Solubility of Acetylene in Alcohols and Ketones - Journal of Chemical

May 2, 2018 - The solubilities of acetylene in 1,4-butylene glycol, diethylene glycol, linalool, ethylene glycol, isopropanol, isobutanol, butyl alcoh...
0 downloads 0 Views 1MB Size
Article Cite This: J. Chem. Eng. Data XXXX, XXX, XXX−XXX

pubs.acs.org/jced

Solubility of Acetylene in Alcohols and Ketones Xinquan Huang and Sifang Li* Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China ABSTRACT: The solubilities of acetylene in 1,4-butylene glycol, diethylene glycol, linalool, ethylene glycol, isopropanol, isobutanol, butyl alcohol, 1-methyl-2-pyrrolidinone, 2-pyrrolidinone, N-vinylpyrrolidone, 6-methyl-5-hepten-2-one, and geranyl acetone were studied in the temperature range of 278.15 to 318.15 K and in the pressure range of 0.03 to 0.25 MPa. The Henry’s law constants were calculated from the slope of the linear isotherms of pressure versus the mole fraction of acetylene. Thermodynamic properties such as the Gibbs free energy, enthalpy, and entropy changes of dissolution of acetylene in the alcohols and ketones were calculated.



INTRODUCTION Acetylene, the simplest alkyne, is an important chemical feedstock for the production of fine chemicals and polymers.1 Because of its carbon−carbon triple bond, acetylene has a rich and diverse chemical reactivity.2 It can also react with many reagents.3−6 For example, acetylene reacts with alcohols and ketones in the presence of an alkaline catalyst at elevated temperature and pressure to produce vinyl ether and vinyl ketone compounds, respectively. Considering the fact that most of the reaction systems contain liquid, the solubility of gas in liquids is an important parameter in the interpretation of gas− liquid and gas−liquid−solid reactions.7 In addition, the solubility of gas in an organic solvent is essential to the estimation of the storage potential and solvent extraction.8,9 Until now, solubility data for acetylene in some liquids such as hexane,10 vinyl acetate,11 and water12,13 have been available in the literature. However, solubility data for acetylene in some alcohols and ketones are still lacking. In this work, the solubility data of acetylene in 1,4-butylene glycol, diethylene glycol, linalool, ethylene glycol, isopropanol, isobutanol, butyl alcohol, 1-methyl-2-pyrrolidinone, 2-pyrrolidinone, N-vinylpyrrolidone, 6-methyl-5-hepten-2-one, and geranyl acetone are measured in the temperature range of 278.15 to 318.15 K and in the pressure range of 0.03 to 0.25 MPa. These data are likely to be useful in the design of reactors for the production of vinyl ether and vinyl ketone compounds.

sieve layer, a gas reservoir, a thermostated water bath with a magnetic stirrer, an isochoric cell, a precision pressure gauge, and a vacuum pump. In a typical experiment, the temperature of the thermostat was set at a certain value, and the desired amount of a solvent was loaded into the isochoric cell. The air in the system was degassed under vacuum. The acetylene was pretreated through the silica gel and molecular sieve layer to remove impurities and then used to fill the isochoric cell. The liquid phase was stirred with the magnetic stirrer to improve the contact between the liquid and gas phases. It was found that the acetylene content in the solvent no longer increased if the pressure of the system had been unchanged for 2 h. Therefore, equilibrium was considered to have been attained. Then, the pressure and the temperature of the system were recorded, and the cell was weighed. The amount of acetylene dissolved in a given solvent and the amount of solvent are calculated from the weight changes of the isochoric cell, respectively, as follows m2 − m1 Mgas

(1)

nsol =

m1 − m0 Msol

(2)

where m0 is the weight of the isochoric cell before loading the solvent, m1 is the total weight of the isochoric cell after adding the solvent, m2 is the total weight of the isochoric cell with acetylene being dissolved in the solvent on equilibrium, ngas is the number of moles of acetylene, nsol is the number of moles of the solvent, and Mgas and Msol are the molar weights of acetylene and solvent, respectively. The solubility of acetylene in the solvent expressed as the mole fraction is calculated as



EXPERIMENTAL SECTION Materials. The compound name , formula, CAS number, source, purity, and melting point of all materials used in this work are summarized in Table 1. Apparatus and Operating Procedure. The experimental method used for the acetylene solubility measurement was based on an isochoric saturation technique.25,26 The experimental apparatus used in this work for solubility measurements is schematically shown in Figure 1. The apparatus consists mainly of an acetylene gas cylinder, a silica gel trap, a molecular © XXXX American Chemical Society

ngas =

Received: February 7, 2018 Accepted: April 23, 2018

A

DOI: 10.1021/acs.jced.8b00126 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 1. Information on All Samples in This Work chemical name

formula

cas number

melting point/°C (101.3 kPa)

melting point data source

1,4-butylene glycol diethylene glycol

C4H10O2 C4H10O3

110-63-4 111-46-6

Meryer Sinopharm

99% 99%

19.7 −10.1

Meryer Sinopharm Sinopharm Sinopharm Sinopharm Sinopharm

98% 99% 99% 99% 99% 99%

20 −12.7 −87.4 −108 −80.6 −24.7

Gardner and Hussain14 Gallaugher and Hibbert15 Api et al.16 Ott et al.17 Ogimachi et al.18 Gao and Daugulis19 Tschamler et al.20 Lisicki and Jamróz21

linalool ethylene glycol isopropanol isobutanol butyl alcohol 1-methyl-2pyrrolidinone 2-pyrrolidinone

C10H18O (CH2OH)2 C3H8O C4H10O C4H10O C5H9NO

78-70-6 107-21-1 67-63-0 78-83-1 71-36-3 872-50-4

C4H7NO

616-45-5

Zhangzhou Hua Fu Chemical Industry Co., Ltd. Zhangzhou Hua Fu Chemical Industry Co., Ltd. Meryer

99.5%

24.8

Su and Li22

N-vinylpyrrolidone

C6H9NO

88-12-0

99.9%

13.3

Su and Li22

6-methyl-5-hepten-2one geranyl acetone acetylene

C8H14O

110-93-0

98%

−67.1

Hawley23

C13H22O C2H2

3796-70-1 74-86-2

J&K Chemical Longyan Riping Industry and Trade Co., Ltd.

