Solution Properties of Polysaccharides - American Chemical Society

Scheme 1. Preparation of Proteoglycan Monomer from Whale Nasal Cartilage. Cartilage as small cubes (50g). 0.5M L a C l 3. (1L). O v e r n i g h t a t ...
0 downloads 0 Views 775KB Size
15 Rheological Studies on Proteoglycan Solution Properties of Polysaccharides Downloaded from pubs.acs.org by IMPERIAL COLLEGE LONDON on 11/27/18. For personal use only.

GO MATSUMURA School of Pharmaceutical Science, Showa University, Hatanodai 1-5-8, Shinagawa, Tokyo 142, Japan

The physical and mechanical properties of cartilage are certainly important for the physiological role of this tissue. Proteoglycan in connection with collagen and other constituents of this tissue may affect its physical properties. Cartilage proteoglycan is a complex species. To a protein core, many chondroitin sulfate and keratan sulfate chains are attached. The molecular weight of a proteoglycan monomer prepared from bovine nasal septa has been reported as two to three million daltons (1), for example. This monomer is bound to a hyaluronic acid backbone reversibly and noncovalently. The gigantic proteo­ glycan thus formed is stabilized by link proteins. In the present study, we attempted to elucidate the rheolog­ i c a l behavior of proteoglycan in viscous solution, with special regard to the differences between free monomer and aggregate. Materials Proteoglycan monomer. From whale nasal cartilage proteo­ glycan was extracted with 0.5M LaCl in the presence of protease inhibitors (38mM α-aminohexanoic acid, 5mM benzamidine HCl and 10mM EDTA-2Na). From bovine nasal cartilage proteoglycan was recovered in Fraction Ρ (Scheme 1) in monomeric form binding with link protein(s) (2). However, most proteoglycan in Fraction Ρ was characterized as aggregated in the present preparation by ultracentrifugation (Figure 1, top) and gel f i l t r a t i o n profiles. So the preparation was reprecipitated in the presence of 2M urea in addition to LaCl3. In this precipitate, proteoglycan was recovered mostly as monomer (Figure 1, middle). By polyacryl­ amide gel electrophoresis in the presence of sodium dodecylsulfate, the existence of link proteins was suggested. The presence of some contaminating proteins was also suggested by this electrophoresis and by the high protein content of the preparation. 3

An example o f t h e chemical and p h y s i c a l a n a l y s i s o f t h i s preparation follows: glucuronic acid 2 9 % , h e x o s e 7.1%,

0097-6156/81/0150-0213$06.25/0 © 1981 American Chemical Society

214

SOLUTION PROPERTIES OF POLYSACCHARIDES

Scheme 1 P r e p a r a t i o n o f P r o t e o g l y c a n Monomer f r o m Whale N a s a l C a r t i l a g e C a r t i l a g e as s m a l l c u b e s ( 5 0 g ) 0.5M L a C l ( 1 L ) O v e r n i g h t a t 4°C Extract D i l u t e w i t h w a t e r (9 v o l u m e s ) 72 h o u r s a t 4°C 3

I

Precipitate j EDTA s o l u t i o n (300ml) I Overnight Solution Sodium a c e t a t e (15g) S t i r f o r 6 hours E t h y l a l c o h o l (900ml) Precipitate W a t e r (200ml) D i a l y s i s a g a i n s t 0.01M EDTA and t h e n w a t e r Lyophylized F r a c t i o n _P

Supernatant ( F r a c t i o n S)

0.5M L a C l - 2 M u r e a (240mg i n 24ml) S t i r f o r 1 h o u r a t 4°C D i l u t e w i t h w a t e r (9 v o l u m e s ) E t h y l a l c o h o l and s o d i u m a c e t a t e Precipitate EDTA s o l u t i o n (20ml) D i a l y s i s against water Lyophylized P r o t e o g l y c a n Monomer p r e p a r a t i o n (125mg) 3

15.

