Source Contributions to Ambient Fine Particulate Matter for Canada

Aug 6, 2019 - ... emission sectors to PM2.5 in 2013 for Canada using the GEOS-Chem chemical transport model, downscaled with satellite-based PM2.5...
0 downloads 0 Views 947KB Size
Subscriber access provided by RUTGERS UNIVERSITY

Environmental Modeling

Source Contributions to Ambient Fine Particulate Matter for Canada Jun Meng, Randall V Martin, Chi Li, Aaron van Donkelaar, Zitely A. TzompaSosa, Xu Yue, Jun-Wei Xu, Crystal L Weagle, and Richard T. Burnett Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.9b02461 • Publication Date (Web): 06 Aug 2019 Downloaded from pubs.acs.org on August 7, 2019

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 31

Environmental Science & Technology

1

Source Contributions to Ambient Fine Particulate Matter for Canada

2 3 4 5 6 7 8

Jun Meng1*, Randall V. Martin1,2,3, Chi Li1, Aaron van Donkelaar1, Zitely A. Tzompa-Sosa4, Xu Yue5, Jun-Wei Xu1, Crystal L. Weagle1, Richard T. Burnett6

9

2Smithsonian

Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

10

3Department

of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis,

11

Missouri, 63130, USA

12

4Department

13

5School

14

Nanjing, 210044, China

15

6Health

Affiliations 1Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada

of Atmospheric Science, Colorado State University, Fort Collins, Colorado, 80523, USA

of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Canada, Ottawa, Ontario, K1A 0k9, Canada

16 17 18 19 20

*Corresponding

author:

21

Address: 6310 Coburg road, Sir James Dunn bldg., Halifax, NS. Canada B3H 4J5

22

Phone: (902) 223-1686; E-mail: [email protected];

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 1

ACS Paragon Plus Environment

Environmental Science & Technology

39

Abstract Art

40 41

Abstract

42

Understanding the sectoral contribution of emissions to fine particulate matter (PM2.5)

43

offers information for air quality management, and for investigation of association with health

44

outcomes. This study evaluates the contribution of different emission sectors to PM2.5 in 2013 for

45

Canada using the GEOS-Chem chemical transport model, downscaled with satellite-based PM2.5.

46

Despite the low population-weighted PM2.5 concentrations of 5.5 g m-3 across Canada, we find

47

that over 70% of population-weighted PM2.5 originates from Canadian sources followed by 30%

48

from the contiguous United States. The three leading sectoral contributors to population

49

weighted PM2.5 over Canada are wildfires with 1.0 g m-3 (17%), transportation with 0.96 g m-3

50

(16%) and residential combustion with 0.91 g m-3 (15%). The relative contribution to

51

population-weighted PM2.5 of different sectors varies regionally with residential combustion as

52

the leading contributor in Central Canada (19%); while wildfires dominate over Northern Canada

53

(59%), Atlantic Canada (34%) and Western Canada (18%). The contribution from U.S. sources

54

is larger over Central Canada (33%) than over Western Canada (17%), Atlantic Canada (17%)

55

and Northern Canada (< 2%). Sectoral trend analysis showed that the contribution from

2

ACS Paragon Plus Environment

Page 2 of 31

Page 3 of 31

Environmental Science & Technology

56

anthropogenic sources to population-weighted PM2.5 decreased from 7.1 g/m3 to 3.4 g/m3 over

57

the last two decades.

58

1 Introduction

59

Fine particulate matter with aerodynamic diameter less than 2.5 microns (PM2.5)

60

adversely affects human health1–5. PM2.5 is recognized as the leading environmental risk factor

61

for the global burden of disease6 with recent estimates of annual attributable deaths worldwide of

62

4 million7 to 9 million8. Air quality in North America has improved dramatically during the last

63

three decades by reducing emissions9,10 with national mean PM2.5 concentrations across Canada

64

below the WHO air quality guideline (10 g/m3)11,12. Thus Canada is attractive to study the

65

health effects of low-level PM2.5. Several studies report adverse effects of long-term exposure to

66

the low-level PM2.5 concentration environment13–16, but none have examined the relationship

67

with specific sources. A better understanding of the sources contributing to PM2.5 could inform

68

national air quality management, and inform studies on the association of health outcomes with

69

PM2.5 concentrations at low levels11,15.

70

A number of studies have investigated the relative contribution of multiple sectors to

71

PM2.5 globally17–19. Most previous studies on sectoral contributions to ambient PM2.5 over

72

Canada either focused on a single emission sector or a specific regional area. Additionally, most

73

of those studies used a top-down source attribution method based on statistical analyses of

74

measured chemical composition, including studies on the contribution of regional transport in

75

southeast Canada and urban areas20–22, dust in British Columbia23, industry in Ontario24, coal-

76

fired power plants25, wildfires26,27 and biomass burning28,29. A few studies have used a bottom-up

77

approach based on emission inventories and chemical transport modeling to study the sector

78

contributions to gas phase pollutants or to specific regions of Canada. For example, Pappin and 3

ACS Paragon Plus Environment

Environmental Science & Technology

79

Hakami30 examined the source attribution to nitrogen oxides and volatile organic compounds

80

across North America. Cho et al.31 investigated the contribution of oil sands development to

81

PM2.5 and ozone using an air quality model.

