7 Some Aspects of Liquid Crystal
Downloaded via TUFTS UNIV on July 10, 2018 at 18:22:55 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Microdynamics JEAN CHARVOLIN 1
Laboratoire de Physique des Solides , Bât. 510, Université Paris-Sud, 91405 Orsay, France Interest in thermotropic liquid crystals has focussed mainly on macroscopic properties; studies relating these properties to the microscopic molecular order are new. Lyotropic liquid crystals, e.g. lipid-water systems, however, are better known from a microscopic point of view. We detail the descriptions of chain flexibility that were obtained from recent DMR experiments on deuterated soap molecules. Models were developed, and most chain deformations appear to result from intramolecular isomeric rotations that are compatible with intermolecular steric hindrance . The characteristic times of chain motions can be estimated from earlier proton resonance experiments. There is a possibility of collective motions in the bilayer. The biological relevance of these findings is considered briefly. Recent similar DMR studies of thermotropic liquid crystals also suggest some molecular flexibility. T n t h e r m o t r o p i c l i q u i d c r y s t a l studies, great effort w a s e x p e n d e d i n i n A
v e s t i g a t i n g m a c r o s c o p i c p r o p e r t i e s s u c h as o r d e r , elasticity, a n d viscos-
i t y . T h e s e p r o p e r t i e s d e p e n d , o f course, o n m i c r o s c o p i c parameters are c h a r a c t e r i s t i c o f t h e interactions b e t w e e n i n d i v i d u a l m o l e c u l e s .
that Since
m o s t m e s o g e n m o l e c u l e s a r e v e r y c o m p l e x s t r u c t u r a l l y , these i n t e r a c t i o n s are e x p e c t e d t o d e p e n d g r e a t l y o n the m o l e c u l a r c o n f o r m a t i o n . N e v e r t h e less, t h e r m o t r o p i c l i q u i d crystals h a v e b e e n a n a l y z e d m a i n l y as assemblies of r i g i d c y l i n d r i c a l r o d s . Studies that a t t e m p t t o relate m a c r o s c o p i c a n d m i c r o s c o p i c orders are just b e g i n n i n g . T h e p r e l i m i n a r y findings f r o m s u c h studies w e r e d i s c u s s e d at t h e F i f t h I n t e r n a t i o n a l L i q u i d C r y s t a l C o n f e r ence; t h e y i n d i c a t e that t h e t r a d i t i o n a l r o d p i c t u r e is n o t a d e q u a t e f o r a r e a l u n d e r s t a n d i n g o f m o s t l i q u i d c r y s t a l l i n e phases. T h i s p o i n t o f v i e w 1
Laboratoire associé au C N R S . 101
Friberg; Lyotropic Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
102
LYOTROPIC
a) lamellar
LIQUID
CRYSTALS
b) hexagonal
Figure 1. Schematic representation of two lyotropic mesophases. The lamellar phase (left) is a periodical stacking along one dimension of soap and water hmellae. In the hexagonal phase (right), the soap cylinders are organized in a two-dimensional array. is r e i n f o r c e d b y r e c e n t t h e o r e t i c a l considerations that stress t h e i m p o r t a n c e of e n d chains i n the t h e r m o d y n a m i c s of s m e c t i c ( I ) a n d n e m a t i c (2)
mesophases. It is i n t e r e s t i n g that w o r k o n t h e i n t e r n a l m o t i o n s of t h e m o l e c u l e s
that p r o d u c e l y o t r o p i c mesophases is m o r e a d v a n c e d .
T h i s is m a i n l y
because of t h e i m p o r t a n c e of t h e m i c r o s c o p i c properties of these systems i n s o l u b i l i z a t i o n a n d i n t e r f a c i a l p r o b l e m s , p r o b l e m s w h i c h are e n c o u n t e r e d i n i n d u s t r y as w e l l as i n c e l l m e m b r a n e b i o l o g y . T h e s t r u c t u r a l a n d f u n c t i o n a l roles of l i p i d m o l e c u l e s i n b i o m e m b r a n e s are m u c h d i s c u s s e d ; i n vestigations of t h e p h y s i c o c h e m i c a l properties of l i p i d m e d i a thus m i g h t p r o v i d e orientations f o r b i o l o g i c a l studies. M o r e o v e r , t h e findings o n t h e f l e x i b i l i t y of t h e p a r a f f i n i c chains i n l y o t r o p i c mesophases m i g h t also b e r e l e v a n t to s i m i l a r p r o b l e m s i n t h e r m o t r o p i c mesophases. Paraffinic Chain Flexibility in Bilayers L i p i d - w a t e r systems are t h e s i m p l e s t of l y o t r o p i c l i q u i d crystals. B e cause of t h e s t r o n g a m p h i p a t i c character
of l i p i d s , these systems
con-
stitute d i s t r i b u t i o n s of t w o m e d i a : t h e aqueous a n d t h e paraffinic. T h e m u c h d i v e r s i f i e d g e o m e t r y of t h e d i s t r i b u t i o n s w a s d e m o n s t r a t e d b y x - r a y ( 3 ) . T o s u m m a r i z e b r i e f l y , t h e m o l e c u l a r aggregates c a n b e l a m e l l a e , r i b b o n s , r o d s , o r spheres o r g a n i z e d i n l o n g r a n g e lattices w i t h p e r i o d i c i t i e s i n o n e , t w o , o r three d i m e n s i o n s .
T h e s i m p l e s t w a y to u n d e r s t a n d this
r i c h p o l y m o r p h i s m is to assume that the paraffinic chains are flexible i n o r d e r to fill u n i f o r m l y the i r r e g u l a r l y s h a p e d v o l u m e s that are a v a i l a b l e to t h e m . T h i s i d e a is c o m p a t i b l e w i t h t h e short range d i s o r d e r d e t e c t e d at t h e m o l e c u l a r l e v e l b y w i d e - a n g l e x - r a y scattering ( 3 ) . T h e s c h e m a t i c representations
of t w o l y o t r o p i c mesophases ( F i g u r e 1) d e p i c t t h e c o -
existence of a l o n g range o r d e r w i t h a short r a n g e d i s o r d e r . W e s h a l l
Friberg; Lyotropic Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
7.