99% 99.5%

−81.5

Mcintosh24

source

purity

platinum resistance thermometer with an uncertainty of u(T) = 0.02 K. The pressure was monitored using a YB-type precision pressure gauge with an uncertainty of u(p) = 0.001 MPa.



RESULTS AND DISCUSSION The solubility data of acetylene in diethylene glycol, ethylene glycol, isopropanol, isobutanol, butyl alcohol, 1,4-butylene glycol, linalool, 1-methyl-2-pyrrolidinone, 6-methyl-5-hepten-2one, geranyl acetone, N-vinylpyrrolidone, and 2-pyrrolidinone were determined at 278.15, 288.15, 298.15, 308.15, and 318.15 K with the pressure ranging from 0.03 to 0.25 MPa. The solubility results were summarized in terms of mole fractions of solute (x) in Table 2. As shown in Figure 2, the solubility of acetylene at 293.15 K in 1-methyl-2-pyrrolidinone from Nikitin et al.30 is a little bit larger than that of this work at 298.15 K. The values of the experimental solubility for acetylene in ethylene glycol, butyl alcohol, and 1-methyl-2-pyrrolidinone determined in this work show good agreement with those reported in the literature.27−29 The maximum deviation is less than 5%, indicating the validation of the experimental method and apparatus. It can be found that 1-methyl-2-pyrrolidinone has much higher acetylene solubility than ethylene glycol or butyl alcohol. The molecular structure would be helpful in explaining this phenomenon. Although all of these solvents have donor centers and can form a hydrogen bond with the protons of acetylene, the molecules of ethylene glycol and butyl alcohol contain both active hydrogens and donor centers, leading to an intermolecular association. The donor centers of the alcohols are utilized by the solvent itself and results in the reduction of acetylene dissolution. Figures 3−7 present the P−x isotherms of acetylene in seven alcohols and five ketones at 278.15, 288.15, 298.15, 308.15, and 318.15 K, where P is the equilibrium partial pressure of acetylene. The solubility of acetylene in these solvents at the given temperature increases with increasing pressure and decreases with the elevation of temperature at the same pressure. All five ketones display much better acetylene absorption capacities than do the alcohols. Among these solvents, the solubility of 1-methyl-2-pyrrolidinone is the

Figure 1. Schematic diagram of the experimental apparatus: 1, gas cylinder; 2, silica gel trap; 3, molecular sieve layer; 4, gas reservoir; 5, isochoric cell; 6, thermostated water bath with a magnetic stirrer; 7, vacuum pump; V1−V5, stainless steel valve; and P, YB-type precision pressure gauge.

x=

ngas ngas + nsol

(3)

The mass of the cell was measured by using an electronic analytical balance (Mettler Toledo model AL 204) with an uncertainty of u(m) = 0.0001 g. The combined standard uncertainty of the acetylene solubility in mole fraction can be obtained from uc(x) = x

=

⎛ u(ngas) ⎞2 ⎛ u(ngas + nsol) ⎞2 ⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟ ⎝ ngas ⎠ ⎝ ngas + nsol ⎠

u(m1)2 + u(m2)2 (m2 − m1)2

+

u(m0)2 + 2u(m1)2 + u(m2)2 (m2 − m0)2 (4)

The combined standard uncertainty of uc(x) = 0.005. The temperature of the thermostat water bath was indicated by a B

DOI: 10.1021/acs.jced.8b00126 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. Experimental Solubility Data of Acetylene Mole Fraction x in Alcohols and Ketones at Temperature T and Equilibrium Pressure pa 278.15 K

