Solution Properties of Polysaccharides - American Chemical Society

liar polycarboxylic acid (_4, 5_) . For comparison purposes, the same experiments have been done using another microbial polysac. c h a r i d e , PS-1...
0 downloads 0 Views 1MB Size
23 Polyelectrolytic Behavior of Ionic Polysaccharides V. CRESCENZI, M. DENTINI, and R. RIZZO

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

Istituto di Chimica-Fisica, Università di Roma, Roma, Italy

An important aim of physico-chemical studies on natural and synthetic ionic-polysaccharides is to help elucidate the correlations between chemical structure-conformational characteristics of such polymers and their equilibrium properties in solution. In this context, attention is being given in our laboratory to the thermodynamics of macroion-counterion interactions and of polyion-polyion interactions, including [soluble] complex formation between polysaccharide macroions and different polyampholites (e.g. proteins) in dilute aqueous solution. Our experimental approach is mainly based on the use of micro_ calorimetric, potentiometric, and chirooptical techniques. Polymers considered include: 1) sulfated polysaccharides (i-carrageenan, dextran sulfate); 2) glycosaminoglycans (heparins); 3) microbial polysaccharides (Xanthan, PS-10). Species listed above (sodium salts) have been characterized in water and/or aqueous NaCl solution in terms of Na counterion activity coefficient, heat of dilution, and heat of Cu2 ions binding. These experiments are part of a systematic investigation on the relationship between "charge-density" along polyelectrolyte chains and (metal) ion-binding, comparing experimental evidence with existing theories (1,2,3). Nicrocalorimetric and spectroscopic data have then been collected on the interaction of human serum albumin with dextran sulfate and heparin, respectively, in dilute aqueous solution. The purpose is to afford possible, original evidence on the energetics of complex formation between glycosaminoglycans and different proteins of the biological fluids. Finally, the enthalpy of protonation as well as the circular dichroism of Xanthan have been studied in a rather wide range of pH values in water and in aqueous NaCl. This was done in order further characterize from a "structural" and thermodynamic standpoint the dissociation behavior of such a conformationally pecu+

+

0097-6156/81/0150-0331$05.00/0 © 1981 American Chemical Society In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

332

SOLUTION

PROPERTIES

OF

POLYSACCHARIDES

l i a r p o l y c a r b o x y l i c a c i d (_4, 5_) . F o r c o m p a r i s o n p u r p o s e s , t h e same e x p e r i m e n t s have been done u s i n g a n o t h e r m i c r o b i a l p o l y s a c ­ c h a r i d e , PS-10 (6_, 7), whose c h a i n s a r e supposed t o l a c k any c o n ­ formational order. Work s i now i n p r o g r e s s t o i n v e s t i g a t e s o l u ­ t i o n p r o p e r t i e s o f t h e K l e b s i e l l a e K-63 p o l y s a c c h a r i d e (J3). We w i s h t o b r i e f l y summarize h e r e a f e w o f t h e r e s u l t s o b t a i ­ ned so f a r i n o u r l a b o r a t o r y f r o m work on t h e t h r e e main r e s e a r c h l i n e s e x e m p l i f i e d above. R e s u l t s and D i s c u s s i o n I) S u l f a t e d polysaccharides

and h e p a r i n

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

+

2 +

a) Heat o f d i l u t i o n and o f c o u n t e r i o n b i n d i n g ( N a , C u ) . The a c t i v i t y c o e f f i c i e n t o f N a c o u n t e r i o n s ( }>Na ) f o r i - c a r r a geenan, d e x t r a n s u l f a t e , and h e p a r i n i n w a t e r a t 25°C, a s e v a l u a ­ t e d f r o m o u r p o t e n t i o m e t r i c d a t a , a r e r e p o r t e d i n F i g . 1. Although t h e c o n c e n t r a t i o n range i n v e s t i g a t e d i s r a t h e r l i m i ­ t e d , one o b s e r v e s t h a t / N a * i s low, and q u i t e i n s e n s i t i v e t o d i l u ­ t i o n , t h e more so t h e h i g h e r t h e c h a r g e - d e n s i t y a l o n g t h e c h a i n s . These r e s u l t s a r e i n l i n e w i t h a number o f s i m i l a r d a t a c o l l e c t e d by v a r i o u s a u t h o r s (_9, _1Q_) : t h e agreement i s however o n l y q u a l i t a tiven,when a comparison i s f e a s i b l e a t a l l , given the l a c k o f s i m i l a r i t y among d i f f e r e n t s a m p l e s used i n d i f f e r e n t l a b o r a t o r i e s . A more i m p o r t a n t p r o p e r t y u s e f u l f o r t h e t h e r m o d y n a m i c c h a r a c t e r i z a t i o n o f aqueous p o l y e l e c t r o l y t e s o l u t i o n s i s t h e e n ­ thalpy o f d i l u t i o n . Our m i c r o c a l o r i m e t r i c r e s u l t s (25°C) a r e r e ­ p o r t e d i n F i g . 2 f o r d e x t r a n s u l f a t e , and i n F i g . 3 f o r segmented i - c a r r a g e e n a n and f o r h e p a r i n , r e s p e c t i v e l y . I t i s seen t h a t , f o r a g i v e n d i l u t i o n r a n g e : 1) t h e i n t e g r a l heat o f d i l u t i o n ( A H Q : c a l / p o l y e l . e q u i v . ) i s higher the lower t h e charge d e n s i t y along t h e c h a i n s ; 2 ) d i l u t i o n i n t h e p r e s e n c e o f NaCl Cat a f i x e d N a C l m o l a r i t y ) l e a d s t o d i s t i n c t l y s m a l l e r heat e f f e c t s t h a n i n w a t e r . To o u r knowledge no c a l o r i m e t r i c d a t a o f c o m p a r a b l e a c c u r a c y on i o n i c p o l y s a c c h a r i d e s o l u t i o n s c a n be f o u n d i n t h e l i t e r a t u r e , w i t h t h e n o t a b l e e x c e p t i o n o f t h e r e s u l t s r e c e n t l y r e p o r t e d by R. L. C l e l a n d [V\J on t h e e n t h a l p y o f m i x i n g g l y c o s a m i n o g l y c a n s with aqueous N a C l . A d d i t i o n a l e v i d e n c e on t h e complex i n t e r p l a y o f f a c t o r s w h i c h govern p o l y s a c c h a r i d e - c o u n t e r i o n i n t e r a c t i o n s i s c l e a r y a f f o r d e d by t h e c a l o r i m e t r i c d a t a on t h e b i n d i n g o f C u ions reported i n F i g . 4. Here t h e " c h a r g e - d e n s i t y " o f t h e c h a i n s i s n o t t h e o n l y dominant p a r a m e t e r a s , q u i t e o b v i o u s l y , a l s o t h e n a t u r e and r e l a ­ t i v e c o n f i g u r a t i o n o f f i x e d - c h a r g e s ( h e p a r i n ) and t h e p r o p e n s i t y o f t h e c h a i n s t o assume o r d e r e d c o n f o r m a t i o n s (i-carrageenan) c o n t r i b u t e i m p o r t a n t l y t o the observed o v e r a l l e n e r g e t i c e f f e c t s upon C u - b i n d i n g . I n t h e case o f i-carrageenan t h e p e c u l i a r shape o f t h e Q a g a i n s t [ C u ] /N p l o t ( s e e F i g . 4; Q B m i x i n g p o l y e l e c t r o l y t e a n d Cu(N03)2 s o l u t i o n s , c o r r e c t e d f o r d i l u t i o n e f f e c t s ; Ν = p o l y e l e c t r o l y t e concentration i n equiv./I) should +