CHARVOLIN
103
Microdynamics
focus o u r interest o n some studies o f p a r a f f i n i c c h a i n b e h a v i o r i n b i l a y e r l a m e l l a r structures. Magnetic Resonance Studies. S e v e r a l e x p e r i m e n t a l t e c h n i q u e s are sensitive t o l o c a l
fluctuations
that
h a v e b e e n u s e d . O f these, n u c l e a r m a g -
n e t i c r e s o n a n c e ( N M R ) y i e l d s , i n this p a r t i c u l a r field, t h e m o s t r e l i a b l e quantitative data.
I n t h e past, m o s t N M R studies, l y o t r o p i c as w e l l as
t h e r m o t r o p i c , w e r e of t h e protons that are n a t u r a l l y present i n t h e m o l e cules.
H o w e v e r , i n s u c h a n i s o t r o p i c systems, t h e r e s i d u a l d i p o l a r c o u -
p l i n g b e t w e e n t h e protons a r e v e r y large, a l l n u c l e a r spins a r e c o u p l e d , a n d i t is i m p o s s i b l e to resolve specific m o l e c u l a r g r o u p s ( 4 ) . A d e c i s i v e step w a s t h e N M R s t u d y o f d e u t e r a t e d m o l e c u l e s
(DMR).
Since t h e
d i p o l a r c o u p l i n g s b e t w e e n deuterons a r e n e g l i g i b l e , t h e system is o n e o f u n c o u p l e d spins. D i f f e r e n t m o l e c u l a r g r o u p s c a n b e d i s t i n g u i s h e d b y d i f ferences i n t h e m o t i o n a l a v e r a g i n g o f t h e q u a d r u p o l a r c o u p l i n g s of t h e i r C - D bonds. I n t h e presence o f a q u a d r u p o l a r c o u p l i n g , t h e N M R l i n e of a d e u t e r o n is s p l i t i n t o a s y m m e t r i c d o u b l e t . W i t h a n a x i a l e l e c t r i c field g r a d i ent ( e . f . g . ) , t h e d o u b l e t s p a c i n g i n f r e q u e n c y u n i t s is g i v e n b y : A=
l f ! ^( cos 0-l) 4 h
V
w h e r e e qÇ/h 2
(1)
2
3
is t h e static q u a d r u p o l a r c o u p l i n g constant a n d θ is t h e
angle b e t w e e n t h e e.f.g. axis a n d t h e m a g n e t i c
field.
M o t i o n s o f this axis
m o d u l a t e 0, a n d t h e y s h o u l d b e t i m e - a v e r a g e d i f t h e m o t i o n f r e q u e n c i e s are l a r g e r t h a n t h e static i n t e r a c t i o n .
I f t h e m o t i o n is a n i s o t r o p i c a n d
a d m i t s a n axis of s y m m e t r y , E q u a t i o n 1 b e c o m e s : 3 e qQ . 3cos 0' —- ~ - < 2 2
Δν=
2
1
, > (
Q
3 c o s
.
, Φ — !) Λ
. ( )
( T }
2
w h e r e θ' a n d ψ a r e t h e angles m a d e b y t h e s y m m e t r y axis w i t h t h e e.f.g. axis a n d t h e m a g n e t i c field, r e s p e c t i v e l y .
A n effective q u a d r u p o l a r c o u
p l i n g constant is m e a s u r e d w h i c h i s : e qQ 2
3cos 0' g 2
1
, 3cos 0' — 1 where< > 2
>
c a n b e d e f i n e d as t h e o r d e r p a r a m e t e r , S, o f t h e axis o f t h e e.f.g. r e l a t i v e to the axis of s y m m e t r y . A s p e c t r u m of p e r d e u t e r a t e d p o t a s s i u m laurate i n o r i e n t e d
soap-
w a t e r m u l t i l a y e r s ( 5 ) is p r e s e n t e d i n F i g u r e 2 . T h e m e a s u r e d q u a d r u p o l a r c o u p l i n g constants a r e m u c h smaller t h a n those o f a static C - D b o n d , w h i c h a r e a b o u t 167 k H z ( 6 ) ; t h e r e s i d u a l q u a d r u p o l a r s p l i t t i n g s
Friberg; Lyotropic Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
104
LYOTROPIC
LIQUID
CRYSTALS
d-C K,217.H 0 12
(lamellar
«
I
» I—»
I
I
0
I
2
mesophase,82°C)
I 1 1I 5
I
I 10
I
• ι
15
ι
ι
I .•
ι
20
Frequency (kHz) from 13 MHz Figure 2. A DMR spectrum obtained at 13 MHz with an oriented sample. The normal to the lamella is at π/2 from the external magnetic field. Only half the spec trum, which is symmetric about the zero central fre quency, is pictured. Each line can be attributed to a methylene, or methyl, group; the greater the shift, the closer the group to the polar head. r e v e a l t h a t a n i s o t r o p i c i n t r a m o l e c u l a r m o t i o n s take p l a c e a n d average m u c h o f t h e static c o u p l i n g . T h e m e a s u r e d splittings are thus p r o p o r t i o n a l to t h e o r d e r p a r a m e t e r s S of t h e C - D b o n d s w i t h respect t o t h e o p t i c a l axis o f t h e l i q u i d c r y s t a l .
Since t h e splittings are distinct, the
amplitudes of the motions must vary a l l along the chain. V a r i a t i o n i n the s p l i t t i n g w i t h l o c a t i o n of t h e m e t h y l e n e o n the c h a i n is p l o t t e d i n F i g u r e 3.
Seelig a n d Niederberger ( 7 ) deuterated specifically each
methylene
g r o u p of s o d i u m d e c a n o a t e a n d o b s e r v e d v e r y s i m i l a r v a r i a t i o n i n a ternary
lamellar
system
(sodium
decanoate-decanol-water).
Such
a
c u r v e c a n b e c o n s i d e r e d a n a c c u r a t e representation o f c h a i n flexibility i n the paraffinic m e d i u m . Chain Deformations. A s t r i k i n g feature of t h e splittings i n F i g u r e 3 is t h a t — e x c l u d i n g t h e first, s e c o n d , a n d last three segments o f t h e c h a i n — a l l t h e other m e t h y l e n e groups h a v e n e a r l y t h e same o r d e r
parameter.