288.15 K

298.15 K

p/MPa

x

p/MPa

x

0.039 0.060 0.090 0.122 0.152 0.180 0.201

0.0158 0.0248 0.0372 0.0486 0.0592 0.0702 0.0791

0.062 0.094 0.122 0.141 0.154 0.178 0.201

0.0192 0.0297 0.0368 0.0445 0.0492 0.0561 0.0624

0.069 0.086 0.101 0.137 0.156 0.172 0.181

0.0081 0.0104 0.0123 0.0158 0.0178 0.0202 0.0213

0.071 0.080 0.094 0.135 0.151 0.173 0.185

0.0067 0.0077 0.0092 0.0128 0.0146 0.0165 0.0176

0.073 0.079 0.088 0.117 0.134 0.156 0.177

0.0209 0.0229 0.0251 0.0337 0.0384 0.0454 0.0532

0.073 0.090 0.111 0.135 0.152 0.174 0.184

0.0179 0.0222 0.0279 0.0329 0.0387 0.0435 0.0484

0.062 0.088 0.112 0.120 0.131 0.151 0.169

0.0222 0.0315 0.0399 0.0426 0.0467 0.0563 0.0630

0.061 0.089 0.095 0.116 0.146 0.167 0.194

0.0151 0.0225 0.0233 0.0300 0.0374 0.0434 0.0502

0.062 0.089 0.076 0.101 0.133 0.156 0.176

0.0151 0.0214 0.0194 0.0241 0.0331 0.0382 0.0442

0.060 0.092 0.124 0.137 0.147 0.152 0.180

0.0112 0.0164 0.0225 0.0261 0.0273 0.0282 0.0330

p/MPa

308.15 K x

Diethylene Glycol 0.044 0.0109 0.069 0.0184 0.101 0.0265 0.131 0.0344 0.152 0.0398 0.176 0.0463 0.199 0.0523 Ethylene Glycol 0.070 0.0050 0.091 0.0067 0.095 0.0071 0.098 0.0073 0.129 0.0098 0.153 0.0115 0.187 0.0139 Isopropanol 0.078 0.0170 0.092 0.0200 0.127 0.0274 0.147 0.0318 0.161 0.0356 0.174 0.0393 0.188 0.0421 Isobutanol 0.061 0.0124 0.087 0.0170 0.111 0.0210 0.126 0.0238 0.150 0.0290 0.165 0.0333 0.179 0.0371 Butyl Alcohol 0.075 0.0115 0.083 0.0132 0.101 0.0155 0.120 0.0177 0.139 0.0207 0.168 0.0263 0.181 0.0288 1,4-Butylene Glycol 0.065 0.0105 0.073 0.0117 0.081 0.0127 0.115 0.0177 0.139 0.0218 0.158 0.0248 0.178 0.0277 Linalool 0.070 0.0307 0.083 0.0382 0.095 0.0452 0.111 0.0511 0.133 0.0617 0.163 0.0749 0.176 0.0799

C

318.15 K

p/MPa

x

p/MPa

x

0.053 0.084 0.101 0.135 0.166 0.181 0.203

0.0129 0.0202 0.0242 0.0321 0.0398 0.0426 0.0482

0.070 0.093 0.122 0.145 0.159 0.183 0.201

0.0146 0.0193 0.0242 0.0291 0.0330 0.0374 0.0419

0.069 0.079 0.091 0.121 0.143 0.152 0.181

0.0040 0.0046 0.0053 0.0071 0.0082 0.0087 0.0106

0.069 0.081 0.093 0.114 0.131 0.151 0.181

0.0033 0.0039 0.0045 0.0053 0.0060 0.0069 0.0082

0.076 0.093 0.112 0.136 0.146 0.164 0.185

0.0126 0.0155 0.0185 0.0223 0.0245 0.0295 0.0331

0.075 0.098 0.113 0.140 0.146 0.161 0.172

0.0094 0.0114 0.0127 0.0166 0.0170 0.0193 0.0211

0.067 0.093 0.112 0.125 0.144 0.161 0.183

0.0099 0.0145 0.0166 0.0185 0.0223 0.0257 0.0289

0.070 0.090 0.101 0.115 0.133 0.161 0.173

0.0088 0.0109 0.0124 0.0139 0.0164 0.0211 0.0226

0.066 0.075 0.092 0.101 0.129 0.150 0.180

0.0087 0.0102 0.0124 0.0132 0.0172 0.0195 0.0235

0.068 0.083 0.101 0.122 0.142 0.161 0.181

0.0072 0.0090 0.0106 0.0134 0.0149 0.0171 0.0187

0.066 0.075 0.086 0.116 0.140 0.154 0.175

0.0085 0.0099 0.0108 0.0140 0.0172 0.0187 0.0214

0.067 0.079 0.091 0.101 0.135 0.156 0.181

0.0060 0.0070 0.0082 0.0087 0.0112 0.0130 0.0156

0.069 0.081 0.094 0.112 0.145 0.163 0.183

0.0242 0.0283 0.0331 0.0383 0.0523 0.0578 0.0661

0.062 0.082 0.095 0.111 0.130 0.153 0.186

0.0139 0.0177 0.0218 0.0256 0.0294 0.0350 0.0406

DOI: 10.1021/acs.jced.8b00126 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued 278.15 K p/MPa

a

288.15 K x

p/MPa

298.15 K x

0.032 0.053 0.075 0.102 0.127 0.149 0.187

0.0675 0.1153 0.1603 0.2242 0.2842 0.3296 0.3907

0.030 0.063 0.095 0.119 0.130 0.156 0.201

0.0525 0.1053 0.1603 0.1942 0.2103 0.2516 0.3104

0.065 0.077 0.089 0.118 0.131 0.158 0.181

0.0972 0.1070 0.1343 0.1790 0.1870 0.2288 0.2532

0.059 0.071 0.084 0.095 0.127 0.146 0.194

0.0637 0.0767 0.0924 0.1041 0.1488 0.1730 0.2104

0.063 0.072 0.094 0.126 0.139 0.161 0.188

0.0947 0.1099 0.1395 0.1825 0.2088 0.2310 0.2692

0.072 0.083 0.099 0.118 0.143 0.155 0.178

0.0835 0.1013 0.1220 0.1412 0.1730 0.1794 0.2093

0.054 0.066 0.091 0.131 0.148 0.161 0.181

0.0443 0.0542 0.0784 0.1084 0.1313 0.1400 0.1633

p/MPa

308.15 K x

1-Methyl-2-pyrrolidinone 0.043 0.0601 0.052 0.0711 0.092 0.1204 0.141 0.1732 0.161 0.1980 0.171 0.2116 0.181 0.2196 6-Methyl-5-hepten-2-one 0.072 0.0592 0.088 0.0712 0.101 0.0840 0.126 0.1083 0.149 0.1288 0.161 0.1367 0.183 0.1591 Geranyl Acetone 0.070 0.0737 0.085 0.0882 0.096 0.0983 0.126 0.1312 0.145 0.1474 0.161 0.1673 0.176 0.1813 N-Vinylpyrrolidone 0.066 0.0431 0.084 0.0587 0.114 0.0747 0.141 0.0915 0.161 0.1077 0.181 0.1172 0.201 0.1389 2-Pyrrolidinone 0.057 0.0315 0.069 0.0384 0.091 0.0490 0.141 0.0763 0.161 0.0842 0.181 0.0945 0.201 0.1078