+

2 +

2 +

2 +

=

N

E

B

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

A

T

O

F

23.

CRESCENZI

ET

AL.

Ionic

333

Polysaccharides

Δ Δ—Δ *

Α

Α-

Ψ *

*

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

*

* ^

2.0

Α

χ

1

— I

Ψ—¥

ι

4.0

Ατ

1

6.0

8.0



»

10.0



'

Ν Χ10

+

Figure 1. Activity coefficient of Na counterions (γ +) of ionic polysaccharides in water (25° C), Ν is the polyelectrolyte concentration in equivalents/liter: (A) isocarrageenan (ξ = 1.2); (+) heparin (£ = 1.3); ( A ) dextran sulfate. (M = 4 · 10 ; Να

4

( — 2.8).

-logN

4

Figure 2. Enthalpy of dilution of dextran sulfate (M = 4 · 10 ) at 25°C: (+) in water; (Φ) in 1 · 10 M NaCl; (A) in 3 · 10' M NaCl; (O) in 5 · 10~ M NaCl; (A) in 1 · 10 M NaCl. 3

3

3

2

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981. 3

3

F/gwre 3. Enthalpy of dilution of iso-carrageenan segments and of heparin at 25°C: (A) iso-carrageenan in water; (Φ) iso-carrageenan in 1 · 10 M NaCl; (+) iso-carrageenan in 5 · 10 M NaCl; (A) heparin in water.

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

00

w

? 2 δ

on > Ο Ο

r

hd Ο

•Π

Ο

W c/5

Η

W

Ο

δ

Η

r d Ο

CRESCENZI ET AL.

Ionic

Polysaccharides

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

23.