MATSUMURA

Rheological

Studies on

215

Proteoglycan

protein 18.6%, d i s a c c h a r i d e c o n s t i t u e n t o f c h o n d r o i t i n s u l f a t e 6 - s u l f a t e / 4 - s u l f a t e = 1/3, i n t r i n s i c v i s c o s i t y 2 . 9 d l / g , sedimentation constant 14.7s (main) a n d I l l s ( m i n o r ) . Physical measurements were c a r r i e d o u t w i t h s o l u t i o n s i n 0.1M T r i s - H C l b u f f e r , pH 7, c o n t a i n i n g 0.05M N a C l . By t h e a d d i t i o n o f h y a l u r o n i c a c i d , t h e v i s c o s i t y o f t h e p r o t e o g l y c a n s o l u t i o n was i n c r e a s e d . H y a l u r o n i c a c i d i n an amount e q u a l t o one t w e n t i e t h o f t h e w e i g h t o f p r o t e o g l y c a n seemed t o be enough t o r e a c h t h e maximum v a l u e ( F i g u r e 2 ) . By u l t r a c e n t r i f u g a t i o n ( F i g u r e 1, b o t t o m ) and g e l f i l t r a t i o n most p r o t e o g l y c a n appeared t o e x i s t as a g g r e g a t e u n d e r t h e s e c o n d i tions . Hyaluronic acid. From a w a t e r e x t r a c t o f human u m b i l i c a l c o r d s h y a l u r o n i c a c i d was p u r i f i e d b y t h e metnod o r i g i n a l l y r e p o r t e d f o r b o v i n e s y n o v i a l f l u i d ( 3 ) . The p r e p a r a t i o n was p r a c t i c a l l y f r e e o f p r o t e i n and s u l f a t e d g l y c o s a m i n o g l y c a n s . The m o l e c u l a r w e i g h t was e s t i m a t e d a s a b o u t one and a h a l f m i l l i o n by e q u i l i b r i u m c e n t r i f u g a t i o n . Thus t h e a g g r e g a t e u s e d i n t h e p r e s e n t s t u d y was n o t t h e n a t i v e a g g r e g a t e o f t h e c a r t i l a g e t i s s u e , b u t a n a r t i f i c i a l one. Methods V i s c o s i t y of d i l u t e solutions. A c a p i l l a r y viscometer (Cannon-Manning s e m i m i c r o , No. 100) was used f o r d e t e r m i n a t i o n o f t h e i n t r i n s i c v i s c o s i t y and f o r s t u d y o f e n z y m a t i c d e g r a d a t i o n . Measurements were c a r r i e d a t 37°C. F o r t h e l a t t e r s t u d y s p e c i f i c f l u i d i t i e s , t h e r e c i p r o c a l o f s p e c i f i c v i s c o s i t y , were p l o t t e d a g a i n s t r e a c t i o n t i m e . W i t h random d e g r a d a t i o n o f a c h a i n p o l y m e r a s t r a i g h t l i n e i s o b t a i n e d b y t h i s p l o t t i n g , and t h e slope o f the l i n e i s p r o p o r t i o n a l t o the r e a c t i o n r a t e constant (4). V i s c o s i t y w i t h s t a t i o n a l flow. A cone-plate type r o t a t i n g r h e o m e t e r ( S h i m a d z u , RM-1, e q u i p p e d w i t h a r e d u c t i o n g e a r , RDG-1) was employed. The r a t e o f s h e a r a v a i l a b l e r a n g e d f r o m 7 . 4 8 x 1 0 " t o 7 4 . 8 / s e c . The a p p a r e n t v i s c o s i t y a t a g i v e n r a t e o f s h e a r was c a l c u l a t e d f r o m t h e r a t e o f s h e a r and t h e o b s e r v e d s h e a r s t r e s s . Samples were d i s s o l v e d i n t h e b u f f e r s o l u t i o n m e n t i o n e d b e f o r e at 2 o r 4% c o n c e n t r a t i o n and measured a t room t e m p e r a t u r e (22+l°C). 3

Dynamic v i s c o e l a s t i c i t y . From t h e o s c i l l a t o r y r o t a t i o n o f t h e p l a t e dynamic v i s c o e l a s t i c i t y was e s t i m a t e d w i t h t h e same e q u i p m e n t . The maximum s h e a r was 0.250, a n d t h e a n g u l a r f r e q u e n c i e s employed r a n g e d f r o m 5 . 8 2 x 1 0 " t o 5 . 8 2 x 1 0 " r a d / s e c . The r o t a t i o n a n g l e o f t h e p l a t e and t h e t w i s t o f t h e cone were r e c o r d e d w i t h a n X-Y p l o t t e r . From t h e h y s t e r e s i s l o o p o b t a i n e d t h e s t o r a g e modulus o r dynamic e l a s t i c i t y ( G ) a n d t h e l o s s 3

