 1.30804

3.1760 2.9956 2.9679 2.7331

0.1626 0.1923 0.2162 0.2389

1.40195 1.40441 1.40646 1.40848

1.18547 1.21632 1.24200 1.26757

7.2178 6.3706 6.2527 5.7343

0.1226 0.1396 0.1597 0.1802

1.41852 1.41978 1.42123 1.42281

1.15338 1.16970 1.18944 1.21035

16.3440 15.2048 14.8082 14.7266

0.0661 0.0771

1.42633 1.42701

1.10070 1.10959

g·cm

dx.doi.org/10.1021/je301222e | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. continued ρ

a

ν −3

w1

w2

nD

0.8644 0.8511

0.0396 0.0543

1.42469 1.42562

1.07772 1.09044

0.0935 0.0884 0.0821 0.0791

0.0640 0.1153 0.1791 0.2088

1.34825 1.35278 1.35894 1.36199

1.05665 1.10249 1.16509 1.19654

0.2842 0.2714 0.2583 0.2477

0.0525 0.0953 0.1386 0.1744

1.36893 1.37226 1.37597 1.37931

1.06341 1.10061 1.14115 1.17679

0.4795 0.4601 0.4407 0.4267

0.0408 0.0798 0.1185 0.1464

1.38944 1.39219 1.39520 1.39756

1.06720 1.10044 1.13554 1.16229

0.6789 0.6602 0.6406 0.6217

0.0302 0.0568 0.0848 0.1118

1.40790 1.40971 1.41164 1.41319

1.06455 1.08679 1.11115 1.13555

0.8863 0.8736 0.8611 0.8481

0.0150 0.0293 0.0432 0.0576

1.42427 1.42545 1.42587 1.42678

1.04736 1.06174 1.07338 1.08569

0.0936 0.0879 0.0828 0.0782

0.0632 0.1204 0.1715 0.2181

1.34739 1.35242 1.35727 1.36203

1.05242 1.10342 1.15302 1.20210

0.2826 0.2678 0.2530 0.2411

0.0577 0.1072 0.1563 0.1959

1.36869 1.37265 1.37689 1.38052

1.06310 1.10674 1.15337 1.19399

0.4770 0.4565 0.4341 0.4199

0.0458 0.0868 0.1316 0.1600

1.38920 1.39219 1.39560 1.39789

1.06525 1.10049 1.14161 1.16924

0.6778 0.6577 0.6346 0.6203

0.0315 0.0602 0.0933 0.1138

1.40753 1.40941 1.41188 1.41315

1.05852 1.08247 1.11133 1.13001

0.8823 0.8665 0.8496 0.8338

0.0196 0.0372 0.0560 0.0734

1.42174 1.42292 1.42400 1.42516

1.04638 1.06094 1.07665 1.09175

g·cm

ρ

2 −1

mm ·s

w1

288.15 K w1/w3 = 9/1 0.8207 0.8117 298.15 K w1/w3 = 1/9 1.1378 0.0756 1.0484 0.0719 0.9392 0.0686 1.1627 0.0658 298.15 K w1/w3 = 3/7 2.2477 0.2373 2.0418 0.2277 1.9575 0.2181 1.8355 0.2107 298.15 K w1/w3 = 5/5 4.4500 0.4124 4.1652 0.3982 3.9654 0.3869 3.7762 0.3743 298.15 K w1/w3 = 7/3 9.0957 0.6065 8.7367 0.5689 8.2389 0.5761 7.8990 0.5562 298.15 K w1/w3 = 9/1 0.8371 0.8260 0.8147 0.8033 308.15 K w1/w3 = 1/9 0.9257 0.0741 0.8277 0.0707 0.7943 0.0674 0.7400 0.0643 308.15 K w1/w3 = 3/7 1.6490 0.2306 1.5617 0.2196 1.4730 0.2102 1.3895 0.2019 308.15 K w1/w3 = 5/5 3.3363 0.4043 3.1262 0.3892 2.9203 0.3739 2.7563 0.3589 308.15 K w1/w3 = 7/3 6.5233 0.6003 6.3148 0.5853 6.0005 0.5705 5.7760 0.5556 308.15 K w1/w3 = 9/1 0.8171 0.8055 0.7905 0.7766