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

335

336

SOLUTION

PROPERTIES

OF

POLYSACCHARIDES

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

i n f a c t be t r a c e d back t o a d i s o r d e r order t r a n s i t i o n , as c l e a r l y s u p p o r t e d by o p t i c a l a c t i v i t y measurements (J_2) . C r i t i c a l c o m p a r i s o n o f o u r d a t a ( F i g s 1-4) w i t h c u r r e n t t h e o r i e s o f p o l y e l e c t r o l y t e s o l u t i o n s would e n t a i l a r a t h e r l e n g t h y p r e s e n t a t i o n and d i s c u s s i o n o f a numer o f e q u a t i o n s and u n d e r l y ing assumptions. F o r sake o f b r e v i t y l e t us s i m p l y p o i n t o u t here t h a t , c o n s i d e r i n g M a n n i n g ' s t h e o r y (13_, _1_4), we f i n d o n l y a q u a l i t a t i v e , r o u g h agreement w i t h o u r e x p e r i m e n t a l r e s u l t s . In p a r t i c u l a r , t h e h e a t o f d i l u t i o n d a t a i n aqueous N a C l ( F i g s 2 and 3) seem "anomalous" w i t h r e s p e c t t o t h e o r e t i c a l p r e d i c t i o n s ( Y\_). A d e t a i l e d d i s c u s s i o n on t h e s e p o i n t s w i t h t h e p r e s e n t a t i o n o f d a t a a l s o f o r d i f f e r e n t p o l y e l e c t r o l y t e s w i l l be g i v e n e l s e w h e r e (_1_5) . b) M i c r o c a l o r i m e t r i c and s p e c t r o s c o p i c d a t a on i o n i c p o l y s a c c h a r i d e - p r o t e i n i n t e r a c t i o n s . The a s s o c i a t i o n between d i f f e r e n t c h a r g e d p o l y m e r s i s a w e l l known phenomenon w i t h i m p o r t a n t i m p l i c a t i o n s i n t h e c a s e o f many b i o l o g i c a l p r o c e s s e s . For i n s t a n c e , the e x t e n s i v e a s s o c i a t i o n o f h e p a r i n w i t h c e r t a i n plasma p r o t e i n s i s c u r r e n t l y t h o u g h t t o be t h e b a s i s f o r t h e b i o l o g i c a l a c t i v i t y o f t h i s g l y c o s a m m i n o g l y c a n (1_6). The i n t e r a c t i o n between i o n i c p o l y s a c c h a r i d e s and a number o f ~ ~ p r o t e i n s l e a d i n g t o s o l u b l e complex f o r m a t i o n has been c h a r a c t e r i z e d i n v i t r o u s i n g d i f f e r e n t e x p e r i m e n t a l t e c h n i q u e s ( 1 7 ) , b u t much r e m a i n s t o be u n d e r s t o o d a b o u t e n e r g e t i c a s p e c t s a s w e l l a s s p e c i f i c mechanisms a t t h e molecular l e v e l . I n t h i s f i e l d , o u r r e s e a r c h program i n c l u d e s s t u d i e s o f t h e c o m p l e x a t i o n p r o c e s s e s between i o n i c - p o l y s a c c h a r i d e s , i n p a r t i c u l a r m u c o p o l y s a c c h a r i d e s , and s e l e c t e d p r o t e i n s i n aqueous s o l u t i o n by means o f m i c r o c a l o r i m e t r i c and s p e c t r o s c o p i c experiments. A few r e s u l t s o f the l a t t e r experiments concerning t h e d i l u t e aqueous s y s t e m s : d e x t r a n s u l f a t e - h u m a n serum a l b u m i n (NaDS-HSA), and h e p a r i n - h u m a n serum a l b u m i n (Hep-HSA), r e s p e c t i v e l y , a r e r e p o r t e d i n F i g s . 5 a , and 5_b. S p e c t r a l d a t a were c o l l e c t e d f o r t h e above s y s t e m s ( a t pH = 5.0; i o n i c s t r e n g t h 0.1 N) u s i n g two d i f f e r e n t o p t i c a l p r o b e s , namely: f l u o r e s c e i n e and rhodamine-B. These d y e s do n o t i n t e r a c t ( f l u o r e s c e i n e ) o r i n t e r act o n l y very weakly (rhod-B) w i t h the i o n i c - p o l y s a c c h a r i d e s considered. For the p a r t i c u l a r experimental c o n d i t i o n s used, f l u o r e s c e i ne may be c o n s i d e r e d as e x t e n s i v e l y bound on a s i n g l e , p r i m a r y b i n d i n g s i t e o f HSA (JJ3, 1_9) i n t h e a b s e n c e o f e x t r a n e o u s p o l y electrolytes . A d d i t i o n o f NaDS (lï = 4 . 1 0 ) p e r t u r b s t h e f l u o r e s c e i n e s p e c t r u m i n t h e d i r e c t i o n o f an e x t e n s i v e d i s p l a c e m e n t o f dye m o l e c u l e s f r o m t h e p r o t e i n w i t h an a p p a r e n t " e q u i v a l e n c e - p o i n t " c o r r e s p o n d i n g t o a s t o i c h i o m e t r i c N / [ H S A ] r a t i o c l o s e t o 15, a c c o r d i n g t o a b s o r p t i o n a n d f l u o r e s c e n c e d a t a (see F i g . 5a_) . A t pH = 6.5, on t h e c o n t r a r y , any e f f e c t was b a r e l y d e t e c t a b l e . This i s i n l i n e w i t h e x t e n s i v e complex f o r m a t i o n between NaDS a n d HSA d r i v e n e s s e n t i a l l y by e l e c t r o s t a t i c f o r c e s , w h i c h w o u l d engage many o f t h e f i x e d p o s i t i v e c h a r g e s o f HSA, p r o b a b l y i n c l u d i n g most o f 4

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

CRESCENZI E T A L .

Ionic Polysaccharides

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

23.

Figure 5b.

Δ Α data for the heparin-HSA system. Same experimental conditions as in Figure 5a: (+c)fluoresceine;(Φ) rhodamine-B.

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

337

338

SOLUTION

PROPERTIES

OF

POLYSACCHARIDES

those a t t h e f l u o r e s c e i n e primary b i n d i n g - s i t e . Quite opposite i s t h e b e h a v i o r o f r h o d a m i n e - B . Data o f F i g . 5a show i n f a c t t h a t t h i s dye i s o n l y v e r y w e a k l y bound t o f r e e HSA m o l e c u l e s ( u n d e r o u r e x p e r i m e n t a l c o n d i t i o n s ) b u t t h a t a d d i t i o n o f NaDS w o u l d p r o ­ mote i t s b i n d i n g . The " e q u i v a l e n c e - p o i n t " f o r NaDS o f Π = 4 . 1 0 i s i n t h i s c a s e f o u n d a t an N/ £HSA] r a t i o a p p r o x i m a t e l y 3 0 . I n v i e w o f t h e z w i t t e r i o n i c n a t u r e o f rhodamine-B a p o s s i b l e e x p l a n a t i o n o f t h i s e f f e c t may be t h a t i n t e r a c t i o n o f NaDS w i t h HSA b r i n g s p a i r s o f p o s i t i v e and n e g a t i v e f i x e d c h a r g e s i n t o s u f f i c i e n t l y c l o s e p r o x i m i t y w i t h t h e onset o f " b i n d i n d - s i t e s " f o r rhodamine. I t i si n t e r e s t i n g t o point out that the "equivalencep o i n t " f o r NaDS w i t h Π = Θ . 1 0 i s c e r t a i n l y l o w e r t h a n t h a t f o r t h e h i g h e r M s a m p l e , as shown i n F i g . 5 a . D a t a c o l l e c t e d u s i n g h e p a r i n i n s t e a d o f NaDS b u t f o r o t h e r ­ w i s e i d e n t i c a l c o n d i t i o n a r e g i v e n i n F i g . 5b. The t r e n d o f t h e a b s o r p t i o n d a t a a r e q u i t e s i m i l a r t o t h o s e f o u n d w i t h NaDS: a p p a ­ r e n t " e q u i v a l e n c e - p o i n t s " a r e i n t h i s c a s e d i s c e r n i b l e a t N/ [JHSA] v a l u e s a r o u n d 20 ( f l u o r e s c e i n e ) and 25 ( r h o d . B ) . These i n t e r e ­ s t i n g f e a t u r e s d e s e r v e f u r t h e r i n v e s t i g a t i o n . Here we l i m i t o u r ­ s e l v e s t o deduce f r o m t h e d a t a o f F i g s 5a and 5b t h a t f o r a N/ [HSA] r a t i o o f about 3 0 , w i t h [HSA] ca 1 0 ~ M, t h e m a j o r i t y o f HSA m o l e c u l e s s h o u l d be bound by NaDS o r by h e p a r i n c h a i n s . Ini­ t i a l l y , more t h a n one p r o t e i n m o l e c u l e w o u l d t h u s be bound p e r polysaccharide chain. I t has t o be p o i n t e d o u t however t h a t t h e s p e c t r o s c o p i c " e q u i v a l e n t - p o i n t s " c o r r e s p o n d t o N/JHSAJ v a l u e s m i n i m a l i n o r d e r t o n e a r l y c a n c e l ( f l u o r e s c e i n e ) o r t o f u l l y deve­ lop (rhodamine) s p e c t r a l p e r t u r b a t i o n s o f probe chromophores, f o r our working c o n d i t i o n s . 4