1

1

SOLUTION

PROPERTIES

OF POLYSACCHARIDES

Figure 1. Sedimentation profile of pro­ teoglycan: (top) Fraction Ρ (see Scheme 1), 0.2%, 51,200 rpm, 6 min; (middle) Proteoglycan monomer, 0.3%, 60,000 rpm, 6 min; (bottom; aggregate, 0.3% proteoglycan monomer in the presence of 0.015%) hyaluronic acid, 51,200 rpm, 6 min.

o.i

0

0.001 0.002 Concentration of Hyaluronic Acid (%)

0.003

Figure 2. Effect of hyaluronic acid on the viscosity of proteoglycan monomer. Concentration of monomer: (upper curve) 0.1 %; (lower curve,) 0.05%o.

15.

MATSUMURA

Rheological

Studies on

217

Proteoglycan

modulus (G") w e r e c a l c u l a t e d . The l o s s modulus can b e c o n v e r t e d t o the dynamic v i s c o s i t y by d i v i d i n g by the a n g u l a r f r e q u e n c y . Results V i s c o s i t y w i t h s t a t i o n a l f l o w . As i s u s u a l f o r s o l u t i o n s o f h i g h p o l y m e r i c compounds, t h e a p p a r e n t v i s c o s i t y o f p r o t e o g l y c a n s o l u t i o n s depended s t r o n g l y o n t h e r a t e o f s h e a r ; t h e h i g h e r v i s c o s i t y was o b s e r v e d a t t h e l o w e r r a t e o f s h e a r ( F i g u r e 3 ) . The c o n c e n t r a t i o n o f p r o t e o g l y c a n was 2% i n e a c h s o l u t i o n . To p r e p a r e t h e a g g r e g a t e s o l u t i o n h y a l u r o n i c a c i d was added t o t h e f i n a l c o n c e n t r a t i o n o f 0.1%. The a g g r e g a t e showed h i g h e r v i s c o s i t y t h a n monomer a t any r a t e o f s h e a r . B u t t h e d i f f e r e n c e was more r e m a r k a b l e a t h i g h s h e a r r a t e s . For comparison the r e s u l t w i t h h y a l u r o n i c a c i d o f t h e same c o n c e n t r a t i o n (2%) i s a l s o g i v e n in this figure with solid triangles. T h i s s o l u t i o n behaved l i k e a N e w t o n i a n l i q u i d a t s h e a r r a t e s l e s s t h a n 10"" / s e c . On t h e o t h e r h a n d , p r o t e o g l y c a n monomer seemed t o r e m a i n i n t h e power l a w r e g i o n t h r o u g h o u t t h e r a n g e examined ( 5 ) . 1