ν −3

mm2·s−1

w2

nD

0.0881 0.0981

1.42782 1.42849

1.12009 1.12913

0.2437 0.2808 0.3128 0.3414

1.36581 1.37005 1.37394 1.37772

1.23568 1.28018 1.32093 1.35955

0.8732 0.8407 0.7853 0.7724

0.2090 0.2409 0.2729 0.2973

1.38259 1.38581 1.38919 1.39175

1.21321 1.24914 1.28703 1.31690

1.6997 1.6788 1.5481 1.5284

0.1753 0.2034 0.2260 0.2511

1.39968 1.40227 1.40406 1.40657

1.19157 1.22086 1.24551 1.27438

3.6001 3.4777 3.2647 3.1325

0.1332 0.1644 0.1766 0.2053

1.41525 1.41660 1.41794 1.42036

1.15572 1.17794 1.19871 1.22887

7.8615 7.3643 7.1228 6.4603

0.0698 0.0820 0.0946 0.1073

1.42750 1.42821 1.42904 1.42996

1.09616 1.10671 1.11795 1.12957

0.2590 0.2922 0.3246 0.3559

1.36651 1.37042 1.37441 1.37855

1.24862 1.28942 1.33131 1.37462

0.7076 0.6978 0.7290 0.9155

0.2309 0.2675 0.2989 0.3267

1.38402 1.38778 1.39118 1.39443

1.23206 1.27464 1.31330 1.34968

1.3512 1.4339 1.2280 1.1732

0.1911 0.2215 0.2519 0.2820

1.40057 1.40321 1.40600 1.40895

1.20125 1.23382 1.26846 1.30435

2.6138 2.6084 2.4514 2.3098

0.1423 0.1637 0.1848 0.2061

1.41512 1.41687 1.41852 1.42025

1.15338 1.17814 1.19971 1.22243

5.5842 5.4607 5.2756 5.1571

0.0920 0.1049 0.1214 0.1370

1.42641 1.42723 1.42838 1.42840

1.10828 1.11985 1.13496 1.13984

g·cm

Standard uncertainties u are u(w) = 0.0056, u(ρ) = 0.00005 g·cm−3, u(nD) = 0.00004, u(T) = 0.03 K, and u(p) = 10 kPa and u(ν) = 0.008 mm2·s−1.

fitted density and refractive index of water at the given temperature. Furthermore, the viscosity for all unsaturated systems is decreased by increasing the temperatures. The viscosity of the

respectively. The coefficients of eq 8 (Ai, i = 0−4) and the relevant standard deviations for the studied systems are given in Table 8. The values of A1 to A4 show the effect of the salt and the organic solvent on the density and refractive index. A0 is the G

dx.doi.org/10.1021/je301222e | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 6. Density (ρ), Refractive Index (nD), and Viscosity (ν) for the Ethylene Glycol (1) + CsBr (2) + H2O (3) Unsaturated System at (288.15, 298.15, and 308.15) Ka ρ