F o r a n i s o l a t e d c h a i n , this w o u l d b e v e r y o d d b e c a u s e e a c h s e g m e n t is e x p e c t e d t o h a v e greater o r i e n t a t i o n a l f r e e d o m t h a n t h e p r e c e d i n g o n e . I n other w o r d s , t h e
flexibility
of a free c h a i n c o u l d n o t y i e l d s u c h a
p l a t e a u . H o w e v e r , f o r a c h a i n i n a b i l a y e r , t h e steric r e p u l s i o n s b e t w e e n n e i g h b o r i n g chains s h o u l d also b e c o n s i d e r e d ; t h e y r e s u l t f r o m t h e c o n straints i m p o s e d b y t h e p a c k i n g of t h e l i p i d p o l a r heads at t h e interface.
Friberg; Lyotropic Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
7.
CHARVOLIN
Microdynamics
0,021
1
ι
1
0 1 2 3 Λ
105
'
'
ι
ι
ι
5 6 7 8 9
ι
1 L 10 11
Carbon number (from polar head) Figure 3. Variation in the order parameter S of a C-D bond as the distance from the polar head increases. S is defined refotive to the symmetry axis of the lamella. Recently, d e Gennes considered the situation i n w h i c h the mean spacing between chains, w h e n measured n o r m a l l y to the chain elongation axis, r e m a i n s u n i f o r m i n t h e regions o f t h e b i l a y e r s w i t h o u t c h a i n ends. H e d e m o n s t r a t e d that t h e steric interactions c o n s t r a i n t h e chains i n s u c h a w a y that o r i e n t a t i o n a l d i s o r d e r c a n n o t increase a l o n g t h e c h a i n as i t w o u l d f o r a n i s o l a t e d c h a i n ( 8 ) . T h e decrease of t h e o r d e r parameters f o r t h e last f e w segments is t h e n e x p l a i n e d b y t h e presence o f m a n y c h a i n ends i n t h e c e n t r a l r e g i o n of t h e b i l a y e r w h i c h makes t h e steric h i n d r a n c e m u c h less stringent. I f this i n t e r p r e t a t i o n is correct, t h e n t h e f a c t that this d r o p i n v o l v e s t h e last three segments of t h e c h a i n i m p l i e s that t h e c h a i n ends are n o t c o n f i n e d to a p l a n e i n t h e exact center of t h e b i l a y e r , b u t r a t h e r that t h e y are d i s t r i b u t e d over a r e g i o n o f s i z e a b l e thickness.
This,
i n t u r n , i m p l i e s that t h e c h a i n d e f o r m a t i o n s a r e n o t r e s t r i c t e d t o s m a l l angle torsions o r flexions o f t h e b o n d s , b u t t h e y also i n v o l v e i s o m e r i c r o t a tions a r o u n d t h e C - C b o n d s w h i c h c a n m o v e t h e c h a i n e n d a p p r e c i a b l y . A free c h a i n w i t h η l i n k s h a s a b o u t 3
n
r o t a t i o n a l isomers ( 9 ) m a n y of
w h i c h are c e r t a i n l y s t i l l accessible i n t h e mesophase.
T o describe i n de
t a i l t h e t h e r m a l m o t i o n s b e t w e e n a l l these c o n f o r m a t i o n s w o u l d b e a n o v e r w h e l m i n g task.
H o w e v e r , a f e w v e r y specific m o d e l s c a n b e d e v e l
o p e d i f o n e considers o n l y t h e s i m p l e s t isomers. A c h a i n s u b g r o u p h a s three r o t a t i o n a l isomers b e c a u s e o f rotations a r o u n d t h e C - C b o n d ( 9 ) : o n e trans ( t ) i s o m e r w h i c h is d e p i c t e d i n t h e s t r u c t u r a l s k e t c h a n d t w o g a u c h e ( g a n d g") isomers that h a v e h i g h e r +
Friberg; Lyotropic Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
106
LYOTROPIC
H
Chain
LIQUID
CRYSTALS
R'
subgroup
energies t h a n the trans i s o m e r ( Δ Ε ~
500 c a l / m o l e ) .
F o r a chain, de
partures f r o m the l o w - e n e r g y all-trans state c a n b e n a m e d a c c o r d i n g to the succession of the c h a i n C - C b o n d c o n f o r m a t i o n s . A n i s o l a t e d g a u c h e c o n f o r m a t i o n has a t g t or a tg"t sequence, a n d a k i n k (10) +
as t g t g ' t or tg"tg t. +
+
can be written
T r a n s sequences o n b o t h sides of a k i n k r e m a i n
p a r a l l e l to e a c h other; t h e y are s h i f t e d o n l y l a t e r a l l y . I n r e f e r e n c e to m o d e l i n g , the o c c u r r e n c e
of i s o l a t e d g a u c h e
con
f o r m a t i o n s w i t h e q u a l p r o b a b i l i t y a l l a l o n g the c h a i n y i e l d s a n e x p o n e n t i a l decrease i n the o r d e r of the m e t h y l e n e a l o n g the c h a i n . A s w a s a b o v e , this is r u l e d o u t b y the D M R measurements.
stated
W e c o n c l u d e that this
m o d e l c o u l d represent the b e h a v i o r of a n i s o l a t e d c h a i n fixed at o n e e n d b u t not that of a c h a i n i n a b i l a y e r since i t does n o t t a k e i n t o a c c o u n t the steric r e p u l s i o n s b e t w e e n n e i g h b o r i n g chains.
Seellig and Niederberger
( 7 ) d i d c o n s i d e r this f a c t o r ; t h e y c o m b i n e d t w o g a u c h e i s o m e r i z a t i o n s of different s i g n i n t o a k i n k (10)
that migrates a l o n g the c h a i n . T h i s m o b i l e
d e f e c t decreases e q u a l l y the o r d e r of a l l m e t h y l e n e g r o u p s , l e a v i n g t h e t w o parts of t h e c h a i n o n either side of i t p a r a l l e l to the b i l a y e r n o r m a l . Q u a n t i t a t i v e a g r e e m e n t w i t h F i g u r e 3 is g o o d i f one assumes a p r o b a b i l ity p
t
~
0.8 f o r a l i n k to b e i n a trans state.