Dynamic v i s c o e l a s t i c i t y . W i t h same s o l u t i o n s u s e d f o r t h e measurements o f F i g u r e 3 d y n a m i c v i s c o e l a s t i c i t y was e x a m i n e d . I t i s c l e a r that both moduli of proteoglycan increased s i g n i f i c a n t l y upon f o r m a t i o n o f a g g r e g a t e w i t h h y a l u r o n i c a c i d ( F i g u r e 4). T h i s e f f e c t was more p r o n o u n c e d a t h i g h e r f r e q u e n c i e s a n d f o r t h e s t o r a g e m o d u l u s . Thus t h e l o s s t a n g e n t , w h i c h i s t h e r a t i o o f t h e l o s s modulus t o t h e s t o r a g e m o d u l u s , was d e c r e a s e d by t h e p r e s e n c e o f h y a l u r o n i c a c i d ( F i g u r e 5 ) . Though t h e l o s s t a n g e n t o f p r o t e o g l y c a n monomer was d e c r e a s e d b y i n c r e a s i n g t h e a n g u l a r f r e q u e n c y , t h a t o f a g g r e g a t e r e m a i n e d c o n s t a n t . As i s w e l l known, h y a l u r o n i c a c i d c a n n o t b e r e p l a c e d b y any o t h e r l i n e a r a c i d p o l y s a c c h a r i d e f o r aggregate formation. I n the r h e o l o g i c a l e x a m i n a t i o n s m e n t i o n e d above o n l y h y a l u r o n i c a c i d c o u l d a f f e c t t h e b e h a v i o r o f p r o t e o g l y c a n monomer s o l u t i o n . The v i s c o e l a s t i c i t y o f h y a l u r o n i c a c i d s o l u t i o n was much more i n f l u e n c e d t h a n p r o t e o g l y c a n , e i t h e r monomer o r a g g r e g a t e , by t h e a n g u l a r f r e q u e n c y o f t h e p l a t e . Thus t h e o r d i n a t e o f F i g u r e 6, w h i c h r e p r e s e n t s b o t h m o d u l i , i s e x p r e s s e d l o g a r i t h mically. I n c o n t r a s t t o p r o t e o g l y c a n a g g r e g a t e t h e l o s s modulus was b i g g e r t h a n t h e s t o r a g e modulus e s p e c i a l l y a t l o w e r f r e q u e n cies . E f f e c t o f Streptomyces h y a l u r o n i d a s e . The e f f e c t s o f some d e p o l y m e r i z i n g enzymes on t h e v i s c o e l a s t i c p r o p e r t i e s o f p r o t e o g l y c a n were e x a m i n e d . The f i r s t example was t h a t o f S t r e p t o m y c e s h y a l u r o n i d a s e ( h y a l u r o n a t e l y a s e , EC 4 . 2 . 2 . 1 . ) , w h i c h i s shown as s t r i c t l y s p e c i f i c t o h y a l u r o n i c a c i d ( 6 ) . Thus t h i s enzyme can d e g r a d e o n l y t h e h y a l u r o n i c a c i d b a c k b o n e o f a g g r e g a t e a n d s h o u l d n o t a t t a c k t h e p r o t e o g l y c a n monomer. To 0.1% s o l u t i o n o f a g g r e g a t e 0.05TRU o f S t r e p t o m y c e s h y a l u r o n i d a s e was added. A s

218

SOLUTION

PROPERTIES

OF

POLYSACCHARIDES

Figure 3. Rheogram of proteoglycan and hyaluronic acid: (Φ) monomer, 2%; (O) aggregate (2% monomer in the presence of 0.1% hyaluronic acid); (A) hya­ luronic acid, 2 %.

H -2 Log(Angu1ar

1 -1 Frequency)

1

ο

Figure 4. Dynamic viscoelasticity of proteoglycan: (Ο,Φ) monomer; (A, A)' aggregate (see Figure 3 for concentration); (Φ, A) storage modulus; (O, A) loss modulus.

15.

MATSUMURA

Rheological

Studies on

Proteoglycan

219

+2

Log

Figure 5.

(Angular Frequncy)

Loss tangent of proteoglycan: (%) monomer; (O) aggregate (see Figure 3 for concentration).

Log(Angular Frequency)

Figure 6.

Dynamic viscoelasticity of hyaluronic acid: (%) storage modulus; (O) loss modulus (see Figure 3 for concentration).