ν

w1

w2

nD

g·cm−3

mm2·s−1

0.0941 0.0889 0.0843 0.0801

0.0587 0.1098 0.1564 0.1981

1.34811 1.35258 1.35708 1.36109

1.06090 1.10653 1.17176 1.19447

0.2846 0.2706 0.2579 0.2467

0.0512 0.0976 0.1401 0.1777

1.36738 1.37124 1.37492 1.37853

1.08243 1.12381 1.16388 1.20231

0.4789 0.4587 0.4402 0.4247

0.0421 0.0825 0.1194 0.1504

1.38743 1.39056 1.39347 1.39602

1.10259 1.13817 1.17284 1.20292

0.6748 0.6513 0.6294 0.6090

0.0359 0.0694 0.1007 0.1300

1.40726 1.40965 1.41193 1.41427

1.12126 1.15054 1.17949 1.20767

0.8751 0.8517 0.8289 0.8235

0.0276 0.0536 0.0788 0.0941

1.42596 1.42773 1.42948 1.43122

1.13298 1.15560 1.17856 1.20087

0.0937 0.0876 0.0831 0.0792

0.0621 0.1234 0.1680 0.2077

1.34700 1.35248 1.35682 1.36290

1.06045 1.11554 1.15974 1.20215

0.2836 0.2692 0.2558 0.2430

0.0544 0.1023 0.1471 0.1897

1.36564 1.36973 1.37253 1.37780

1.08037 1.12342 1.16425 1.21012

0.4776 0.4572 0.4375 0.4195

0.0446 0.0856 0.1248 0.1609

1.38456 1.38804 1.39089 1.39419

1.09766 1.13398 1.17038 1.20659

0.6720 0.6506 0.6301 0.6102

0.0400 0.0703 0.0997 0.1282

1.40403 1.40618 1.40745 1.41040

1.11710 1.14378 1.16940 1.19752

0.8760 0.8531 0.8285 0.8117

0.0267 0.0521 0.0793 0.0981

1.42267 1.42386 1.42613 1.42752

1.12467 1.14618 1.17103 1.18862

0.0933 0.0879 0.0828 0.0784

0.0654 0.1213 0.1715 0.2149

1.34608 1.35107 1.35586 1.36024

1.05974 1.11013 1.15907 1.20471

0.2826 0.2671

0.0575 0.1093

1.36468 1.36889

1.07897 1.12488

w1

K w1/w3 = 1/9 0.0764 0.0729 0.0698 0.0669 K w1/w3 = 3/7 0.2361 0.2264 0.2176 0.2092 K w1/w3 = 5/5 0.4090 0.3947 0.3816 0.3690 K w1/w3 = 7/3 0.5898 0.5718 0.5540 0.5390 K w1/w3 = 9/1 0.7874 0.7684 0.7503 0.7324 298.15 K w1/w3 = 1/9 1.0477 0.0753 0.9699 0.0717 0.9348 0.0684 0.8826 0.0652 298.15 K w1/w3 = 3/7 1.6619 0.2336 1.5800 0.2235 1.4529 0.2137 1.4298 0.2059 298.15 K w1/w3 = 5/5 2.8211 0.4044 2.6483 0.3884 2.5230 0.3764 2.4470 0.3620 298.15K w1/w3 = 7/3 4.9765 0.5912 4.8187 0.5702 4.4765 0.5561 4.3455 0.5410 298.15 K w1/w3 = 9/1 0.7878 0.7738 0.7551 0.7380 308.15 K w1/w3 = 1/9 0.8416 0.0745 0.7938 0.0710 0.7486 0.0676 0.7059 0.0646 308.15 K w1/w3 = 3/7 1.3148 0.2300 1.2466 0.2194 288.15 1.9788 1.8593 1.7737 1.6860 288.15 2.9515 2.7887 2.6275 2.4978 288.15 4.8048 4.5592 4.3803 4.1101 288.15 8.8485 8.4073 7.7904 7.6458 288.15

H

ρ

ν

w2

nD

g·cm−3

mm2·s−1

0.2360 0.2707 0.3021 0.3309

1.36560 1.36942 1.37312 1.37703

1.23720 1.27811 1.31602 1.35680

1.6251 1.5589 1.5293 1.4847

0.2129 0.2449 0.2746 0.3022

1.38191 1.38541 1.38859 1.39167

1.23981 1.27719 1.31264 1.34779

2.3232 2.2449 2.1957 2.0719

0.1819 0.2105 0.2366 0.2618

1.39887 1.40147 1.40393 1.40643

1.23547 1.26649 1.29623 1.32628

3.9477 3.7962 3.6331 3.4693

0.1572 0.1830 0.2084 0.2299

1.41645 1.41856 1.42078 1.42283

1.23515 1.26224 1.28997 1.31478

7.4189 7.0961 6.9519 6.7079

0.1250 0.1461 0.1662 0.1861

1.43280 1.43434 1.43599 1.43764

1.22282 1.24330 1.26506 1.28674

0.2466 0.2823 0.3152 0.3476

1.36515 1.36944 1.37343 1.37772

1.24558 1.28934 1.33139 1.37573

0.8383 0.8128 0.7677 0.7334

0.2214 0.2549 0.2874 0.3136

1.38091 1.38443 1.38810 1.39117

1.24453 1.28336 1.32337 1.35760

1.3514 1.3191 1.2407 1.2254

0.1911 0.2230 0.2473 0.2760

1.39681 1.39975 1.40225 1.40495

1.23774 1.27277 1.30147 1.33565

2.3077 2.1860 2.1337 2.0425

0.1553 0.1854 0.2054 0.2271

1.41275 1.41525 1.41690 1.41956

1.22466 1.25659 1.27818 1.30541

4.1126 3.9535 3.9294 3.8001

0.1245 0.1402 0.1608 0.1799

1.42958 1.43066 1.43216 1.43384

1.21407 1.22941 1.25034 1.27089

0.2545 0.2903 0.3235 0.3537

1.36476 1.36893 1.37308 1.37704

1.25070 1.29413 1.33726 1.37888

0.6732 0.6600 0.6375 0.6152

0.2333 0.2684

1.38077 1.38440

1.25330 1.29404

1.0768 1.0383

dx.doi.org/10.1021/je301222e | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 6. continued ρ

a

ν −3

w1

w2

nD

0.2533 0.2403

0.1553 0.1987

1.37303 1.37719

1.16936 1.21444

0.4741 0.4543 0.4340 0.4157

0.0516 0.0913 0.1319 0.1686

1.38388 1.38703 1.39044 1.39359

1.09890 1.13407 1.17255 1.20903

0.6708 0.6450 0.6200 0.5989

0.0417 0.0785 0.1143 0.1444

1.40297 1.40545 1.40820 1.41084

1.11309 1.14531 1.17864 1.20848

0.8743 0.8500 0.8216 0.8052

0.0285 0.0555 0.0869 0.1053

1.42065 1.42270 1.42498 1.42632

1.11968 1.14328 1.17176 1.18894

g·cm

ρ

2 −1

mm ·s

308.15 1.1778 1.1204 308.15 2.1484 2.0566 1.9629 1.8754 308.15 3.7385 3.4520 3.3021 3.3504 308.15

w1 K w1/w3 = 3/7 0.2097 0.2018 K w1/w3 = 5/5 0.3988 0.3823 0.3690 0.3553 K w1/w3 = 7/3 0.5780 0.5581 0.5395 0.5198 K w1/w3 = 9/1 0.7847 0.7572 0.7456 0.7277

ν −3

mm2·s−1

w2

nD

0.3008 0.3271

1.38818 1.39121

1.33525 1.36943

0.9996 0.9710

0.2024 0.2353 0.2620 0.2892

1.39666 1.39992 1.40249 1.40541

1.24500 1.28248 1.31391 1.34762

1.8170 1.6785 1.7039 1.5936

0.1743 0.2025 0.2291 0.2574

1.41341 1.41553 1.41798 1.42057

1.23938 1.26902 1.29891 1.33238

3.1987 3.0910 2.9169 2.9033

0.1280 0.1587 0.1715 0.1914

1.42800 1.43039 1.43133 1.43300

1.21091 1.24198 1.25533 1.27662

g·cm

Standard uncertainties u are u(w) = 0.0056, u(ρ) = 0.00005 g·cm−3, u(nD) = 0.00004, u(T) = 0.03 K, and u(p) = 10 kPa and u(ν) = 0.008 mm2·s−1.