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

3

5

F u r t h e r a d d i t i o n o f p o l y s a c c h a r i d e s may i n f a c t l e a d t o f u r t h e r " i n t e r a c t i o n s " w i t h HSA no l o n g e r d e t e c t a b l e by t h e dyes e m p l o y e d . T h i s , among o t h e r t h i n g s , i s b o r n o u t by t h e c a l o r i ­ m e t r i c e x p e r i m e n t s w h i c h i n d i c a t e t h a t a t pH = 6 t h e r e i s l i t t l e p o l y s a c c h a r i d e - H S A i n t e r a c t i o n ( i n agreement w i t h s p e c t r a l o b s e r v a t i o n ) w h i l e a t pH = 5.0 t h e A H ( i n K c a l p e r mole o f HSA, c o r r e c ­ ted f o r d i l u t i o n e f f e c t s ) values p r o g r e s s i v e l y increase with i n ­ c r e a s i n g p o l y s a c c h a r i d e c o n c e n t r a t i o n and a p p e a r t o f i n a l l y r e a c h a plateau (Fig. 6). Evidently, e l e c t r o s t a t i c i n t e r a c t i o n s are mainly r e s p o n s i b l e f o r the observed e f f e c t s . I n t h e c a s e o f NaDS w i t h Π = 4 . 1 0 one c a n e s t i m a t e f r o m t h e c a l o r i m e t r i c d a t a an a p p a r e n t " e q u i v a l e n c e - p o i n t " i n f a i r a g r e e ­ ment w i t h t h e s p e c t r o s c o p i c r e s u l t s ( N / [JHSA] c a . 3 0 ) . The i n ­ f l u e n c e o f p o l y s a c c h a r i d e average molecular weight i s a l s o evident f r o m d a t a o f F i g . 6, a l o w e r Ν p r o d u c i n g a l o w e r i n g and s m e a r i n g out o f t h e AHC v a l u e s . W i t h NaDS M = 8 . 1 0 we f i n d i n f a c t , a t h i g h N/ [HSA] v a l u e s , a HC p r a c t i c a l l y c o i n c i d e n t w i t h t h a t f o r h e p a r i n b u t n e a r l y h a l f o f t h a t f o r NaDS w i t h M = 4 . 1 0 ( b u t a l ­ ways w i t h DS = 2 ) . M o r e o v e r f o r theNaDS w i t h M = Θ . 1 0 and f o r h e p a r i n no e q u i v a l e n c e - p o i n t may be e s t i m a t e d f r o m F i g . 6. The p o l y d i s p e r s i t y o f o u r NaDS s a m p l e s , o f unknown m o l e c u l a r weight d i s t r i b u t i o n s , precludes q u a n t i t a t i v e i n t e r p r e t a t i o n o f C

4

3

3

3

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

23.

CRESCENZI ET AL.

Ionic

339

Polysaccharides

these i n t e r e s t i n g o b s e r v a t i o n s . A p o s s i b l e q u a l i t a t i v e explana­ t i o n may however be t h a t a t v e r y low N/ £ H S A ] v a l u e s t h e p r o t e i n b i n d i n g p r o c e s s t a k e s p l a c e w i t h p r a c t i c a l l y i d e n t i c a l mechanisms, i n d e p e n d e n t o f NaDS m o l e c u l a r w e i g h t . T h i s i s i n agreement w i t h b o t h s p e c t r o s c o p i c and c a l o r i m e t r i c e x p e r i m e n t a l e v i d e n c e . F o r h i g h e r N/ [HSA] v a l u e s , i . e . n e a r t o 20 ( s e e F i g . 5a_), d i f f e r e n c e s i n t h e " b i n d i n g - s i t e s " f o r HSA a l o n g s h o r t c h a i n s and l o n g e r p o l y ­ s a c c h a r i d e c h a i n s become e v i d e n t . One may assume t h a t w i t h t h e l o n g e r c h a i n s more f i x e d c h a r g e s may be engaged i n t h e b i n d i n g o f e a c h a l b u m i n g l o b u l a r m o l e c u l e ( a t h i g h N/ [jHSA] v a l u e s ) so t h a t more heat i s e v o l v e d ( F i g . 6) and more o p p o r t u n i t y i s g i v e n t o rhodamine t o p a r t i c i p a t e i n t h e c o m p l e x a t i o n ( F i g . 5a_) . The same q u a l i t a t i v e r e a s o n i n g m i g h t a p p l y a s w e l l t o t h e Hep-HSA c a s e (PI o f h e p a r i n c a . 104 ) w h i c h , t o a f i r s t a p p r o x i m a ­ t i o n , may r e s e m b l e t h e HSA-NaDS ΙΊ = 8 . 1 0 c a s e . I t has t o be r e ­ c a l l e d t h a t t h e c a l o r i m e t r i c e x p e r i m e n t s were p e r f o r m e d u s i n g HSA s o l u t i o n s n e a r l y t e n t i m e s more c o n c e n t r a t e d t h a n i n t h e s p e c t r o ­ scopic experiments. F i n a l l y , c o n c e r n i n g t h e i n f l u e n c e of_NaDS mo­ l e c u l a r w e i g h t , i t must be s a i d t h a t u s i n g a sample w i t h Π = 5 . 1 0 3