318.15 K

p/MPa

x

p/MPa

x

0.036 0.077 0.101 0.141 0.161 0.181 0.201

0.0316 0.0647 0.0878 0.1294 0.1391 0.1530 0.1711

0.041 0.071 0.097 0.141 0.161 0.181 0.201

0.0299 0.0529 0.0715 0.1034 0.1182 0.1287 0.1381

0.069 0.080 0.097 0.111 0.135 0.171 0.183

0.0389 0.0454 0.0588 0.0649 0.0824 0.0979 0.1058

0.071 0.086 0.098 0.132 0.147 0.154 0.186

0.0306 0.0363 0.0425 0.0528 0.0646 0.0617 0.0809

0.062 0.071 0.090 0.119 0.153 0.174 0.181

0.0440 0.0501 0.0634 0.0838 0.1150 0.1277 0.1270

0.068 0.083 0.097 0.137 0.157 0.171 0.188

0.0340 0.0410 0.0506 0.0692 0.0854 0.0854 0.1015

0.046 0.072 0.086 0.111 0.141 0.181 0.201

0.0258 0.0365 0.0479 0.0563 0.0758 0.0982 0.1058

0.057 0.074 0.095 0.140 0.156 0.181 0.201

0.0273 0.0337 0.0430 0.0647 0.0731 0.0854 0.0943

0.071 0.087 0.095 0.141 0.161 0.181 0.201

0.0293 0.0357 0.0396 0.0573 0.0656 0.0741 0.0820

0.044 0.061 0.097 0.141 0.161 0.181 0.201

0.0161 0.0222 0.0345 0.0510 0.0569 0.0629 0.0694

Standard uncertainties u are u(T) = 0.02K and u(p) = 0.001 MPa with a combined standard uncertainty of uc(x) = 0.005.

donor centers.31 Compared with hydrogen, the alkyl substituent makes the donor centers more electronegative. The ether bond gives diethylene glycol higher acetylene solubility than ethylene glycol. Among the ketones, the solubility of 1-methyl-2-pyrrolidinone is the highest at the same temperature and pressure according to Figures 3−7, and 2-pyrrolidinone is the lowest. The absorption of acetylene in 6-methyl-5-hepten-2-one and geranyl acetone is similar at 278.15K. However, as the temperature is elevated, the solubility of acetylene in geranyl acetone is significantly higher than in 6-methyl-5-hepten-2-one. The solubility of acetylene in N-vinylpyrrolidone is lower than in 6-methyl-5-hepten-2-one at 288.15, 298.15, and 308.15 K, yet N-vinylpyrrolidone exhibits better absorption ability than does 6-methyl-5-hepten-2-one at 318.15 K. On the whole, the solubility of acetylene in alcohols and ketones takes on a linear elevation along with the increasing

highest at the same temperature and pressure, and that of ethylene glycol is the lowest. As for the alcohols, linalool displays a better absorption ability for acetylene than do other alcohols, followed by diethylene glycol. The solubility of acetylene in butyl alcohol is similar to that of 1,4-butylene glycol at 298.15 K (Figure 5). However, butyl alcohol exhibits a better absorption ability for acetylene than does 1,4-butylene glycol at higher temperature (Figure 7). Diethylene glycol has almost four times the acetylene solubility of ethylene glycol. Interactions between acetylene and the solvents make the difference. This is because there are ether bonds and hydroxyl groups to provide donor centers in the molecular structure of diethylene glycol and only hydroxyl groups in the molecular structure of ethylene glycol. The hydrogen bond would form between the protons of acetylene and the donor centers. The substituent groups would also be additive in contributing to the electronegativity of the D

DOI: 10.1021/acs.jced.8b00126 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 2. Mole fraction (x) of acetylene at 298.15 K in □, 1-methyl-2pyrrolidinone, this work; ●, 1-methyl-2-pyrrolidinone, Bushinskii et al.;27 ▲, 1-methyl-2-pyrrolidinone, Iogansen et al.;28 ▽, ethylene glycol, this work; ◀, ethylene glycol, Miyano et al.;29 ▷, butyl alcohol, this work; and ⧫, butyl alcohol, Miyano et al.29 and at 293.15 K in × , 1-methyl-2-pyrrolidinone, Nikitin et al.30

Figure 5. Mole fraction (x) of acetylene at 298.15 K in □, diethylene glycol; ○, ethylene glycol; Δ, isopropanol; ▽, isobutanol; ◁, butyl alcohol; ▷, 1,4-butylene glycol; ◊, linalool; ■, 1-methyl-2pyrrolidinone; ●, 6-methyl-5-hepten-2-one; ▲, geranyl acetone; ▼, N-vinylpyrrolidone; and ◀, 2-pyrrolidinone.

Figure 3. Mole fraction (x) of acetylene at 278.15 K in □, diethylene glycol; ○, ethylene glycol; Δ, isopropanol; ▽, isobutanol; ◁, butyl alcohol; ■, 1-methyl-2-pyrrolidinone; ●, 6-methyl-5-hepten-2-one; and ▲, geranyl acetone.