Table 7. Density (ρ), Refractive Index (nD), and Viscosity (ν) for the Glycerin (1) + CsBr (2) + H2O (3) Unsaturated System at (288.15, 298.15, and 308.15) Ka ρ

ν

w1

w2

nD

g·cm−3

mm2·s−1

0.0941 0.0892 0.0845 0.0805

0.0586 0.1074 0.1547 0.1948

1.35049 1.35484 1.35936 1.36345

1.07914 1.11587 1.16181 1.20338

0.2845 0.2705 0.2580 0.2462

0.0517 0.0982 0.1400 0.1793

1.37549 1.37941 1.38304 1.38667

1.11805 1.15972 1.20035 1.24053

0.4771 0.4562 0.4380 0.4172

0.0456 0.0874 0.1238 0.1655

1.40289 1.40607 1.40881 1.41249

1.16971 1.20582 1.24093 1.28389

0.6728 0.6484 0.6235 0.6025

0.0387 0.0736 0.1092 0.1390

1.43114 1.43431 1.43674 1.43903

1.21647 1.25001 1.28329 1.31286

0.8727 0.8467 0.8225 0.7996

0.0302 0.0591 0.0858 0.1113

1.46132 1.46209 1.46313 1.46570

1.26460 1.28933 1.31411 1.34110

0.0936 0.0872 0.0831 0.0787

0.0625 0.1273 0.1691 0.2115

1.34962 1.35546 1.35948 1.36417

1.07223 1.13122 1.17264 1.21857

0.2812 0.2674 0.2544 0.2425

0.0626 0.1083 0.1519 0.1915

1.37465 1.37857 1.38314 1.38624

1.12193 1.16512 1.20581 1.24952

288.15 1.4249 1.2674 1.1929 1.1376 288.15 3.3196 3.0707 2.8607 2.7593 288.15 7.4669 7.2935 6.4478 6.0297 288.15 25.9174 24.7240 21.8927 21.6140 288.15

298.15 1.0187 0.9670 0.8908 0.8439 298.15 1.7923 1.7084 1.6191 1.4913

w1 K w1/w3 = 1/9 0.0765 0.0728 0.0702 0.0673 K w1/w3 = 3/7 0.2353 0.2260 0.2167 0.2088 K w1/w3 = 5/5 0.4040 0.3883 0.3754 0.3621 K w1/w3 = 7/3 0.5829 0.5647 0.5430 0.5291 K w1/w3 = 9/1 0.7780 0.7572 0.7384 0.7197 K w1/w3 = 1/9 0.0750 0.0713 0.0679 0.0650 K w1/w3 = 3/7 0.2315 0.2216 0.2124 0.2039 I

ρ

ν

w2

nD

g·cm−3

mm2·s−1

0.2341 0.2712 0.2973 0.3267

1.36778 1.37207 1.37524 1.37900

1.24726 1.29207 1.32471 1.36409

1.0749 0.9980 0.9847 0.9376

0.2154 0.2465 0.2772 0.3037

1.39046 1.38384 1.39706 1.40000

1.28008 1.31608 1.35486 1.38973

2.6000 2.5472 2.3463 2.2730

0.1919 0.2232 0.2490 0.2756

1.41474 1.41752 1.41993 1.42268

1.31176 1.34734 1.37806 1.41110

6.0693 5.6910 5.4732 5.0412

0.1672 0.1931 0.2242 0.2440

1.44110 1.44332 1.44579 1.44751

1.34425 1.37288 1.40906 1.43298

20.5116 19.8480 18.7258 17.1338

0.1353 0.1585 0.1794 0.2002

1.46673 1.46773 1.46982 1.47137

1.36485 1.38857 1.41282 1.43662

0.2504 0.2872 0.3203 0.3499

1.36813 1.37265 1.37656 1.38060

1.26183 1.30673 1.35012 1.39202

1.0811 0.7672 0.7562 0.7132

0.2281 0.2611 0.2918 0.3203

1.38982 1.39336 1.39676 1.40025

1.29021 1.32934 1.36832 1.40566

1.4331 1.4658 1.3094 1.2788

dx.doi.org/10.1021/je301222e | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 7. continued ρ