220

SOLUTION

PROPERTIES

OF

POLYSACCHARIDES

shown i n F i g u r e 7, t h e s p e c i f i c f l u i d i t y o f t h e a g g r e g a t e i n c r e a s e d g r a d u a l l y by t h i s e n z y m a t i c t r e a t m e n t . This increase i n s p e c i f i c f l u i d i t y seemed t o l e v e l o f f a f t e r some i n c u b a t i o n p e r i o d , s u g g e s t i n g t h a t m a c r o m o l e c u l a r p r o t e o g l y c a n monomer r e m a i n e d even a f t e r p r o l o n g e d d i g e s t i o n . W i t h o u t t h e p r e s e n c e of h y a l u r o n i c a c i d , however, the s p e c i f i c f l u i d i t y of p r o t e o g l y c a n monomer s o l u t i o n a l s o i n c r e a s e d a f t e r t r e a t m e n t w i t h t h i s enzyme. The p l a t e a u v a l u e was s i m i l a r t o t h a t o b t a i n e d i n t h e presence of h y a l u r o n i c a c i d . As shown i n F i g u r e 1 ( b o t t o m ) , t h i s p r e p a r a t i o n c o n t a i n e d some p r o t e o g l y c a n i n t h e a g g r e g a t e d f o r m , b u t t h e amount o f t h e a g g r e g a t e was t o o s m a l l t o e x p l a i n t h e d e c r e a s e i n v i s c o s i t y p r o d u c e d by t h i s e n z y m a t i c d i g e s t i o n . To 4% s o l u t i o n of p r o t e o g l y c a n , e i t h e r i n t h e p r e s e n c e o f o r i n t h e a b s e n c e o f h y a l u r o n i c a c i d , 1TRU o f t h e enzyme was added. The v i s c o e l a s t i c i t y o f t h e s e r e a c t i o n m i x t u r e s were measured w i t h a p p r o p r e a t e i n t e r v a l s ( F i g u r e 8 ) . W i t h t h e a g g r e g a t e s o l u t i o n t h e d e c r e a s e o f b o t h m o d u l i was o b s e r v e d . The d e c r e a s e o f s t o r a g e modulus seemed t o s t o p a f t e r some r e a c t i o n p e r i o d , b u t t h e d e c r e a s e o f l o s s modulus c o n t i n u e d f u r t h e r . A g a i n t h i s enzyme a f f e c t e d t h e v i s c o e l a s t i c p r o p e r t i e s o f t h e monomer s o l u t i o n . The e f f e c t on t h e l o s s modulus was l i t t l e , i f any. However, t h e s t o r a g e modulus i n c r e a s e d s i g n i f i c a n t l y . S i n c e t h e s e d i m e n t a t i o n c o n s t a n t o f t h e monomer p r e p a r a t i o n was n o t a f f e c t e d by t h i s e n z y m a t i c t r e a t m e n t , t h e d e p o l y m e r i z a t i o n o f p r o t e o g l y c a n was n o t l i k e l y . The i n c r e a s e o f s t o r a g e modulus i s d i f f i s u l t t o e x p l a i n i n terms o f d e g r a d a t i o n . One m i g h t s p e c u l a t e t h a t some p r o t e o g l y c a n monomer e x i s t e d as a complex w i t h s m a l l h y a l u r o n i c a c i d o l i g o m e r . The r e m o v a l o f t h i s o l i g o m e r m i g h t c a u s e some c o n f o r m a t i o n a l change i n t h e p r o t e o g l y c a n molecule t o i n c r e a s e the s p e c i f i c f l u i d i t y of d i l u t e s o l u t i o n and t h e s t o r a g e modulus o f c o n c e n t r a t e d s o l u t i o n . The p o s s i b i l i t y t h a t t h i s enzyme p r e p a r a t i o n was c o n t a m i n a t e d w i t h p r o t e o l y t i c enzymes was n o t e l i m i n a t e d . As w i l l be s t a t e d l a t e r , b o t h m o d u l i o f t h e p r o t e o g l y c a n monomer i n c r e a s e d w i t h p r o t e o l y t i c digestion. E f f e c t o f c h o n d r o i t i n a s e ABC. T h i s enzyme ( c h o n d r o i t i n ABC l y a s e , EC 4.2.2.4.) a l s o d e p o l y m e r i z e s t h e h y a l u r o n i c a c i d b a c k bone o f a g g r e g a t e . I n a d d i t i o n , i t can degrade c h o n d r o i t i n s u l f a t e c h a i n s o f monomer, b u t n o t i t s k e r a t a n s u l f a t e c h a i n s . To 0.1% s o l u t i o n o f p r o t e o g l y c a n Q.005U o f t h e enzyme was added. As shown i n F i g u r e 9, t h e s p e c i f i c f l u i d i t y o f t h e s o l u t i o n , e i t h e r i n the presence of or i n the absence of h y a l u r o n i c a c i d , i n c r e a s e d i n two s t a g e s . The f i r s t l i n e a r i n c r e a s e may i n d i c a t e t h e b r e a k down o f h y a l u r o n i c a c i d b a c k b o n e . Then upward i n c r e a s e w h i c h f o l l o w s may be due t o t h e s h o r t e n i n g o r r e m o v a l o f c h o n d r o i t i n s u l f a t e c h a i n s o f monomeric p r o t e o g l y c a n . The e f f e c t on v i s c o e a l s t i c p r o p e r t i e s o f c o n c e n t r a t e d s o l u t i o n ( 4 % p r o t e o g l y c a n and 1U c h o n d r o i t i n a s e ABC) was more o r l e s s s i m i l a r to that w i t h Streptomyces h y a l u r o n i d a s e treatment ( F i g u r e

15.