I n this o n e - c h a i n m o d e l ,
n e i g h b o r i n g m o l e c u l e s are i n t r o d u c e d i m p l i c i t l y b e c a u s e one is r e s t r i c t e d to defects w h i c h d o n o t c h a n g e the o v e r a l l d i r e c t i o n of the c h a i n . defects of this t y p e , w i t h different ranges a l o n g the c h a i n (11),
Other
c o u l d be
c o n s i d e r e d as w e l l . S u c h m o d e l s , w h i c h i n t r o d u c e i n t e r m o l e c u l a r c o o p erativity arbitrarily b y eliminating presupposed unfavorable
conforma
tions, s k i p the i n t e r e s t i n g aspect of p o s s i b l e c o l l e c t i v e d e f o r m a t i o n s
of
lipids i n bilayers. S e v e r a l a p p r o a c h e s to the m a n y - c h a i n s p r o b l e m h a v e b e e n p r o p o s e d : d e t a i l i n g t w o - c h a i n interactions (12),
s o l v i n g exact t w o - d i m e n s i o n a l lat
t i c e m o d e l s ( 1 3 ) , a n d c a l c u l a t i n g a self-consistent m o l e c u l a r field a p p r o x i m a t i o n (14).
I n this last a p p r o a c h , M a r c e l j a e x t e n d e d to l y o t r o p i c l i q u i d
crystals some of the ideas h e d e v e l o p e d f o r t h e r m o t r o p i c systems
(2).
M o r e s p e c i f i c a l l y , the p a c k i n g of t h e l i p i d p o l a r heads at the i n t e r f a c e is i n t r o d u c e d t h r o u g h a l a t e r a l pressure t e r m w h i c h is e s t i m a t e d f r o m sur f a c e pressure measurements i n m o n o l a y e r s .
S t a t i s t i c a l averages are t h e n
e v a l u a t e d b y s u m m a t i o n o v e r a l l c o n f o r m a t i o n s of a c h a i n i n the field t h a t result f r o m n e i g h b o r i n g m o l e c u l e s .
T h e c a l c u l a t e d b e h a v i o r of the o r d e r
of the c h a i n l i n k s agrees w i t h F i g u r e 3 a n d R e f . 7.
A palmitate chain
( C i ) w o u l d t h e n h a v e f o u r l i n k s i n g a u c h e c o n f o r m a t i o n s w h i c h agrees 6
Friberg; Lyotropic Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
7.
CHARVOLIN
107
Microdynamics
w i t h earlier t h e r m o d y n a m i c c a l c u l a t i o n ( 1 5 ) . T h i s t h e o r y also gives g o o d a g r e e m e n t w i t h the m e a s u r e d t h e r m o d y n a m i c properties o f t h e t r a n s i t i o n w h e r e a l l the chains are i n a r i g i d , all-trans c o n f o r m a t i o n . It is i n t e r e s t i n g to note that s p i n l a b e l experiments r e v e a l a m o n o t o n i e decrease i n t h e o r d e r f r o m h e a d to t a i l ( 7 ) w h i c h contrasts p r e v i o u s l y d i s c u s s e d p l a t e a u that is o b t a i n e d b y d e u t e r o n
w i t h the
experiments.
A l t h o u g h i t is not p o s s i b l e at the m o m e n t t o e l i m i n a t e the i d e a o f p e r t u r b i n g effects f r o m the n i t r o x i d e l a b e l , i t is nevertheless i n t e r e s t i n g t o attempt t o c o m p a r e E P R a n d D M R d a t a o n l y i n terms o f l i p i d b e h a v i o r .
Recently,
G a f f n e y a n d M c C o n n e l l (16) suggested that one c o u l d r e c o n c i l e t h e t w o types o f experiments b y t a k i n g i n t o a c c o u n t t h e i r different t i m e scales. A m o t i o n is s a i d to b e fast i f its f r e q u e n c y
is l a r g e r t h a n t h e fre-
q u e n c y o f t h e i n t e r a c t i o n i t m o d u l a t e s ; this is t h e s o - c a l l e d m o t i o n a l n a r r o w i n g c o n d i t i o n . T y p i c a l values f o r t h e interactions a r e 1 0 H z i n s
E P R a n d 1 0 H z i n D M R . A m o t i o n w h i c h has a f r e q u e n c y o f 1 0 - 1 0 5
5
8
w o u l d a p p e a r as a s l o w m o t i o n i n E P R ( a d i s t r i b u t e d s p e c t r u m i s o b s e r v e d ) a n d as a fast m o t i o n i n D M R ( a n a r r o w e d s p e c t r u m is o b s e r v e d ) . I n t h e G a f f n e y a n d M c C o n n e l l m o d e l ( 1 6 ) , l o c a l fast m o t i o n s , frequencies
with
greater t h a n ~ 1 0 H z , are r e s p o n s i b l e f o r t h e m o n o t o n i e 8
decrease i n t h e s p i n l a b e l o r d e r parameters, a n d e a c h m e t h y l e n e g r o u p o c c u p i e s a larger effective v o l u m e t h a n t h e p r e c e d i n g one.