a

ν −3

w1

w2

nD

0.4757 0.4533 0.4330 0.4149

0.0485 0.0933 0.1340 0.1700

1.39947 1.40326 1.40628 1.40976

1.16196 1.20363 1.24268 1.28089

0.6713 0.6441 0.6202 0.5985

0.0409 0.0797 0.1138 0.1448

1.42958 1.43125 1.43471 1.43583

1.21342 1.24781 1.28222 1.31131

0.8721 0.8442 0.8219 0.7963

0.0307 0.0619 0.0867 0.1151

1.45918 1.45852 1.46026 1.46456

1.25889 1.28300 1.30725 1.34001

0.0932 0.0879 0.0828 0.0786

0.0678 0.1199 0.1727 0.2135

1.34856 1.35317 1.35870 1.36263

1.07336 1.12037 1.17153 1.21460

0.2812 0.2659 0.2511 0.2397

0.0625 0.1134 0.1626 0.2010

1.37307 1.37736 1.38091 1.38512

1.11902 1.16569 1.21199 1.25446

0.4725 0.4490 0.4267 0.4088

0.0549 0.1018 0.1464 0.1822

1.39840 1.40169 1.40665 1.40964

1.16314 1.20498 1.25207 1.28959

0.6695 0.6421 0.6158 0.5879

0.0434 0.0826 0.1201 0.1601

1.42608 1.42891 1.43091 1.43661

1.20578 1.24192 1.27682 1.32368

0.8691 0.8484 0.8132 0.7871

0.0339 0.0572 0.0964 0.1254

1.45630 1.45858 1.46043 1.46242

1.25303 1.28409 1.31228 1.34165

g·cm

ρ

2 −1

mm ·s

w1

298.15 K w1/w3 = 5/5 3.8932 0.3964 3.7420 0.3819 3.3500 0.3680 3.2925 0.3548 298.15 K w1/w3 = 7/3 16.8593 0.5772 15.4534 0.5529 15.0939 0.5366 13.2558 0.5197 298.15 K w1/w3 = 9/1 0.7743 0.7524 0.7355 0.7161 308.15 K w1/w3 = 1/9 0.8471 0.0743 0.8013 0.0705 0.8226 0.0675 0.7280 0.0642 308.15 K w1/w3 = 3/7 1.4392 0.2269 1.3554 0.2183 1.2485 0.2087 1.2128 0.2001 308.15 K w1/w3 = 5/5 2.8920 0.3910 2.6805 0.3742 2.6648 0.3585 2.5546 0.3436 308.15 K w1/w3 = 7/3 10.1113 0.5684 9.9639 0.5466 8.8191 0.5304 8.7187 0.5117 308.15 K w1/w3 = 9/1 0.7614 0.7368 0.7136 0.6991

ν −3

mm2·s−1

w2

nD

0.2070 0.2360 0.2639 0.2904

1.41375 1.41647 1.41927 1.42210

1.32270 1.35625 1.39072 1.42497

3.0950 3.0477 2.9492 2.7974

0.1753 0.2101 0.2333 0.2575

1.43884 1.44090 1.44192 1.44338

1.34456 1.38269 1.40776 1.43604

12.7703 11.7887 10.8066 10.1442

0.1396 0.1638 0.1826 0.2043

1.46409 1.46557 1.46783 1.47014

1.36130 1.38650 1.40937 1.43553

0.2556 0.2943 0.3240 0.3580

1.36719 1.37186 1.37565 1.38024

1.26351 1.31046 1.34906 1.39654

0.6828 0.6626 0.6457 0.6270

0.2435 0.2720 0.3044 0.3329

1.38925 1.39245 1.39567 1.39956

1.30112 1.33558 1.37663 1.41677

1.1507 1.1140 1.0664 1.0403

0.2180 0.2513 0.2829 0.3126

1.41282 1.41611 1.41935 1.42225

1.32924 1.36878 1.40838 1.44651

2.3966 2.3077 2.2171 2.1408

0.1878 0.2189 0.2421 0.2688

1.43826 1.44072 1.44304 1.44489

1.35221 1.38784 1.41569 1.44753

8.6048 8.1153 8.0150 7.5971

0.1539 0.1812 0.2070 0.2231

1.46353 1.46552 1.46636 1.46773

1.36972 1.39984 1.42735 1.44587

g·cm

Standard uncertainties u are u(w) = 0.0056, u(ρ) = 0.00005 g·cm−3, u(nD) = 0.00004, u(T) = 0.03 K, and u(p) = 10 kPa, and u(ν) = 0.008 mm2·s−1.