5

(DS

= 2) p r o t e i n p r e c i p i t a t i o n o c c u r r e d . F i n d i n g s r e p o r t e d here deserve f u r t h e r study inasmuch as t h e s y s t e m s c o n s i d e r e d and t h e o r i g i n a l e x p e r i m e n t a l a p p r o a c h e s used may y i e l d v a l u a b l e " r e f e r e n c e " i n f o r m a t i o n f o r s i m i l a r i n v e s t i g a ­ t i o n s on p o l y s a c c h a r i d e - p r o t e i n s s y s t e m s i n w h i c h s p e c i f i c i n t e r ­ a c t i o n s do p l a y an i m p o r t a n t r o l e ( e . g . h e p a r i n - a n t i t h r o m b i n I I I ) . II) Natural carboxylated

polysaccharides

a) D i s s o c i a t i o n e q u i l i b r i a o f X a n t h a n and PS-10. P r i o r t o a d i s c u s s i o n o f d a t a c o n c e r n i n g t h e p r o t o n a t i o n e q u i l i b r i a , i t may be o f i n t e r e s t t o r e p o r t b r i e f l y a few r e s u l t s on t h e e n t h a l p y o f d i l u t i o n and on t h e e n t h a l p y o f C u i o n b i n d i n g f o r Xanthan and PS-10 i n d i l u t e aqueous s o l u t i o n . F i r s t o f a l l i t must be p o i n t e d out t h a t w h i l e f o r Xanthan t h e c h e m i c a l s t r u c t u r e and c o n f o r m a t i o n a l f e a t u r e s have been a l r e a d y e l u c i d a t e d a n d / o r t h r o u g h l y i n v e s t i g a ­ t e d , _no s i m i l a r i n f o r m a t i o n i s a v a i l a b l e f o r PS-10. F o r t h e l a t t e r e x o c e l l u l a r p o l y s a c c h a r i d e , i n f a c t , i t a p p e a r s t h a t , so f a r , c h e m i c a l c o m p o s i t i o n (_6, 7) o n l y i s known ( g l u e : g a l a c t : g l u c A : f u c o s e = 6:4:3:2, and an 0 - a c e t y l c o n t e n t o f 4 . 5 % ) . Never­ t h e l e s s , we d e c i d e d t o use PS-10 i n o u r s t u d i e s e s s e n t i a l l y a s a r e f e r e n c e p o l y s a c c h a r i d e compound d e v o i d o f c h a i n c o n f o r m a t i o n a l o r d e r a t any pH o r i o n i c s t r e n g t h , a s opposed t o t h e c a s e o f Xan­ than . F o r t h e s e two n a t u r a l c a r b o x y l a t e d p o l y s a c c h a r i d e s w h i c h have e q u i v a l e n t w e i g h t s : 633 ( X a n t a h n ) and 854 ( P S - 1 0 ) , t h e heat o f d i l u t i o n d a t a a r e g i v e n i n F i g . 7. I t once more a p p e a r s t h a t Δ Η ρ i s a l i n e a r f u n c t i o n o f logN, a t l e a s t i n t h e l i m i t e d range o f Ν values s t u d i e d , as experienced w i t h the s u l f a t e d p o l y s a c c h a r i d e s ( F i g s 2 and 3: l o w Ν v a l u e s ) . H e r e , however, c o r r e l a t i o n o f t h i s f e a t u r e w i t h t h e o r i e s based on l i n e - c h a r g e models i s o u t o f t h e 2 +

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

SOLUTION PROPERTIES O F POLYSACCHARIDES

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

340

Figure 6. Calorimetric data on the interaction of HSA with dextran sulfate (*,+) and with heparin (A) in aqueous solution (25°C), pH = 5.04, acetate buffer (7 · 10 M), albumin concentration (constant) = 1.45 · 10 mol/L. (jf) dextran sul­ fate, M = 4 · 10 ; (%) dextran sulfate, Ή = 8 · 10 ; (A) heparin. 2

4

4

3

Figure 7. Enthalpy of dilution of xanthan and PS-10 (25°C): (A) PS-10 in water; (ic) xanthan in 5 · 10 M NaCl; (A) PS-10 in 1 · 10' M NaCl; (O) PS-10 in 5 · 10- M NaCl. 2

2

2

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

23.

CRESCENZI ET AL.