T h e region
near t h e i n t e r f a c e is t h e n a w e a k d e n s i t y r e g i o n . A p l a u s i b l e s o l u t i o n to this p a c k i n g p r o b l e m is a c o l l e c t i v e b e n d i n g o f the c h a i n s : t h e i r e l o n g a t i o n axis, w h i c h i s n o r m a l t o the b i l a y e r i n the t a i l r e g i o n , i s t i l t e d i n the v i c i n i t y of the interface ( 1 7 ) . T h i s m o d e l accounts f o r the E P R spectra i f one assumes a static b e n d i n g angle, or, t o express i t d i f f e r e n t l y , i f one assumes that t h e b i l a y e r h a s l o c a l b i a x i a l i t y at times >
10" sec; t h e f a i l u r e o f 8
D M R experiments t o detect a n y b i a x i a l i t y i n p o t a s s i u m l a u r a t e b i l a y e r s ( 5 ) c a n b e e x p l a i n e d b y the f a c t that the l i f e t i m e o f this b i a x i a l i t y i s 1 0 " 5
10"
8
sec. T h i s t i l t angle, w h i c h affects t h e first m e t h y l e n e g r o u p s , w o u l d
t h e n i n t r o d u c e a r e d u c i n g f a c t o r i n t o t h e expressions o f t h e i r D M R s p l i t tings, t h e r e b y t r a n s f o r m i n g i n t o a p l a t e a u t h e m o n o t o n i e decrease i n t h e i r o r d e r that is c a u s e d b y fast m o t i o n s . I n this m o d e l , c o n t r a r y t o t h a t o f d e G e n n e s , the m e a n l a t e r a l s p a c i n g is not constant t h r o u g h t h e b i l a y e r s . A s has b e e n stated, this a s s u m p t i o n is s u p p o r t e d m o s t l y b y t h e n e e d f o r a b e n d i n g a n g l e as a fitting p a r a m e t e r f o r the E P R spectra ( 1 7 ) . N e v e r t h e less, i t r e m a i n s a d e s c r i p t i o n o f the b e h a v i o r o f l a b e l l e d chains w h i c h , i n the absence o f d i r e c t c o n c l u s i v e experiments, c a n s t i l l b e c o n s i d e r e d somewhat
different f r o m that
of nonlabelled molecules
r e c e n t experiments i n t h e t h e r m o t r o p i c
field
demonstrated b y
(18). (Order
parameters
a n d t i l t angles d e t e r m i n e d b y s p i n l a b e l e x p e r i m e n t s i n S m C phases d e p e n d o n the l o c a t i o n of the l a b e l o n the a l k o x y c h a i n of the m o l e c u l e . ) Dynamics of the Deformations.
A c o m p l e t e d e s c r i p t i o n m u s t also
Friberg; Lyotropic Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
108
LYOTROPIC
LIQUID
CRYSTALS
p r o v i d e t h e c h a r a c t e r i s t i c times o f t h e m o t i o n s a n d t h e i r a c t i v a t i o n ener gies. T h i s c a n b e o b t a i n e d f r o m N M R experiments t h r o u g h t h e m o d u l a t i o n o f t h e s p i n H a m i l t o n i a n b y t h e m o t i o n s . I f / ( ω ) is t h e s p e c t r a l d e n sity associated w i t h a
fluctuating
s p i n H a m i l t o n i a n , t h e r e l a x a t i o n rate o f
the Z e e m a n energy a t f r e q u e n c y ω c a n b e a p p r o x i m a t e d b y Γ ι " oc / ( ω ) . 1
F o r e x a m p l e , t h e s p e c t r a l d e n s i t y o f a fluctuating m a g n e t i c field w i t h a n e x p o n e n t i a l c o r r e l a t i o n f u n c t i o n w o u l d b e
2T (1 + ω Λ )
2
2
c
_ 1
, where
is t h e m e a n q u a d r a t i c strength o f t h e i n t e r a c t i o n , a n d T is t h e
2
c
c o r r e l a t i o n t i m e o f its v a r i a t i o n s . M e a s u r e m e n t o f t h e r e l a x a t i o n rate as a f u n c t i o n o f f r e q u e n c y , i n t h e l a b o r a t o r y f r a m e ( Tf
1
frame
) a n d i n the rotating
( T i p " ) , provides information about the correlation functions of 1
the m o t i o n s i n a d y n a m i c range f r o m a f e w H e r t z t o 1 0 H z . 8
I n this field, t h e r e s o l u t i o n of D M R is p r o m i s i n g . H o w e v e r , e x p e r i ments o n d e u t e r a t e d m o l e c u l e s h a v e just b e g u n , a n d t h e n u c l e a r r e l a x a t i o n w a s n o t y e t a n a l y z e d . W e c a n just present here some p r e l i m i n a r y ideas that w e r e o b t a i n e d f r o m p r o t o n r e l a x a t i o n experiments
(19). B e
cause of t h e n a t u r e of d i p o l a r i n t e r a c t i o n , w e are d e a l i n g w i t h a m u l t i s p i n system; this entails some c o m p l e x p r o b l e m s o f n u c l e a r s p i n d y n a m i c s w h i c h are b e y o n d t h e scope o f this d i s c u s s i o n . T h e q u a n t i t a t i v e analysis o f p r o t o n r e l a x a t i o n d a t a is thus f a r f r o m s t r a i g h t - f o r w a r d (20). W e s h a l l l i m i t ourselves t o a q u a l i t a t i v e i n t e r p r e t a t i o n of t h e f r e q u e n c y
dependence
o f t h e r e l a x a t i o n rate t h a t is s u m m a r i z e d s c h e m a t i c a l l y i n F i g u r e 4. I m p o r t a n t r e l a x a t i o n effects a p p e a r i n b o t h h i g h a n d l o w f r e q u e n c y regions.
io L
C K,28% D 0 12
2
lamellar mesophase, · : 90 °C , 0 : 5 5 ° C
-O- · -
10
1
ι ml 10 -2
10"
10'
10'
Frequency ( MHz )
Figure 4. Schematic representation of proton relaxation rates as func tion of frequencies. No measurements were made in the 0.1 MHz range which is between the domain of the T and T techniques. ip
t
Friberg; Lyotropic Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
7.