⎡Y ⎤ ln⎢ ⎥ = A + Bln[YW ] ⎣ YW ⎦

fluid is mainly controlled by intermolecular attractive forces. When the temperature lifting resulted in the decreasing of attractive forces and increasing of distance among the molecules, thus the viscosity reduced. Moreover, for the system at the fitted temperature, the viscosity of the unsaturated solution increases with the increase of the ratio of polyhydric alcohol to water. At the same ratio of polyhydric alcohol to water, the viscosity decreases with the increase of the content of CsBr. Although the content of salt and organic solvent both affect the viscosity for a mixed solution, the content of polyhydric alcohol is mainly attributed to the viscosity of the solution for the polyhydric alcohol + CsBr + water systems. Experimental values for the viscosity have been correlated using Othmer’s rule.23

(9)

where Y is the viscosity (mm2·s−1) of the solution and YW is the viscosity of water.24 A and B are constants, which both depend on the content of CsBr (w2) and polyhydric alcohol (w1) and are independent of temperature. A = A1w1 + A 2 w2

(10)

B = B1w1 + B2 w2

(11)

Values for the constants A1, A2, B1, and B2 are shown in Table 9. J

dx.doi.org/10.1021/je301222e | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 8. Values of Parameters of eq 8 for the Density and Refractive Index of the Unsaturated Ternary Systems at (288.15, 298.15, and 308.15) Ka A0

system

a

288.15 288.15 288.15 298.15 298.15 298.15 308.15 308.15 308.15

K K K K K K K K K

1,2-propanediol + CsBr + H2O ethylene glycol + CsBr + H2O glycerin + CsBr + H2O 1,2-propanediol + CsBr + H2O ethylene glycol + CsBr + H2O glycerin + CsBr + H2O 1,2-propanediol + CsBr + H2O ethylene glycol + CsBr+ H2O glycerin + CsBr + H2O

0.9953 0.9828 0.9747 0.9898 0.9766 0.9622 0.9848 0.9721 0.9585

288.15 288.15 288.15 298.15 298.15 298.15 308.15 308.15 308.15

K K K K K K K K K

1,2-propanediol + CsBr + H2O ethylene glycol + CsBr + H2O glycerin + CsBr + H2O 1,2-propanediol + CsBr + H2O ethylene glycol + CsBr + H2O glycerin + CsBr + H2O 1,2-propanediol + CsBr + H2O ethylene glycol + CsBr+ H2O glycerin + CsBr + H2O

1.3389 1.3312 1.3265 1.3341 1.3294 1.3241 1.3347 1.3284 1.3226

δ = [∑(Y

cal

−Y

exp)

2

A1 Density 0.0642 0.1556 0.3031 0.0618 0.1541 0.3095 0.0662 0.1527 0.3104 Refractive Index 0.0936 0.1046 0.1469 0.1003 0.1024 0.1462 0.0978 0.1017 0.1455

A2

A3

A4

100δa

0.9994 1.0475 1.0614 1.0170 1.0677 1.1088 1.0292 1.0729 1.1041

−0.3118 −0.3391 −0.1771 −0.3443 −0.3907 −0.2028 −0.5088 −0.4035 −0.2648

1.7729 1.7296 1.9035 1.6094 1.7516 1.6514 2.0403 1.7260 1.8687

0.5846 0.4125 0.4173 0.5854 0.4261 0.4296 0.6128 0.4374 0.4559

0.0764 0.1060 0.1181 0.0933 0.1103 0.1242 0.0883 0.1084 0.1228

0.0874 0.0334 0.0678 0.0436 0.0314 0.0706 0.0277 0.0328 0.0703

0.4009 0.2201 0.1449 0.3150 0.1827 0.0761 0.4168 0.1973 0.1123

0.2392 0.0459 0.0987 0.1117 0.0514 0.1356 0.1657 0.0448 0.1411

/N ]0.5, where N is the number of experimental points.

Table 9. Values for the Parameters in eq 9 for Viscosity of the Unsaturated Ternary Systems at (288.15, 298.15, and 308.15) Ka w1/w3 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 a

δ = [∑(Y

A1

B1

A2

B2

288.15 K 1.2-Propylene Glycol + CsBr + H2O −3.9463 7.9072 1.8565 0.3087 −3.1039 8.1792 3.5718 0.8627 −3.2107 8.1447 3.8263 0.9451 −1.7543 8.6150 3.5068 0.8438 308.15 K 1.2-Propylene Glycol + CsBr + H2O −3.5075 8.0489 −4.0314 −1.5927 −3.4751 8.0593 0.8180 −0.0265 −3.1994 8.1478 1.8004 0.2911 −2.4869 8.3750 2.1492 0.4086 288.15 K Ethylene Glycol + CsBr + H2O −3.2717 8.1250 3.8581 0.9552 −3.2031 8.1471 2.6079 0.5515 −2.8241 8.2690 2.4676 0.5064 −2.2317 8.4575 2.5383 0.5316 308.15 K Ethylene Glycol + CsBr + H2O −4.0633 7.8694 −3.7683 −1.5077 −3.6952 7.9882 0.1377 −0.2462 −3.3337 8.1044 1.0078 0.0351 −2.7726 8.2828 1.4096 0.1696 288.15 K Glycerin + CsBr + H2O −1.7819 8.6061 −1.1986 −0.6778 0.1717 9.2371 −0.3770 −0.4125 0.5276 9.3515 0.1929 −0.2282 1.2034 9.5669 1.1154 0.0716 308.15 K Glycerin + CsBr + H2O −4.0471 7.8746 −3.5120 −1.4250 −3.6818 7.9926 0.4267 −0.1529 −2.9910 8.2151 1.5383 0.2064 −1.9599 8.5452 2.7346 0.5976 cal