Ionic

341

Polysaccharides

q u e s t i o n i n view o f the complex, branched s t r u c t u r e o f Xanthan. I n o t h e r words, t h e l i n e a r i t y o f c a l o r i m e t r i c p l o t s s u c h a s t h o s e o f F i g . 7 ( d a t a i n w a t e r and i n aqueous N a C l , a t 25 C) i s n o t , i n our o p i n i o n , a m a n i f e s t a t i o n o f t h e " p o l y e l e c t r o l y t i c " n a t u r e o f species considered. On t h e o t h e r hand d a t a r e p o r t e d i n F i g . 8 i n d i c a t e t h a t t h e h i g h e r c h a r g e - d e n s i t y o f X a n t h a n compared t o PS-10 shows up i n a h i g h e r heat o f C u i o n b i n d i n g and i n a l o w e r a c t i v i t y c o e f f i ­ cient o f Na counterions. From t h e i n i t i a l s l o p e o f t h e Q a g a i n s t [ C u ] /N p l o t s o f F i g . 8 one e s t i m a t e s f o r X a n t h a n i n water a d i f f e r e n t i a l enthalpy o f C u b i n d i n g o f about 1 K c a l per mole o f c o p p e r bound. I n c o n c l u s i o n , a s f o u n d w i t h t h e s u l f a t e d p o l y s a c c h a r i d e s ( F i g . 4) a s w e l l a s w i t h d i f f e r e n t s y n t h e t i c p o l y c a r b o x y l a t e s (2Π, c h e l a t i o n o f C u i o n s by p o l y a n i o n s i s a p r o ­ c e s s s y s t e m a t i c a l l y d r i v e n by t h e e n t r o p y . 2 +

+

B

2 4

2 +

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

2 +

Passing t o the p r o t o n a t i o n e q u i l i b r i u m experiments, our c a l o ­ r i m e t r i c r e s u l t s a r e r e p o r t e d i n F i g . 9. I t i s e v i d e n t t h a t i n t h e case o f Xanthan i n water the e n t h a l p y o f p r o t o n a t i o n i s r a t h e r anomalous. L e a v i n g a s i d e p o s s i b l e a g g r e g a t i o n Τ—» disaggregation phenomena w h i c h , i n o u r e x p e r i e n c e , may r e n d e r t r o u b l e s o m e a l l p h y s i u o - c h e m i c a l measurements on aqueous X a n t h a n but w h i c h s h o u l d be m i n i m i z e d f o r o u r t h e r m a l l y t r e a t e d s o l u t i o n s (2£) (see a l s o E x p e r i m e n t a l P a r t ) , we p r o p o s e t h a t t h e anomalous e n t h a l p y t r e n d may be a s c r i b e d t o a c o n f o r m a t i o n a l , i s o t h e r m a l change o f X a n t h a n chains. This hypothesis appears t o g a i n support from the c i r c u l a r d i c h r o i s m d a t a i l l u s t r a t e d i n F i g s 10 and 11 f o r PS-10 and X a n t h a n respectively. F o r PS-10 t h e change o f t h e CD s p e c t r u m w i t h pH e s s e n t i a l l y r e f l e c t s t h e u n d i s s o c i a t e d T"*" d i s s o c i a t e d e q u i l i b r i u m o f c a r b o ­ x y l g r o u p s o f g l u c A r e s i d u e s (21_, _22) . F o r X a n t h a n t h e dependence o f t h e CD s p e c t r a on pH i s more c o m p l i c a t e d b e c a u s e d i f f e r e n t chromophores (23) p a r t i c i p a t e i n t h e above s a i d e q u i l i b r i u m : one c a n , n e v e r t h e l e s s , d i s t i n g u i s h peculiar v s . pH f e a t u r e s i n c o r r e s p o n d e n c e w i t h pH v a l u e s f o r which anomalies are a l s o d e t e c t a b l e i n the c a l o r i m e t r i c p l o t s (Fig. 8]. I n 0.1 N a C l (25°) a l l a n o m a l i e s a r e c a n c e l l e d o u t , and t h e o r d e r e d c o n f o r m a t i o n assumed by X a n t h a n i n t h i s m i l i e u (_4, 5_) would t h u s r e s i s t any pH p e r t u r b a t i o n . Experimental The segmented i - c a r r a g e e n a n sample was a K i n d g i f t o f Dr. S. Reid, U n i l e v e r Research Laboratory (England). The i n t a c t i - c a r r a _ geenan sample was a SIGNA-4 (USA) p r o d u c t , p u r i f i e d and c h a r a c t e ­ r i z e d i n t h e CERNAV l a b o r a t o r y o f t h e U n i v e r s i t y o f G r e n o b l e (France). Dextran s u l f a t e o f Π = 5.10 , 4.10 and 8.10 were PHARMACIA (Sweden) s a m p l e s , w h i c h have been p u r i f i e d by d i a l y s i s . E l e m e n t a l a n a l y s i s o f t h e above p o l y s a c c h a r i d e s (Na s a l t s ) and p o t e n t i o m e t r i c t i t r a t i o n s c a r r i e d out a f t e r c o n v e r s i o n t o t h e 5

4

3

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

SOLUTION

PROPERTIES

OF

POLYSACCHARIDES

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

342

2+

Figure 8. Calorimetric data on Cu binding by xanthan and PS-10 in aqueous solutions (25°C): (A) xanthan in 1 · 10' M NaCl; (+) PS-10 in water; (Φ) PS-10 in 1 - 10 M NaCl. In the insert y + for (+) PS-10 (in water) and (A) xanthan (in water). 2

2

Na

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

23.

CRESCENZI E T A L .

Ionic

343

Polysaccharides

Figure 9. Enthalpy of protonation data for xanthan and PS-10 (25 °C). Polymer concentration = 5 · 10' equiv/L. (O) PS-10 in water; (A) PS-10 in 0.1M NaCl; (if) xanthan in 0.1M NaCl; (Φ, A) xanthan (degraded, undegraded) in water. 3

Figure 10. CD spectra of PS-10 in aque­ ous solution at different pHs. Polymer concentration 3 . 10 monomol/L. The [®] in deg cm /dmol (mole of repeating units, assuming 2562 as the average unit's weight): (a) acid form; (b) sodium salt. In the insert: pH dependence of molecu­ lar ellipticity of PS-10 at 206 nm in water (O)andinO.lMNaCl (V). 3

2

200

210

220

230 240

(nm)

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

SOLUTION

PROPERTIES

OF

POLYSACCHARIDES

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

344

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

23.