Figure 6. Mole fraction (x) of acetylene at 308.15 K in □, diethylene glycol; ○, ethylene glycol; Δ, isopropanol; ▽, isobutanol; ◁, butyl alcohol; ▷, 1,4-butylene glycol; ◊, linalool; ■, 1-methyl-2pyrrolidinone; ●, 6-methyl-5-hepten-2-one; ▲, geranyl acetone; ▼, N-vinylpyrrolidone; and ◀, 2-pyrrolidinone.

Figure 4. Mole fraction (x) of acetylene at 288.15 K in □, diethylene glycol; ○, ethylene glycol; Δ, isopropanol; ▽, isobutanol; ◁, butyl alcohol; ■, 1-methyl-2-pyrrolidinone; ●, 6-methyl-5-hepten-2-one; ▲, geranyl acetone; and ▼, N-vinylpyrrolidone.

Figure 7. Mole fraction (x) of acetylene at 318.15 K in □, diethylene glycol; ○, ethylene glycol; Δ, isopropanol; ▽, isobutanol; ◁, butyl alcohol; ▷, 1,4-butylene glycol; ◊, linalool; ■, 1-methyl-2pyrrolidinone; ●, 6-methyl-5-hepten-2-one; ▲, geranyl acetone; ▼, N-vinylpyrrolidone; and ◀, 2-pyrrolidinone.

pressure within the detection range at a fixed temperature for virtually all of the solvents tested. Furthermore, the acetylene solubility falls with increasing temperature at a fixed pressure. Such solubility behavior could be an indication that the acetylene is physically absorbed, therefore obeying Henry’s law despite the fact that some weak intermolecular interactions should not be turned out.32,33 The solubility of acetylene in alcohols and ketones is important in the industrial application. Fine chemicals such as

vinyl ether and vinyl ketone can be manufactured by reacting gaseous acetylene with liquid alcohols and ketones, respectively. The solubility data of acetylene in these liquids would be helpful for the calculation of the conversion of acetylene and the study of the reaction kinetics. In addition, the ketones with high acetylene solubilities are usually used to purify acetylene by absorbing it from a gaseous mixture, and they can also be E

DOI: 10.1021/acs.jced.8b00126 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. Henry’s Law Constants with ARD for Acetylene in Alcohols and Ketonesa T/K = 278.15

a

T/K = 288.15

kH/MPa

ARD%

kH/MPa

ARD%

2.535

2.284

3.197

1.382

8.559

1.871

3.430

1.668

3.958

2.322

2.700

2.641

3.901

1.881

4.056

1.976

5.399

2.289

10.47

0.8097

0.4630

2.326

0.6256

3.588

0.6938

3.063

0.8918

3.668

0.6872

2.391

0.8427

2.150

1.164

3.138

T/K = 298.15 kH/MPa

ARD%

Diethylene Glycol 3.813 1.214 Ethylene Glycol 13.41 1.277 Isopropanol 4.529 1.678 Isobutanol 5.045 3.200 Butyl Alcohol 6.432 1.948 1,4-Butylene glycol 6.403 1.156 Linalool 2.181 1.494 1-Methyl-2-pyrrolidinone 0.8088 4.504 6-Methyl-5-hepten-2-one 1.172 2.263 Geranyl Acetone 0.9704 1.068 N-Vinylpyrrolidone 1.500 2.652 2-Pyrrolidinone 1.881 2.191

T/K = 308.15

T/K = 318.15

kH/MPa

ARD%

kH/MPa

ARD%

4.211

0.9170

4.880

1.605

17.23

0.7739

21.76

2.400

5.805

3.885

8.411

2.655

6.467

2.866

7.899

3.348

7.622

1.336

9.474

1.788

8.142

2.668

2.817

1.708

4.413

2.034

1.159

2.073

1.399

2.557

1.707

2.639

2.395

3.543

1.388

2.499

1.919

3.570

1.881

3.276

2.143

1.587

2.450

0.6156

2.851

2.108

11.70

2.952

Standard uncertainties u are u(T) = 0.02K and u(p) = 0.001 MPa. n

used for acetylene exhaust absorption. The solubility data are of great importance in calculating the amount of absorbent. Henry’s Law Constant. The Henry’s law constant, considered independent of pressure in the present case, can be calculated from the slope of the linear isotherms of fugacity versus the mole fraction of the solute, and the fitting goes to (0, 0). Under low pressure, the fugacity of acetylene in the gas phase is approximately equal to the equilibrium partial pressure of acetylene, which is replaced by (Pt − P1s), where Pt is the total pressure, and P1s is the vapor pressure of the solvent at tested temperature and obtained from the literature.13 Then, Henry’s law constant based on the mole fraction of solute can be expressed as34 kH = limx → 0

f P ≈ limx → 0 x x

ln(kH/p0 ) =

1 n

n

∑ i=1

kHexp − kHfit kHexp

(7)

i=0 0

where kH refers to the Henry’s law constant in MPa, p is the standard-state pressure in MPa, and T is temperature in K. The values for coefficients Ai are listed in Table 4. Table 4. Coefficients Ai in eq 7 for Acetylene in Alcohols and Ketones

(5)

where kH represents the Henry’s law constant of acetylene, f is the fugacity of acetylene, P is the equilibrium partial pressure of acetylene, and x is the mole fraction of acetylene. The average of relative deviations (ARD) is defined as35 ARD =