−Y

exp)

2

δ

w1/w3

0.0123 0.0396 0.0570 0.2284

A1

B1

A2

B2

0.1 0.3 0.5 0.7

−4.0005 −3.6137 −3.0377 −2.4475

298.15 K 1.2-Propylene Glycol + CsBr + H2O 7.8896 −0.7243 −0.5247 8.0145 1.7740 0.2821 8.2000 2.3306 0.4622 8.3878 2.5931 0.5496

0.1 0.3 0.5 0.7

−3.9703 −3.5435 −3.2331 −2.8261

298.15 K Ethylene Glycol + CsBr + H2O 7.8994 −1.6956 −0.8383 8.0372 0.8359 −0.0207 8.1369 1.4904 0.1909 8.2655 1.8167 0.3005

0.1 0.3 0.5 0.7

−3.8364 −3.5458 −2.9142 −2.3924

δ 0.0810 0.0252 0.0367 0.1097

0.0065 0.0162 0.0073 0.0285

0.0775 0.0507 0.0129 0.0511 0.0088 0.0204 0.0345 0.0480 0.0050 0.0022 0.0191 0.0319 0.0169 0.0306 0.1171 0.2311

298.15 K Glycerin + CsBr 7.9426 −1.9294 8.0365 1.1314 8.2399 2.0781 8.4056 3.4581

+ H2O −0.9139 0.0746 0.3807 0.8303

0.0888 0.0320 0.0047 0.1593

0.0219 0.0087 0.0164 0.0971

/N ]0.5, where N is the number of experimental points. K

dx.doi.org/10.1021/je301222e | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data



Article

+ Water + 1−Propanol System at Different Temperatures. J. Chem. Eng. Data 2009, 54, 1932−1934. (11) Wagner, K.; Friese, T.; Schulz, S.; Ulbig, P. Solubilities of Sodium Chloride in Organic and Aqueous−Organic Solvent Mixtures. J. Chem. Eng. Data 1998, 43, 871−875. (12) Hu, M. C.; Zhai, Q. G.; Liu, Z. H. Phase Diagram of the Cesium Carbonate + Ethanol + Water ternary system at (0, 20, and 40) °C. J. Chem. Eng. Data 2004, 49, 717−719. (13) Hu, M. C.; Jin, L. H.; Jiang, Y. C.; Li, S. N.; Zhai, Q. G. Solubility of Cesium Nitrate in Aqueous Alcohol Solutions at (25, 35, and 45) °C. J. Chem. Eng. Data 2005, 50, 1361−1364. (14) Zhao, W. X.; Hu, M. C.; Jiang, Y. C.; Li, S. N. Solubilities, Densities and Refractive Indices of Rubidium Chloride or Cesium Chloride in Ethanol Aqueous Solutions at Different Temperatures. Chin. J. Chem. 2007, 25, 478−483. (15) Hu, M. C.; Jin, L. H.; Li, S. N.; Jiang, Y. C. Quaternary Liquid− Liquid Equilibrium for Water + 1-Propanol + Cesium Sulfate + Cesium Chloride at 25 °C. Fluid Phase Equilib. 2006, 242, 136−140. (16) Guo, H. Y.; Hu, M. C.; Li, S. N.; Jiang, Y. C.; Wang, M. X. Liquid−Liquid−Solid Equilibrium of the Quaternary Systems Sodium Chloride + Rubidium Chloride + Propanols + Water at 25 °C. J. Chem. Eng. Data 2008, 53, 131−135. (17) Hu, M. C.; Zhang, X. L.; Li, S. N.; Zhai, Q. G.; Jiang, Y. C.; Liu, Z. H. Solubility and Refractive Index for the Ternary System Propanol−Rubidium Nitrate−Water at 25, 35, and 45 °C. Russ. J. Inorg. Chem. 2005, 9, 1434−1440. (18) Olaya, M. M.; Marcilla, A.; Serrano, M. D.; Botella, A.; ReyesLabarta, J. A. Simultaneous Correlation of Liquid-Liquid, Liquid-Solid, and Liquid-Liquid-Solid Equilibrium Data for Water + Organic Solvent + Salt Ternary Systems. Anhydrous Solid Phase. Ind. Eng. Chem. Res. 2007, 46, 7030−7037. (19) Reyes, J. A.; Conesa, J. A.; Marcilla, A.; Olaya, M. M. SolidLiquid Equilibrium Thermodynamics: Checking Stability in Multiphase Systems Using the Gibbs Energy Function. Ind. Eng. Chem. Res. 2001, 40, 902−907. (20) Marcilla, A.; Olaya, M. M.; Serrano, M. D.; Reyes-Labarta, J. A. Aspects To Be Considered for the Development of a Correlation Algorithm for Condensed Phase Equilibrium Data of Ternary Systems. Ind. Eng. Chem. Res. 2010, 49, 10100−10110. (21) Marcilla, A.; Reyes-Labarta, J. A.; Olaya, M. M.; Serrano, M. D. Simultaneous Correlation of Liquid-Liquid, Liquid-Solid, and LiquidLiquid-Solid Equilibrium Data for Water + Organic Solvent + Salt Ternary Systems: Hydrated Solid Phase Formation. Ind. Eng. Chem. Res. 2008, 47, 2100−2108. (22) Cartón, A.; Sobrón, F.; Bolado, S.; Tabarés, J. Composition and Density of Saturated Solutions of Lithium Sulfate + Water + Methanol. J. Chem. Eng. Data 1994, 39, 733−734. (23) Graber, T. A.; Galleguillos, H.; Céspedes, C.; Taboada, M. E. Density, Refractive Index, Viscosity, and Electrical Conductivity in the Na2CO3 + Poly(ethylene glycol) + H2O System from (293.15 to 308.15) K. J. Chem. Eng. Data 2004, 49, 1254−1257. (24) Isono, T. Density, Viscosity, and Electrolytic Conductivity of Concentrated Aqueous Electrolyte Solutions at Several Temperatures. Alkaline-Earth Chlorides, LaCl3, Na2SO4, NaNO3, NaBr, KNO3, KBr, and Cd(NO3)2. J. Chem. Eng. Data 1984, 29, 45−52.