CRESCENZI E T AL.

Ionic

345

Polysaccharides

f r e e a c i d s by i o n exchange have y i e l d e d t h e f o l l o w i n g e q u i v a l e n t w e i g h t d a t a : 1) i - c a r r a g e e n a n segments, 270; 2) i n t a c t i - c a r r a g e e nan, 270; 3 ] d e x t r a n s u l f a t e , 219, t a k i n g o f c o u r s e i n t o a c c o u n t the d i f f e r e n t w a t e r c o n t e n t s o f t h e s a m p l e s . These v a l u e s c o r r e s p o n d t o a d e g r e e o f s u b s t i t u t i o n o f 2.0 f o r d e x t r a n s u l f a t e (number o f s u l f a t e g r o u p s p e r g l u c o s e r e s i d u e ) and o f 1.7 f o r i - c a r r a g e e n a n segments ( a v e r a g e number o f s u l f a t e g r o u p s p e r two s u g a r r e s i d u e s i n t h e c h a i n ) . The h e p a r i n used was a p u r i f i e d sample f r o m P r o f . B. Casu l a boratory ( M i l a n ) , with the f o l l o w i n g c h a r a c t e r i s t i c s : b i o l o g i c a l a c t i v i t y = 157 u.; e q u i v a l e n t w e i g h t = 168; r a t i o [ C O O H ] t_S0 ]= = 1/2.3. F o r t h e so c a l l e d c h a r g e d e n s i t y p a r a m e t e r ^ = e / D k T b where b i s t h e d i s t a n c e between n e i g h b o r i n g c h a r g e s on t h e macroi o n s , e the e l e c t r o n i c charge, D the d i e l e c t r i c c o n s t a n t o f the s o l v e n t , and k i s t h e B o l t z m a n n ' s c o n s t a n t , one can t h e r e f o r e c a l c u l a t e t h e f o l l o w i n g v a l u e s : 1.2 ( i - c a r r a g e e n a n ) ; 1 . 3 ( h e p a r i n ) ; 2.8 ( d e x t r a n s u l f a t e ) . Two X a n t h a n s a m p l e s have been u s e d ; one was a p u r i f i e d , c e l l u l a s e - d e g r a d e d , (lï = 2 . 1 0 ) sample f r o m P r o f . R i n a u d o l a b o r a t o r y ( G r e n o b l e ) ; t h e o t h e r was a K e l c o p r o d u c t , p u r i f i e d a c c o r d i n g t o the l i t e r a t u r e ( 2 4 ) . F o r b o t h samples t h e e q u i v a l e n t w e i g h t (by NaGH t i t r a t i o n o f t h e a c i d f o r m s ) was 633. S o l u t i o n s o f Xanthan were h e a t e d a t 80 f o r 10-15 h r s p r i o r t o measurements: s u c h a t r e a t m e n t l e a v e s unchanged t h e e q u i v . w e i g h t but e f f i c i e n t l y r e d u ces pplymer a g g r e g a t i o n . PS-10 was a K e l c o p r o d u c t . I t was s o n i c a t e d t o r e d u c e t h e v i s c o s i t y , p u r i f i e d by c e n t r i f u g a t i o n and p r e c i p i t a t i o n f r o m aqueous NaCl-EDTA s o l u t i o n w i t h i s o p r o p y l a l c o h o l . The p o l y m e r was r e d i s s o l v e d i n w a t e r and d i a l y z e d e x h a u s t i v e l y a g a i n s t r e d i s t i l l e d w a t e r a t 5 C, l y o p h i l i z e d and r e d i s s o l v e d a s r e q u i r e d . The e q u i v a l e n t w e i g h t (854) was d e t e r m i n e d by NaOH t i t r a t i o n o f the a c i d f o r m a s w e l l a s by f l a m e ( N a ) p h o t o m e t r y . Human serum a l b u m i n was a Sigma p r o d u c t ( l o t No. A - 9 5 1 1 ) . F l u o r e s c e i n e ( s o d i u m s a l t ) was p u r c h a s e d f r o m C. E r b a ( I t a l y ) and Rhodamine-B f r o m N e r c k (W. Germany): b o t h were used w i t h o u t further ourification. C o p p e r n i t r a t e s o l u t i o n s were p r e p a r e d u s i n g a p u r e Cu ( N O g ^ 3 H 0 (C. E r b a ) s a m p l e : t h e t i t r e o f t h e s o l u t i o n s was c o n t r o l l e d by t i t r a t i o n o f H N O 3 l i b e r a t e d upon p a s s a g e t h r o u g h an i o n - e x c h a n ge c o l u m n . A l l s o l u t i o n s were p r e p a r e d u s i n g d e i o n i z e d , t w i c e - d i s t i l l e d water. S p e c t r a l measurements were c a r r i e d o u t w i t h a C a r y - 2 1 9 s p e c t r o p h o t o m e t e r ; c i r c u l a r d i c h r o i s m measurements w i t h a Cary-61 dichrograph. The t e m p e r a t u r e o f t h e c e l l s was i n a l l c a s e s c o n t r o l l e d (+_ 0.1°C) by c i r c u l a t i n g w a t e r t h r o u g h an u l t r a t h e r m o s t a t (Haake). C a l o r i m e t r i c measurements were p e r f o r m e d u s i n g a LKB 10070b a t c h m i c r o c a l o r i m e t e r a t 25°C f o l l o w i n g a p r o c e d u r e s i m i l a r t o t h a t a l r e a d y d e s c r i b e d e l s e w h e r e ( 3 ). The r e s u l t s o f t h e d i l u t i o n e x p e r i m e n t s a r e r e p o r t e d i n F i g s . 2, 3 , and 7 a s i n t e g r a l