∑ Ai(T /K )−i

(6)

where kHexp is calculated from each experimental data point and kHfit is the slope of linear isotherms by the fitting of the equilibrium pressure versus the mole fraction of acetylene. The the Henry’s law constants and ARD values at different temperatures are summarized in Table 3. All of the ARD values are less than 4%. The behavior of the Henry’s law constant as a function of temperature can be correlated by the following empirical formula36,37

solvent

A0

A1/104

A2/106

diethylene glycol ethylene glycol isopropanol isobutanol butyl alcohol 1,4-butylene glycol linalool 1-methyl-2-pyrrolidinone 6-methyl-5-hepten-2-one geranyl acetone N-vinylpyrrolidone 2-pyrrolidinone

−3.016 23.52 52.06 −2.413 6.504 81.09 116.8 12.02 38.88 46.28 −12.67 −37.55

0.5340 −0.8984 −2.674 0.6101 0.04070 −4.436 −6.651 −0.3389 −1.887 −2.387 1.125 2.706

−1.002 1.023 3.685 −1.255 −0.3290 6.388 9.722 0.1312 2.391 3.209 −1.987 −4.468

Thermodynamic Properties. Thermodynamic properties of dissolution of acetylene in alcohols and ketones are directly related to the variation of solubility with temperature, expressed in Henry’s law constant, and can be obtained using the following equations38,39 ⎛ ∂ ln kH ⎞ Δsol H = R ⎜ ⎟ ⎝ ∂(1/T ) ⎠ P F

(8) DOI: 10.1021/acs.jced.8b00126 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. Calculated Standard Gibbs Free Energy (ΔsolG), Enthalpy (ΔsolH), and Entropy (ΔsolS) of the Dissolution of Acetylene in Alcohols and Ketones alcohols T(K)

ΔsolG (kJ·mol−1)

278.15 288.15 298.15 308.15 318.15

7.476 8.301 9.025 9.582 10.28

278.15 288.15 298.15 308.15 318.15

10.29 11.14 12.14 13.19 14.24

278.15 288.15 298.15 308.15 318.15

8.175 8.812 9.452 10.41 11.72

278.15 288.15 298.15 308.15 318.15

7.622 8.777 9.719 10.68 11.56

278.15 288.15 298.15 308.15 318.15

8.563 9.556 10.32 11.10 12.04

298.15 308.15 318.15

10.31 11.27 12.60

298.15 308.15 318.15

7.548 8.463 9.908

ΔsolH (kJ·mol−1) Diethylene Glycol −15.48 −13.40 −11.46 −9.647 −7.948 Ethylene Glycol −13.52 −15.64 −17.62 −19.48 −21.21 Isopropanol −2.043 −9.687 −16.82 −23.49 −29.74 Isobutanol −24.29 −21.69 −19.26 −16.99 −14.86 Butyl Alcohol −16.28 −15.59 −14.96 −14.36 −13.80 1,4-Butylene Glycol −12.57 −24.13 −34.96 Linalool −25.25 −29.03 −32.58

ketones ΔsolS (J·mol−1·K−1)

ΔsolG (kJ·mol−1)

−82.52 −75.30 −68.71 −62.40 −57.31

3.544 4.390 5.179 6.277 6.979

−85.60 −92.96 −99.84 −106.0 −111.4

4.477 5.240 6.101 7.269 8.401

−36.74 −64.20 −88.11 −110.0 −130.3

4.457 5.104 5.632 6.739 7.815

−114.7 −105.7 −97.19 −89.79 −83.03

5.880 6.713 7.518 8.107

−89.30 −87.28 −84.79 −82.64 −81.23

7.274 8.195 8.862

ΔsolH (kJ·mol−1) 1-Methyl-2-pyrrolidinone −20.33 −20.60 −20.86 −21.09 −21.32 6-Methyl-5-hepten-2-one −13.97 −18.93 −23.56 −27.88 −31.94 Geranyl Acetone −6.617 −13.27 −19.48 −25.29 −30.73 N-Vinylpyrrolidone −21.12 −17.27 −13.68 −10.31 2-Pyrrolidinone

−24.23 −16.15 −8.570

ΔsolS (J·mol−1·K−1) −85.84 −86.74 −87.33 −88.83 −88.94 −66.32 −83.88 −99.47 −114.1 −126.8 −39.81 −63.78 −84.24 −103.9 −121.2

−93.70 −80.45 −68.78 −57.87

−105.7 −79.00 −54.79

−76.73 −114.9 −149.5 −110.0 −121.7 −133.5

⎛ ∂ ln kH ⎞ Δsol S = −R ⎜ ⎟ ⎝ ∂(ln T ) ⎠ P

(9)

Δsol G = Δsol H − T Δsol S

(10)

and ketones, which means that acetylene dissolution in alcohols and ketones is not favorable.34



CONCLUSIONS The solubility of acetylene in alcohols and ketones at the given temperature increases with increasing pressure and decreases with the elevation of temperature at the same pressure. All five ketones show much better acetylene absorption capacities than do the alcohols. The Henry’s law constants were derived from the solubility data and related by a polynomial of temperature. The enthalpy changes of dissolution of acetylene in the alcohols and ketones showed that the dissolution of the gas is exothermic.

where ΔsolG, ΔsolH, and ΔsolS are the Gibbs free energy, enthalpy, and entropy changes of dissolution of acetylene in alcohols and ketones, respectively. The values for the Gibbs energy, enthalpy, and entropy changes are given in Table 5 at temperatures of between (378.15 and 318.15) K. It can be observed that the ΔsolG values are positive and increase with the elevation of temperature for all solvents. Ethylene glycol has the highest ΔsolG value, and 1methyl-2-pyrrolidinone has the lowest ΔsolG value. The negative enthalpy changes indicate that the dissolution of acetylene in alcohols and ketones is exothermic. From the molecular perspective, the negative entropy changes indicate higher degrees of ordering when acetylene dissolves in alcohols