CONCLUSION The solubility, refractive index, and density of the polyhydric alcohol + CsBr + H2O ternary system have been measured at different temperatures. For the saturated systems, the solubilities and densities increase with the temperature but decrease with the mass fraction of polyhydric alcohol. The liquid−solid equilibrium experimental data were correlated using the NRTL. The mean deviations between calculated and experimental compositions were low, showing good descriptive quality and applicability of the NRTL model. The refractive indices demonstrate a more complex trend. The density and refractive index for the unsaturated ternary solutions increased with the increase of the content of CsBr or polyhydric alcohol to water ratio but decreased with the increase of temperatures. The viscosity increased with the increase of the ratio of polyhydric alcohol to water but decreased with an increase in temperature.



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21171111) and the Fundamental Research Funds for the Central Universities (Grant No. GK200902011). Notes

The authors declare no competing financial interest.



REFERENCES

(1) Pinho, S. P.; Macedo, E. A. Solubility of NaCl, NaBr, and KCl in Water, Methanol, Ethanol, and Their Mixed Solvents. J. Chem. Eng. Data 2005, 50, 29−32. (2) Greve, A.; Kula, M. R. Recycling of Salts in Partition Protein Extraction Processes. J. Chem. Technol. Biotechnol. 1991, 50, 27−42. (3) Taboada, M. E.; Galleguillos, H. R.; Graber, T. Compositions, Densities, Conductivities, and Refractive Indices of Potassium Chloride or/and Sodium Chloride + PEG 4000 + Water at 298.15 and Liquid−Liquid Equilibrium of Potassium Chloride or Sodium Chloride + PEG 4000 + Water at 333.15 K. J. Chem. Eng. Data 2005, 50, 264−269. (4) Gomis, V.; Ruiz, F.; De Vera, G.; Saquete, M. D. Liquid-LiquidSolid Equilibria for the Ternary Systems Water−Sodium Chloride or Potassium Chloride−1−Propanol or 2−Propanol at 25°C. Fluid Phase Equilib. 1994, 98, 141−147. (5) Gomis, V.; Ruiz, F.; Asensi, J. C.; Saquete, M. D. Liquid−Liquid− Solid Equilibria for the Ternary Systems Butanols + Water + Sodium Chloride or + Potassium Chloride. J. Chem. Eng. Data 1996, 41, 188− 191. (6) Gomis, V.; Ruiz, F.; Boluda, N.; Saquete, M. D. Liquid-LiquidSolid Equilibria for the Ternary Systems Water + Lithium Chloride + Pentanols. Fluid Phase Equilib. 2004, 215, 79−83. (7) Boruń, A.; Florczak, A.; Bald, A. Conductance Studies of NaCl, KCl, NaBr, NaI, NaBPh4, and Bu4NI in Water + 2−Ethoxyethanol Mixtures at 298.15 K. J. Chem. Eng. Data 2010, 55, 1252−1257. (8) Galleguillos, H. R.; Taboada, M. E.; Graber, T. A. Compositions, Densities, and Refractive Indices of Potassium Chloride + Ethanol + Water and Sodium Chloride + Ethanol + Water Solutions at (298.15 and 313.15) K. J. Chem. Eng. Data 2003, 48, 405−410. (9) Graber, T. A.; Taboada, M. E. Liquid−Liquid Equilibrium of the Poly(ethylene glycol) + Sodium Nitrate + Water System at 298.15 K. J. Chem. Eng. Data 2000, 45, 182−184. (10) Jimenez, Y. P.; Taboada, M. E.; Flores, E. K.; Galleguillos, H. R. Density, Viscosity, and Electrical Conductivity in the Potassium Sulfate L

dx.doi.org/10.1021/je301222e | J. Chem. Eng. Data XXXX, XXX, XXX−XXX