CHARVOLiN
109
Microdynamics
T h e h i g h f r e q u e n c y r e l a x a t i o n is a t t r i b u t e d i n p a r t t o t h e m o d u l a t i o n of i n t e r m o l e c u l a r d i p o l a r i n t e r a c t i o n s b y t h e t r a n s l a t i o n a l d i f f u s i o n . T h e cutoff f r e q u e n c y ( 6 0 M H z at 5 5 ° C )
corresponds t o t h e l o c a l d i f f u s i v e
j u m p f r e q u e n c y that is e s t i m a t e d f r o m measurements coefficient (D ~
of t h e d i f f u s i o n
10" c m / s e c at 5 5 ° ) ( 1 9 , 2 1 ) . T h i s cutoff f r e q u e n c y 6
2
also varies i n t e m p e r a t u r e w i t h t h e same a c t i v a t i o n e n e r g y ( E
a c t
~ 0.25
e V ) as t h e d i f f u s i o n f r e q u e n c y . T h e l o w f r e q u e n c y r e l a x a t i o n c a n t h e n b e a t t r i b u t e d to t h e m o d u l a t i o n of i n t r a - a n d i n t e r m o l e c u l a r interactions b y t h e d e f o r m a t i o n s o f t h e m o l e c u l e s . I n this r e g i o n , t h e T ~ curves are n o t s i m p l e L o r e n t z i a n s as lp
x
they should b e i f only one m o t i o n were responsible f o r the relaxation. T h e y c a n b e a n a l y z e d as a s u p e r p o s i t i o n of L o r e n t z i a n c u r v e s w i t h d i f f e r ent c h a r a c t e r i s t i c f r e q u e n c i e s w h o s e l o w e r l i m i t is a b o u t 1 0 H z . T h i s 5
suggests t h a t the c h a i n d e f o r m a t i o n s r e s u l t i n t h e a p p e a r a n c e of a d i s t r i b u t i o n of m o d e s , e a c h w i t h its o w n l i f e t i m e . T h e slowest m o d e has a t e m p e r a t u r e - i n d e p e n d e n t c h a r a c t e r i s t i c t i m e of 3.5 X 10~ sec; i t c o u l d b e a 6
l o n g w a v e l e n g t h d e f o r m a t i o n of the m o l e c u l e . W e c a n n o t d e r i v e a c c u r a t e d e t e r m i n a t i o n s f o r t h e fastest l o c a l m o d e s . b y A g r e n (22),
A theoretical consideration
that d e v e l o p s a R o u s e analysis f a m i l i a r i n t h e f i e l d of
p o l y m e r p h y s i c s (23), estimates t h e i r c h a r a c t e r i s t i c times a t a b o u t 10~ o r 8
10" sec; these c o u l d i n t e r f e r e w i t h t r a n s l a t i o n a l d i f f u s i o n i n t h e h i g h fre9
q u e n c y r e l a x a t i o n range. O n e m u s t r e m a r k that, since e a c h m o t i o n m o d u lates several interactions of different o r i g i n , i t is effectively hopeless to t r y to i n t e r p r e t t h e values of t h e m o d u l a t e d interactions t h a t a r e d e r i v e d f r o m relaxation data. Consequently, rely only o n the frequency a n d temp e r a t u r e d e p e n d e n c e s o f t h e r e l a x a t i o n rates a n d n e v e r o n t h e i r absolute values. Discussion. W e c a n n o w p r o p o s e a coarse d e s c r i p t i o n of t h e p a r a f finic
m e d i u m i n a l a m e l l a r l y o t r o p i c mesophase
(potassium
laurate-
w a t e r ) . F a s t t r a n s l a t i o n a l d i f f u s i o n , w i t h D ~ 1 0 ' at 90 ° C , occurs w h i l e 6
the c h a i n c o n f o r m a t i o n changes.
T h e c h a r a c t e r i s t i c times o f t h e c h a i n
d e f o r m a t i o n s are d i s t r i b u t e d u p t o 3.10"
6
sec at 9 0 ° C .
Presence o f t h e
s o a p - w a t e r interface a n d of n e i g h b o r i n g m o l e c u l e s l i m i t s t h e n u m b e r of c o n f o r m a t i o n s accessible to t h e chains.
T h e s e findings c o n f i r m t h e c o n -
c e p t o f t h e p a r a f f i n i c m e d i u m as a n a n i s o t r o p i c l i q u i d .
O n e m u s t also
c o m p a r e t h e f r e q u e n c i e s of t h e slowest d e f o r m a t i o n m o d e ( 1 0 H z ) a n d 6
of t h e l o c a l d i f f u s i v e j u m p ( 1 0 H z ). W h e n o n e m o l e c u l e w a n t s to s l i p 9
b y t h e side o f another, the w a y has to b e free. I f t h e s w i n g i n g m o t i o n s o f the m o l e c u l e s , o r t h e i r slowest d e f o r m a t i o n m o d e s , w e r e u n c o r r e c t e d , t h e m o l e c u l e s w o u l d h a v e to w a i t a b o u t 10" sec b e t w e e n t w o d i f f u s i v e j u m p s . 6
T h e r a p i d diffusion c o u l d then be understood if the slow motions were c o l l e c t i v e m o t i o n s i n t h e l a m e l l a e . I n this respect, t h e s l o w m o t i o n s c o u l d d e p e n d o n the m a c r o s c o p i c s t r u c t u r e ( l a m e l l a r o r c y l i n d r i c a l , f o r example)
Friberg; Lyotropic Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
110
LYOTROPIC
LIQUID
CRYSTALS
w h e r e a s t h e fast m o t i o n s a p p e a r t o b e q u a l i t a t i v e l y i n d e p e n d e n t o f i t a n d g o v e r n e d essentially b y t h e d e n s i t y o f t h e m e d i u m ( 1 9 , 24).
Unfortu-
n a t e l y , n o other i n v e s t i g a t i o n besides ours has b e e n d o n e i n t h e l o w f r e q u e n c y r e g i o n so far. A s is r e p o r t e d i n T i d d y ' s recent, w e l l d o c u m e n t e d r e v i e w (25),
more
a n d m o r e r e l a x a t i o n experiments a r e c o n c e r n e d w i t h l i p i d s of b i o l o g i c a l significance i n v e s i c u l a r structures w h i c h a p p r o x i m a t e b i o m e m b r a n e s m o r e t h a n o u r l a m e l l a r l y o t r o p i c l i q u i d c r y s t a l c a n . B e c a u s e of t h e c o m p l e x i t y of t h e m o l e c u l e s a n d t h e s o m e w h a t u n c e r t a i n state of d e t e r m i n i n g struct u r a l parameters of vesicles, t h e i n t e r p r e t a t i o n of these d a t a is sometimes less s t r a i g h t f o r w a r d t h a n i n t h e case of s i m p l e l y o t r o p i c l i q u i d crystals. N e v e r t h e l e s s , s u c h p h y s i c a l studies r e v e a l that, i n a d d i t i o n to t h e i r r i c h p o l y m o r p h i s m , l i p i d - w a t e r systems e x h i b i t c o m p l e x d y n a m i c p r o p e r t i e s t h a t a r e associated w i t h m o l e c u l a r d e f o r m a t i o n s a n d
fluidity.