AUTHOR INFORMATION

Corresponding Author

*Tel: +86 592 2186195. Fax: +86 592 2186195. E-mail: sfli@ xmu.edu.cn. G

DOI: 10.1021/acs.jced.8b00126 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

ORCID

(20) Tschamler, H.; Richter, E.; Wettig, F. Binary Liquid Mixtures. XII. Mixtures of Primary Aliphatic Alcohols with Chlorex and Other Organic Substances. Monatsh. Chem. 1949, 80, 749−758. (21) Lisicki, Z.; Jamróz, M. E. (Solid + liquid) Equilibria in (Polynuclear Aromatic + Tertiary Amide) Systems. J. Chem. Thermodyn. 2000, 32, 1335−1353. (22) Su, A.; Li, S. F. Measurement and Correlation of Solid−Liquid Phase Equilibria for Binary and Ternary Systems Consisting of Nvinylpyrrolidone, 2-pyrrolidone and Water. Chin. J. Chem. Eng. 2017, DOI: 10.1016/j.cjche.2017.09.012. (23) Hawley, G. G. Hawley’s Condensed Chemical Dictionary, 15ed.; Van Nostrand Reinhold: New York, 2007. (24) Mcintosh, D. The Physical Properties of Liquid and Solid Acetylene. J. Phys. Chem. 1907, 11, 306−317. (25) Cheng, X. P.; Mu, T. C.; Wang, X. L.; Guo, X. K.; Zou, L. Z. Low Pressure Solubilities of Vinyl Chloride in Ionic Liquids. J. Chem. Eng. Data 2008, 53, 2807−2809. (26) Li, X. Y.; Hou, M. Q.; Han, B. X.; Wang, X. L.; Zou, L. Z. Solubility of CO2 in a Choline Chloride plus Urea Eutectic Mixture. J. Chem. Eng. Data 2008, 53, 548−550. (27) Bushinskii, V. I.; Matyushenskii, B. V. Solubility of Acetylene, Methylacetylene, Vinylacetylene, and Diacetylene in alpha-Dimethylaminomethylacetylacetone and Cyclohexanone. Zh. Prikl. Khim. 1968, 41, 1168−1170. (28) Iogansen, A. V.; Kurkchi, G. A. Chromatographic Determination of the Solubility and Heats of Solution of Gases and Vapors. Abh. Dtsch. Akad. Wiss. Berlin, Kl. Chem., Geol. Biol. 1963, 6, 105−110. (29) Miyano, Y.; Hayduk, W. Solubility of Acetylene in Several Polar and Non-Polar Solvents and Solvent Mixtures. Can. J. Chem. Eng. 1981, 59, 746−751. (30) Nikitin, M. A.; Zykov, D. D.; Shleinikov, V. M. The Equilibrium of the N-methylpyrrolidone-acetylene System. Neftepererab. Neftekhim. 1973, 4, 26−28. (31) Mckinnis, A. C. Solubility of Acetylene in Donor Solvents. Ind. Eng. Chem. 1955, 47, 850−853. (32) Kazarian, S. G.; Briscoe, B. J.; Welton, T. Combining Ionic Liquids and Supercritical Fluids: in situ ATR-IR Study of CO2 Dissolved in Two Ionic Liquids at High Pressures. Chem. Commun. 2000, 20, 2047−2048. (33) Jalili, A. H.; Rahmati-Rostami, M.; Ghotbi, C.; Hosseini-Jenab, M.; Ahmadi, A. N. Solubility of H2S in Ionic Liquids [bmim][PF6], [bmim][BF4], and [bmim][Tf2N]. J. Chem. Eng. Data 2009, 54, 1844−1849. (34) Liang, X. J.; Nie, Y.; Deng, D. S.; Lu, M. Z.; Yu, F. W.; Chen, P.; Ji, J. B. Solubility and Thermodynamic Properties of Sulfuryl Fluoride in Water. J. Chem. Thermodyn. 2016, 95, 190−194. (35) Zhang, M. D.; Fang, Z. X.; Zhai, J. H.; Mao, S. M.; Zhang, L. J.; Rohani, S.; Lu, J. Measurement and Correlation of the Solubility of Rivaroxaban (form I) in Binary Mixtures of Ethyl Acetate with Tetrahydrofuran, N,N-Dimethylformamide, and N,N-Dimethylacetamide from T = (278.15 to 318.15) K. J. Chem. Thermodyn. 2016, 94, 1−6. (36) Jalili, A. H.; Safavi, M.; Ghotbi, C.; Mehdizadeh, A.; HosseiniJenab, M.; Taghikhani, V. Solubility of CO2, H2S, and Their Mixture in the Ionic Liquid 1-Octyl-3-methylimidazolium Bis(trifluoromethyl)sulfonylimide. J. Phys. Chem. B 2012, 116, 2758−2774. (37) Kumełan, J.; Tuma, D.; Maurer, G. Partial Molar Volumes of Selected Gases in Some Ionic Liquids. Fluid Phase Equilib. 2009, 275, 132−144. (38) Kurnia, K. A.; Harris, F.; Wilfred, C. D.; Mutalib, M. I. A.; Murugesan, T. Thermodynamic Properties of CO2 Absorption in Hydroxyl Ammonium Ionic Liquids at Pressures of (100−1600) kPa. J. Chem. Thermodyn. 2009, 41, 1069−1073. (39) Rahmati-Rostami, M.; Ghotbi, C.; Hosseini-Jenab, M.; Ahmadi, A. N.; Jalili, A. H. Solubility of H2S in Ionic Liquids [hmim][PF6], [hmim][BF4], and [hmim][Tf2N]. J. Chem. Thermodyn. 2009, 41, 1052−1055.