/

3

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

2

5

+

2

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

SOLUTION

346

PROPERTIES

OF

POLYSACCHARIDES

heats o f d i l u t i o n Δ Η Ρ ( c a l o r i e s per equivalent o f p o l y e l e c t r o l y t e ) a g a i n s t logN p l o t s , where Ν i s t h e p o l y e l e c t r o l y t e c o n c e n t r a t i o n in equiv/1. The r e s u l t s o f t h e C u i o n b i n d i n g e x p e r i m e n t s a r e c o l l e c t e d i n F i g s 4 and 8 where t h e measured h e a t s Qg ( c a l o r i e s per e q u i v a l e n t o f p o l y e l e c t r o l y t e , a f t e r c o r r e c t i o n f o r heats o f d i l u t i o n ) a r e p l o t t e d a g a i n s t t h e [ C U ] /N r a t i o . P o t e n t i o m e t r i c measurements f o r t h e e v a l u a t i o n o f N a a c t i v i ­ t y c o e f f i c i e n t s were c a r r i e d o u t u s i n g a O r i o n 801 A n a l y s e r w i t h a Orion Na-electrode i n conjunction with a reference calomel elec­ t r o d e and a w a t e r j a c k e t e d t i t r a t i o n c e l l . 2+

2 +

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

+

Acknowledgements : T h i s work h a s been c a r r i e d o u t w i t h f i n a n c i a l s u p p o r t o f t h e I t a l i a n C.N.R. The a s s i s t a n c e o f D r . G. P a r a d o s s i and o f N r . L. P i e t r e l l i i n p e r f o r m i n g a number o f e x p e r i m e n t s i s acknowledged.

Literature Cited 1. Crescenzi V . ; "Thermochemistry of Polyelectrolyte Solutions", Charged and Reactive Polymers, Ed. E. Selegny, D. Reidel Publ. Co., Holland-USA 1974, pgs. 115-135. 2. Crescenzi V . , Delben F . , Quadrifoglio F . , Dolar D., J . Phys. Chem., 1973, 77, 539. 3. Paoletti S., Delben F . , Crescenzi V. J . Phys Chem., 1976, 2564. 4. Rinaudo M., Milas M. Biopolymers, 1978,

17,

80,

263.

5. Southwick J . G . , McDonnell M . E . , Jamieson Α.M., and Blackwell J . Macromolecules, 1979, 12, 305. 6. Kang K . S . , Veeder G . T . , Richey D.D. "Extracellular Microbial Polysaccharides", Am. Chem. Soc. Symp. 45. Eds. P.A. Sandford, A. Laskin, Am. Chem. Soc., Washington, D . C . , 1977, p.211-2119. 7. Sandford P . Α . : "Exocellular, Microbial Polysaccharides" Adv. Carb. Chem. Biochem., 1979, 36, 297. 8. Joseleau J . P . , Marais M.F. Carb. Res, 1979, 77, 9. Milas M., Rinaudo M. Carb. Res., 1979,

76,

183.

189.

10. Pass G . , Phillips G.O., Wadlock D . J . , Morley R.G. "Interaction of Sulfated Polysaccharides with counterions". chaot. 17 of: Carbohydrate Sulfates, R.G. Schweiger E d . , Am. Chem. Soc. Symp. 1878, 77.

In Solution Properties of Polysaccharides; Brant, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

23.

CRESCENZI ET AL.

Ionic Polysaccharides

347

11. Cleland R.L. Biopolymers, 1979, 18, 2673. 12. Crescenzi V . , Dentini M., Paradossi G . , and Rizzo R. Polymers B u l l . , 1979, 1, 777. 13. Manning G.S.; J. Chem. Phys., 1969,

51,

924.

14. Boyd G . E . , Wilson D.P. J . Phys. Chem. 1976, 80, 805 15. Delben F., Paoletti S., and Crescenzi V . : in preparation.

Downloaded by UNIV OF SYDNEY on March 21, 2013 | http://pubs.acs.org Publication Date: April 21, 1981 | doi: 10.1021/bk-1981-0150.ch023

16. Casu B.; Pharm. Res Commun., 1979,

11, 1.

17. Ledward D.A.: "Protein-polysaccharide Interactions" Polysac­ charides in Food. J.M.V. Blandshard, and J.R. Mitchell Eds. Butterworths, 1979, p. 205-217. 18. Manzini G . , Ciana Α., and Crescenzi V. Biophys. Chem., 1979, 10, 389. 19. Manzini G . , Crescenzi V. Biophys. Chem., 1979,

10,

297.

20. Rinaudo M., Milas M.; Intnl. J . B i o l . Macromol. 1980, 2, 54. 21. Park J.W., Chakrabarti B. Biochem. Biophys. Res. Commun. 1977, 78, 604. 22. Morris E . H . , Rees D.A., Sanderson G.R., Thorn D. J . Chem. Soc. Perkin, 1975,

2,

1418.

23. Morris E . R . , Rees D.A., Young G . , Walkinshaw M.D., Darke A. J . Mol. B i o l . , 1977, 110, 1. 24. Holzwarth G.; Biochemistry, 1976, RECEIVED August 26,

15, 4333.

1980.

American Chemical Society Library 1155 16th St. N. W. In Solution Properties of Polysaccharides; Brant, D.; Washington, D. C. 20036 ACS Symposium Series; American Chemical Society: Washington, DC, 1981.