The lipid
m e d i u m thus appears c a p a b l e of fast, l o c a l , s t r u c t u r a l t r a n s f o r m a t i o n s i n response to e x t e r n a l p h y s i c o c h e m i c a l s t i m u l a t i o n . T r a n s p o r t p r o p e r t i e s i n a n d across t h e b i l a y e r , f o r e x a m p l e , are r e l a t e d to t h e c h a i n t r a n s i t i o n f r o m a n o r d e r e d to a d i s o r d e r e d state that is i n d u c e d b y t e m p e r a t u r e v a r i a t i o n . W h a t e v e r interest s u c h p h e n o m e n a m i g h t present i n t h e i n t e r p r e t a t i o n of b i o m e m b r a n e p r o p e r t i e s (26), n o t h i n g c a n y e t b e s a i d a b o u t t h e i r i m p o r t a n c e i n b i o l o g i c a l f u n c t i o n s . T h e b i l a y e r is a n extreme overs i m p l i f i c a t i o n , a f r a g m e n t a r y r e p r e s e n t a t i o n of a c t u a l m e m b r a n e s , a n d m u c h is to b e e x p e c t e d f r o m c o m p l e x l i p i d s a n d proteins as w e l l as f r o m l i p i d - p r o t e i n interactions. Alkyl Chain Behavior in Smectic Phase T h e deuteron spectrum obtained f r o m a thermotropic smectic A p h a s e is p r e s e n t e d i n F i g u r e 5. T h e b u t o x y b e n z y l i d e n e - p - o c t y l a n i l i n e m o l e c u l e ( B B O A ) w a s s y n t h e s i z e d after d e u t e r a t i o n o f t h e o c t y l a n i l i n e g r o u p . F r o m t h e center ( z e r o f r e q u e n c y ) of t h e s p e c t r u m , there a p p e a r successively: a m e t h y l line, a partially deuterated p h e n y l group doublet, i n t e r m e d i a t e m e t h y l e n e l i n e s , a n d t h e l i n e o f t h e m e t h y l e n e close t o t h e b e n z y l g r o u p . T h e s e findings a n d t h e i r r e l a t i o n to p r e v i o u s c a l c u l a t i o n (2) are p r e s e n t e d a n d d i s c u s s e d i n a p r e l i m i n a r y r e p o r t (27).
A t this t i m e ,
l i q u i d c r y s t a l studies a p p e a r t o b e at a cross-point. S t u d y o f t h e m i c r o d y n a m i c s of t h e r m o t r o p i c s c a n benefit f r o m t h e m o r e a d v a n c e d state o f this w o r k f o r l y o t r o p i c s , w h e r e a s t h e experience g a i n e d i n t h e o p t i c a l m a c r o s c o p i c studies of t h e r m o t r o p i c s is u s e f u l i n t h e l y o t r o p i c field f o r i n v e s t i g a t i n g c o l l e c t i v e m o t i o n s s u c h as those d i s c u s s e d a b o v e . Conclusion S o m e recent D M R a n d E P R experiments w i t h l y o t r o p i c l i q u i d crystals h a v e b e e n d e s c r i b e d b r i e f l y a n d i n t e r p r e t e d i n terms of t h e flexibility o f
Friberg; Lyotropic Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
7.
CHARVOLIN
111
Microdynamics
B.B,d.O.A
A
ο
-J—ι—ι—ι
Smectic A phase, 58.5°C
ι
I
ι
ι
ι
ι
L
10 20 30 Frequency (kHz) from 13 MHz
ι
ι I AO
Figure 5. A DMR spectrum obtained at 13 MHz with the thermotropic sample BBOA in the smectic A phase. Only half the spectrum, which is symmetric about the zero frequency, is pictured. paraffinic c h a i n s . S o m e findings a b o u t l a t e r a l d i f f u s i o n o f t h e m o l e c u l e s i n t h e b i l a y e r w e r e c i t e d . T h e c h a r a c t e r i s t i c times of these m o t i o n s w e r e d i s c u s s e d o n t h e basis o f p r e v i o u s p r o t o n r e l a x a t i o n experiments. T h i s set of d a t a p e r m i t s a p r e l i m i n a r y d e s c r i p t i o n of the l i p i d m e d i u m . C o m p a r isons w i t h l i q u i d paraffins c o u l d b e a t t e m p t e d : the densities d o n o t differ d r a s t i c a l l y ( T h e c h a i n disorders i n l y o t r o p i c l i q u i d crystals a n d i n l i q u i d paraffins a r e c h a r a c t e r i z e d b y analogous x - r a y diffuse b a n d s a t 4.5 A " . ) 1
a n d c h a i n d e f o r m a t i o n s r e s u l t i n g f r o m reorientations a r o u n d t h e C - C b o n d s a r e also present (28). H o w e v e r , a n o r i g i n a l a n d f u n d a m e n t a l d i f f e r ence is i n t r o d u c e d b y t h e p a c k i n g of the p o l a r heads a t the i n t e r f a c e : l i p i d d i f f u s i o n a l o n g t h e d i r e c t i o n n o r m a l t o t h e i n t e r f a c e is of v e r y l o w p r o b a b i l i t y , a n d c h a i n ends are l o c a l i z e d either at t h e interface o r i n t h e c e n t r a l r e g i o n of t h e b i l a y e r . T h u s , there is less free v o l u m e i n the b u l k o f e a c h h a l f b i l a y e r t h a n there is i n l i q u i d paraffins w h e r e t h e c h a i n ends are d i s t r i b u t e d u n i f o r m l y . T h i s greater l a t e r a l c o h e s i o n c o u l d b e a n i m p o r t a n t factor i n the development of long-wavelength collective modes i n l i p i d w a t e r systems, t h e existence o f w h i c h is suggested b y o u r d y n a m i c d a t a . ( A t h e o r e t i c a l a p p r o a c h t o c o l l e c t i v e m o d e s i n l i p i d - w a t e r systems w a s p r e s e n t e d at t h e F i f t h I n t e r n a t i o n a l L i q u i d C r y s t a l C o n f e r e n c e .
I n addi
t i o n t o t h e u s u a l s m e c t i c m o d e s , w h i c h d e p e n d o n t h e s y m m e t r y of t h e system, a n extra h y d r o d y n a m i c m o d e appears that is r e l a t e d t o t h e pres ence of t w o c o m p o n e n t s , i.e. t o fluctuations i n t h e r e l a t i v e concentrations of w a t e r a n d l i p i d s
(29).)