MATSUMURA

Rheological

Studies on

0

60

221

Proteoglycan

120

180

Reaction Time (min)

Figure 7. Effect of Streptomyces hyaluronidase on the specific fluidity of dilute solution of proteoglycan. Concentrations: proteoglycan, 0.1%; enzyme, 0.05 TRU; (Φ) monomer; (O) aggregate.

0

30

60 90 Reaction Time (min)

120

Figure 8. Effect of Streptomyces hyaluronidase on the dynamic viscoelasticity of proteoglycan. Concentrations: proteoglycan, 4%?; enzyme, 1 TRU. Angular fre­ quency: 0.349 rad/s; (0,%) monomer; (A, A) aggregate; (Φ, A) storage modu­ lus; (O, A) loss modulus.

222

SOLUTION

PROPERTIES

O F POLYSACCHARIDES

Figure 9. Effect of chondroitinase ABC on the specific fluidity of dilute solution of proteoglycan. Concentrations: proteoglycan, 0.1%; enzyme, 0.005 U; (Φ) mono­ mer; (O) aggregate.

15.

MATSUMURA

Rheological

Studies on

Proteoglycan

223

100 R e a c t i o n T i m e (min)

Figure 10. Effect of chondroitinase ABC on the dynamic viscoelasticity of proteo­ glycan. Concentrations: proteoglycan, 4%; enzyme, 1 U. Angular frequency: 0.349 rad/s; (Ο, Φ) monomer; (A, A) aggregate; (Φ, storage modulus; (O, A) loss modulus.

224

SOLUTION

PROPERTIES

OF

POLYSACCHARIDES

£20

0

100

Reaction T i m e (min)

200

Figure 11. Effect of trypsin on the dynamic viscoelasticity of proteoglycan. Con­ centrations: proteoglycan, 4%; enzyme, 1 U. Angular frequency: 0.349 rad/s; (Φ, Φ) monomer; (A, A) aggregate; (Φ, A) storage modulus; (O, A) loss modu­ lus.

15.

MATSUMURA

Rheological

Studies on

225

Proteoglycan

15

__| Log

J

I 2

-

1

0

(Angular Frequncy)

Figure 12. Dynamic viscoelasticity of proteoglycan monomer treated with trypsin for 2 h: (Φ) storage modulus; (O) loss modulus (see Figure 11 for concentrations).

1

-0.2



-0.1



0

I

0.1

I—

0.2

Shear

Figure 13. Hysteresis loop of proteoglycan monomer: ( ) after 5 min; ( after 1 h (see Figure 11 for concentrations and angular frequency).

)