Sifang Li: 0000-0002-9767-9640 Notes

The authors declare no competing financial interest.



REFERENCES

(1) Li, S. F. Manufacture of Fine Chemicals from Acetylene; Xiamen University Press: Xiamen, China 2016. (2) Stang, P. J.; Diederich, F. Modern Acetylene Chemistry; Wiley VCH: Weinheim, Germany, 1995. (3) Huang, W.; Mccormick, J. R.; Lobo, R. F.; Chen, J. G. Selective Hydrogenation of Acetylene in the Presence of Ethylene on ZeoliteSupported Bimetallic Catalysts. J. Catal. 2007, 246, 40−51. (4) Yashima, E.; Matsushima, T.; Okamoto, Y. Chirality Assignment of Amines and Amino Alcohols Based on Circular Dichroism Induced by Helix Formation of a Stereoregular Poly((4-carboxyphenyl)acetylene) through Acid−Base Complexation. J. Am. Chem. Soc. 1997, 119, 6345−6359. (5) Silvestri, F.; Marrocchi, A. Acetylene-Based Materials in Organic Photovoltaics. Int. J. Mol. Sci. 2010, 11, 1471−1508. (6) Brennfuehrer, A.; Neumann, H.; Beller, M. Palladium-Catalyzed Carbonylation Reactions of Alkenes and Alkynes. ChemCatChem 2009, 1, 28−41. (7) Jadkar, P. B.; Chaudhari, R. V. Solubility of Acetylene in Aqueous Solutions of Formaldehyde and 2-Butyne-1,4-Diol. J. Chem. Eng. Data 1980, 25, 115−117. (8) Palgunadi, J.; Hong, S. Y.; Lee, J. K.; Lee, H.; Lee, S. D.; Cheong, M.; Kim, H. S. Correlation between Hydrogen Bond Basicity and Acetylene Solubility in Room Temperature Ionic Liquids. J. Phys. Chem. B 2011, 115, 1067−1074. (9) Messabeb, H.; Contamine, F.; Cézac, P.; Serin, J. P.; Gaucher, E. C. Experimental Measurement of CO2 Solubility in Aqueous NaCl Solution at Temperature from 323.15 to 423.15 K and Pressure of up to 20 MPa. J. Chem. Eng. Data 2016, 61, 3573−3584. (10) Fogg, P. G. T.; Bligh, S. W. A.; Derrick, M. E.; Yampol’skii, Y. P.; Clever, H. L.; Skrzecz, A.; Young, C. L. IUPAC-NIST Solubility Data Series. 76. Solubility of Ethyne in Liquids. J. Phys. Chem. Ref. Data 2001, 30, 1693−1875. (11) Kaszonyi, A.; Harustiak, M.; Kizlink, J. Solubility of Acetylene in Vinyl Acetate and in a Mixture of Vinyl Acetate and Acetic Acid. J. Chem. Eng. Data 1992, 37, 37−38. (12) Miller, S. A. Acetylene: Its Properties, Manufacture and Uses; Ernest Benn Ltd.: London, 1965. (13) Huang, J. B. Handbook of Industrial Gas; Chemical Industry Press: Beijing, 2003. (14) Gardner, P. J.; Hussain, K. S. The Standard Enthalpies of Formation of Some Aliphatic Diols. J. Chem. Thermodyn. 1972, 4, 819−827. (15) Gallaugher, A. F.; Hibbert, H. Studies on Reactions Relating to Carbohydrates and Polysaccharides. XLIX. Molecular Weight, Molar Refraction, Freezing Point and Other Properties of the Polyethylene Glycols and their Derivatives. J. Am. Chem. Soc. 1936, 58, 813−816. (16) Api, A. M.; Belsito, D.; Bhatia, S.; Bruze, M.; Calow, P.; Dagli, M. L.; Dekant, W.; Fryer, A. D.; Kromidas, L.; La Cava, S.; Lalko, J. F.; Lapczynski, A.; Liebler, D. C.; Miyachi, Y.; Politano, V. T.; Ritacco, G.; Salvito, D.; Shen, J.; Schultz, T. W.; Sipes, I. G.; Wall, B.; Wilcox, D. K. RIFM Fragrance Ingredient Safety Assessment, Linalool, CAS Registry Number 78−70−6. Food Chem. Toxicol. 2015, 82, S29−S38. (17) Ott, J. B.; Goates, J. R.; Lamb, J. D. Solid-Liquid Phase Equilibria in Water + Ethylene Glycol. J. Chem. Thermodyn. 1972, 4, 123−126. (18) Ogimachi, N. N.; Corcoran, J. M.; Kruse, H. W. Thermal Analysis of Systems of Hydrazine with Propyl Alcohol, Isopropyl Alcohol, and Allyl Alcohol. J. Chem. Eng. Data 1961, 6, 238−239. (19) Gao, F.; Daugulis, A. J. Polymer-Solute Interactions in SolidLiquid Two-Phase Partitioning Bioreactors. J. Chem. Technol. Biotechnol. 2010, 85, 302−306. H

DOI: 10.1021/acs.jced.8b00126 J. Chem. Eng. Data XXXX, XXX, XXX−XXX