Friberg; Lyotropic Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
112
LYOTROPIC LIQUID CRYSTALS H o w e v e r , i f reference is m a d e to t h e r m o t r o p i c studies, c o l l e c t i v e m o -
tions i n smectic phases h a v e w a v e l e n g t h s that e x t e n d u p t o t h e o p t i c a l w a v e l e n g t h . I n this respect, t h e y w e r e i n v e s t i g a t e d better b y light-scatt e r i n g t e c h n i q u e s t h a n b y a t e c h n i q u e as l o c a l as N M R . F i n a l l y , n o t h i n g has b e e n s a i d a b o u t m o l e c u l a r r o t a t i o n a r o u n d t h e l o n g axis, a d o m a i n where local techniques c a n still b e useful. W i t h a
flexible
disordered
c h a i n , i t is d i f f i c u l t t o d i s t i n g u i s h c l e a r l y b e t w e e n t h e r e l a t i v e r e o r i e n t a tions o f its segments a n d its o v e r a l l r o t a t i o n ; o n the other h a n d , i f b i l a y e r s w i t h t i l t e d chains i n trans c o n f o r m a t i o n s a r e c o n s i d e r e d ( 3 0 ) , i t w o u l d b e o f great interest t o d e t e r m i n e i f t h e i r m a c r o s c o p i c b i a x i a l i t y p r o ceeds f r o m a n y a n i s o t r o p y i n t h e o v e r a l l r o t a t i o n o f t h e m o l e c u l e . A s i m i l a r p r o b l e m arises
i n t h e thermotropic
the b i a x i a l s m e c t i c C a n d H phases.
field
with
understanding
T h i s point w a s m u c h discussed at
the F i f t h International L i q u i d C r y s t a l Conference.
I t was demonstrated
recently f o r T B B A i n S m H phase that n o anisotropy i n the overall rotat i o n of t h e m o l e c u l e a r o u n d its l o n g axis is a p p a r e n t a t times l o n g e r t h a n about 1 0
1 0
sec ( 3 1 ) .
Acknowledgment M o s t of o u r p r o t o n N M R studies o n l i p i d - w a t e r systems w e r e m a d e i n P . Rigny's laboratory ( D i v i s i o n de C h i m i e , C . E . N . Saclay).
M a n y of
the ideas t h a t a r e expressed h e r e w e r e d i s c u s s e d u n d e r h i s c r i t i c a l a n d stimulating guidance. Literature Cited 1. McMillan, W. L., Phys. Rev. A (1971) 4, 1238. 2. Marčelja, J. Chem. Phys. (1974) 60, 3599. 3. Luzzati, V., in "Biological Membranes," D. Chapman Ed., Academic, New York, 1968. 4. Charvolin, J., Rigny, P., Nat. New. Biol. (1972) 237, 127. 5. Charvolin, J., Manneville, P., Deloche, B., Chem. Phys. Lett. (1973) 23 345. 6. Burnett, L . J., Muller, Β. M., J. Chem. Phys. (1971) 55, 5829. 7. Seelig, J., Niederberger, W., Biochemistry (1974) 13, 1585. 8. de Gennes, P. G., Phys. Lett. A (1974) 47, 123. 9. Flory, P. J., "Statistical Mechanics of Chain Molecules," Interscience, New York, 1969. 10. Pechhold, W., Kolloid Ζ. Z. Polym. (1968) 228, 1. 11. Dubois-Violette, E . , Geny, F., Monnerie, L . , Parodi, O., J. Chem. Phys. (1969) 66, 1865. 12. Bothorel, P., Belle, J., Lemaire, B., Chem. Phys. Lipids (1974) 12, 96. 13. Nagle, J. F., J. Chem. Phys. (1973) 58, 252. 14. Marčelja, S., Intern. Liquid Crystal 5th, Stockholm, 1974. 15. Nagle, J. F., Proc. Natl. Acad. Sci. U. S. A. (1973) 70, 1443. 16. Gaffney, B., McConnell, H . M., J. Magn. Reson. (1974) 16, 1. 17. Gaffney, B., McConnell, H . M., Proc. Natl. Acad. Sci. U.S.A. (1971) 68, 1274.
Friberg; Lyotropic Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
7.
CHARVOLIN
Microdynamics
113
18. Poldy, F., Dvolaitsky, M., Taupin, C., J. Phys. Paris Collog. (1975) 36, 1-27. 19. Charvolin, J., Rigny, P., J. Chem. Phys. (1973) 58, 3999. 20. Bloom, M., Specialized Colloque Ampère, Cracow, 1973. 21. Roberts, R. T., Nature London (1973) 242, 348. 22. Ågren, G., J. Phys. Paris (1972) 33, 887. 23. Rouse, P. E., J. Chem. Phys. (1953) 21, 1272. 24. Chapman, D., Salsbury, N. J., Trans. Faraday Soc. (1966) 62, 2607. 25. Tiddy, G. J. T., "NMR of Liquid Crystals and Micellar Solutions," Chem ical Society Annual Report on NMR, London, 1974. 26. Chapman, D., Intern. Liquid Crystal Conf., 5th, Stockholm, 1974. 27. Deloche, B., Charvolin, J., Liébert, L., Strzelecki, L., J. Phys. Paris Colloq. (1975) 36, 21. 28. Levine, Y. K., Birdsall, N. J. M., Lee, A. G., Metcalfy, J. C., Partington, P., Roberts, G. C. K., J. Chem. Phys. (1974) 60, 2890. 29. Brochard, F., de Gennes, P. G., in "Liquid Crystals," Proc. Intern. Liquid Crystal Conf. 4th, Bangalore, 1973. 30. Tardieu, Α., Luzzati, V., Reman, F. C., J. Mol. Biol. (1973) 75, 711. 31. Hervet, H., Volino, F., Dianoux, A. J., Lechner, R. E., Phys. Rev. Lett. (1975) 34, 451. RECEIVED November 19, 1974.
Friberg; Lyotropic Liquid Crystals Advances in Chemistry; American Chemical Society: Washington, DC, 1976.