226

SOLUTION

PROPERTIES

OF

POLYSACCHARIDES

10). A f t e r e x h a u s t i v e d i g e s t i o n , h o w e v e r , v i s c o e l a s t i c i t y was almost completely a b o l i s h e d . Effect of trypsin. T h i s enzyme (EC 3.4.21.4) c a n d e g r a d e the p r o t e i n core o f p r o t e o g l y c a n . But i n the aggregated form the h y a l u r o n i c a c i d l i n k a g e r e g i o n o f core p r o t e i n and l i n k p r o t e i n s a r e s a i d n o t t o be a t t a c k e d b y t h i s p r o t e o l y t i c enzyme ( 7 ) . W i t h a r e a c t i o n m i x t u r e o f 4% p r o t e o g l y c a n a n d 1U o f t r y p s i n the e f f e c t o f t h i s enzymatic treatment on v i s c o e l a s t i c p r o p e r t i e s was e x a m i n e d ( F i g u r e 1 1 ) . W i t h a g g r e g a t e a r a p i d d e c r e a s e o f b o t h m o d u l i was o b s e r v e d a t e a r l y s t a g e s o f t h i s t r e a t m e n t ; t h e n s m a l l i n c r e a s e s f o l l o w e d . W i t h monomer s t e e p i n c r e a s e s o f b o t h m o d u l i were o b s e r v e d ; t h e n g r a d u a l d e c r e a s e s f o l l o w e d . The h i g h e s t v a l u e s were e v e n h i g h e r t h a n t h o s e o f u n t r e a t e d a g g r e g a t e . A two h o u r d i g e s t o f monomer was s u b j e c t e d t o measurement of the v i s c o e l a s t i c i t y a t v a r i o u s a n g u l a r f r e q u e n c i e s ( F i g u r e 12). I n c o n t r a s t t o u n t r e a t e d a g g r e g a t e ( F i g u r e 4 ) , t h e l o s s modulus was b i g g e r t h a n t h e s t o r a g e m o d u l u s . The l o s s m o d u l u s was l e s s ^ a f f e c t e d by the angular frequency. The h y s t e r e s i s l o o p o f p r o t e o g l y c a n , e i t h e r a s monomer o r as a g g r e g a t e , was a t y p i c a l e l l i p s e s u g g e s t i n g n o r m a l v i s c o e l a s t i c behavior. As g i v e n i n F i g u r e 13 w i t h a b r o k e n l i n e , t h e r e a c t i o n m i x t u r e o f p r o t e o g l y c a n monomer a n d t r y p s i n showed a n e l l i p t i c l o o p a t f i v e m i n u t e s a f t e r a d d i t i o n o f t h e enzyme. A f t e r one h o u r i n c u b a t i o n , t h e h y s t e r e s i s l o o p was d i s t o r t e d t o a somewhat t e t r a g o n a l s h a p e . The d i r e c t i o n o f t h e l o o p i s c l o c k w i s e . Some p l a s t i c i t y m i g h t b e i n d u c e d i n p r o t e o g l y c a n monomer b y t h i s tryptic digestion. These anomalous r h e o l o g i c a l p r o p e r t i e s were f o u n d w i t h monomer b u t n o t w i t h a g g r e g a t e . Since the h y a l u r o n i c a c i d l i n k a g e r e g i o n o f p r o t e o g l y c a n was p r o t e c t e d f r o m t r y p t i c d i g e a s t i o n b y t h e f o r m a t i o n o f a g g r e g a t e , t h i s anomaly may b e t h e r e s u l t o f a c o n f o r m a t i o n a l change c a u s e d by p r o c e s s i n g o f c o r e p r o t e i n i n this region. Conclusion The a p p a r e n t v i s c o s i t y w i t h s t a t i o n a l f l o w a n d d y n a m i c v i s c o e l a s t i c i t y o f p r o t e o g l y c a n w e r e i n c r e a s e d by f o r m a t i o n o f a g g r e gate. E n z y m a t i c t r e a t m e n t w i t h h y a l u r o n i d a s e o r t r y p s i n on p r o t e o g l y c a n monomer c o u l d i n c r e a s e t h e v i s c o e l a s t i c i t y . The f o r m e r enzyme i n c r e a s e d t h e s t o r a g e m o d u l s more r e m a r k a b l y , w h e r e a s t h e l a t t e r a f f e c t e d t h e l o s s modulus more s i g n i f i c a n t l y . These e f f e c t s m i g h t b e u n d e r s t o o d a s c o n f o r m a t i o n a l changes i n t h e monomer m o l e c u l e . F u r t h e r s t u d i e s are under the p r o g r e s s .

Litereture cited 1. Rosenbergs L.; Choi, H . ; Pal, S.; Tang, L . "Carbohydrateprotein interaction (ACS Symposium Series 88)"; American Chemical Society: Washington, D . C . , 1979; p. 186.

15.

MATSUMURA

Rheological

Studies on

Proteoglycan

227

2. Mason, R. W.; Roughley, P. J . Biochem. Soc. Trans., 1974, 2, 894. 3. Matsumura, G . ; De Salegui, M . ; Herp, Α . ; Pigman, W. Biochim. Biophys. Acta, 1963, 69, 574. 4. Matsumura, G . ; Pigman, W. Arch. Biochem. Biophys., 1965, 110, 526. 5. Lenk, R. S. "Plastic rheology"; Wiley Interscience: New York, 1968; p. 12. 6. Ohya, T . ; Kaneko, Y. Biochim. Biophys. Acta, 1970, 198, 607. 7. Heinegard, D.; Hascall, V. C. J. B i o l . Chem., 1974, 249, 4250. RECEIVED October 15,

1980.