82

In this study, we used the GEOS-Chem chemical transport model at its finest resolution

83

of 0.25 x 0.31 to investigate the contributions of different emission sectors to PM2.5 across

84

Canada from both Canada and the United States sources. We evaluated the performance of the

85

baseline simulation and examine the contributions of different sectors to PM2.5 concentrations

86

across Canada. We also investigated the trend of the sectoral contribution to PM2.5

87

concentrations across Canada over the last two decades.

88 89

2 Materials and Methods

90

2.1 GEOS-Chem simulations GEOS-Chem (http://www.geos-chem.org) includes detailed aerosol-oxidant chemistry32–

91 92

34.

93

implemented into GEOS-Chem by Pye et al.36 The interaction between aerosols and gas-phase

94

chemistry includes the effects of aerosol extinction on photolysis rates37, brown carbon38,

95

heterogeneous chemistry39 with dinitrogen pentoxide (N2O5) uptake by aerosol40 and

96

hydroperoxyl radical (HO2) uptake by aerosol41.

97

Gas-aerosol partitioning is performed by the ISORROPIA II thermodynamic scheme35 as

The GEOS-Chem aerosol simulation includes the sulfate-nitrate-ammonium (SNA)

98

aerosol system33,35, mineral dust42, sea salt43, and carbonaceous aerosol44 with updates to black

99

carbon45 (BC), semi-volatile SOA formation from isoprene46 and SOA formed from isoprene

100

with an irreversible aqueous scheme47. The ratio between organic mass and organic carbon

101

(OM/OC) is spatially resolved48. Nitric acid concentrations are reduced following Heald et al.49 4

ACS Paragon Plus Environment

Page 4 of 31

Page 5 of 31

Environmental Science & Technology

102

The mineral dust simulation includes updates to the aerosol size distribution50 and dust optics51.

103

We includes recent updates in dry and wet deposition45,52–54.

104

GEOS-Chem uses assimilated meteorological data from the Goddard Earth Observation

105

System (GEOS) of NASA’s Global Modeling and Assimilation Office (GMAO). We used

106

GEOS Forward Processing (GEOS-FP) meteorological data archived at a native horizontal

107

resolution of 0.25 x 0.3125, roughly 25km x 25km, with 72 vertical levels.

108

We used the nested-grid capability55,56 of the GEOS-Chem chemical transport model

109

(version 11-02c) at 0.25 x 0.3125, to simulate PM2.5 concentrations across North America. We

110

first conducted global simulations at coarse resolution of 2 x 2.5 to archive boundary

111

conditions. Then, we conducted regional (nested-grid) simulations at fine resolution of 0.25 x

112

0.31 over North America. The operator time steps in the simulation followed previous

113

recommendations57. We used a 1-month spin up to remove the effects of initial conditions. We

114

used the lowest layer of the model to represent the ground-level aerosol concentrations. We

115

calculated simulated PM2.5 concentrations at 35% relative humidity (RH) and chemical

116

composition at dry conditions for consistency with the measurement protocols over North

117

America. We downscaled our simulations to better represent spatial variation of population

118

density using satellite-derived PM2.5 gridded at 1 km resolution across North America58. We

119

calculated the ratio between the annual mean satellite-derived PM2.5 and baseline simulated

120

PM2.5. We applied this ratio to both the baseline simulation and sector sensitivity simulations to

121

downscale all simulations to 1 km resolution.

122

We used population data from the National Aeronautics and Space Administration

123

Socioeconomic Data and Application Center (SEDAC, version4)59 to calculate population

124

weighted average PM2.5 concentrations regionally and provincially in Canada.

5

ACS Paragon Plus Environment

Environmental Science & Technology

125 126

2.2 North American emissions for baseline simulation GEOS-Chem emissions were configured via the HEMCO module60. Anthropogenic

127

emissions were provided by regional emission inventories. We used the Criteria Air

128

Contaminants (CAC) over Canada (http://www.ec.gc.ca/inrp-npri/), the 2011 U.S. National

129

Emissions Inventory (NEI2011, http://ww.epa.gov/air-emissions-inventories) over the United

130

States and the Big Band Regional Aerosol and Visibility Observational study (BRAVO) over

131

Mexico61. We used annual scale factors obtained from other available datasets to scale the

132

emission inventories to our simulation year. For CAC, we calculated annual scale factors over

133

1990 to 2016 from Canada’s Air Pollutant Emission Inventory (APEI)62. For NEI2011, we

134

calculated annual scale factors for 2013 from the national annual total trends from EPA

135

(http://www.epa.gov/ttnchie1/trends/). We calculated BC and OC emissions by applying the

136

sector-specific OC and BC to PM2.5 emission ratios reported in the EPA SPECIATE database63

137

following recent studies64,65.

138

Other emissions were default in GEOS-Chem. Wildfire emissions at 3-hour resolution

139

were from the fourth-generation global fire emissions database (GFED-4)66. Aircraft emissions

140

were from the AEIC inventory67. Ship emissions were from ICOADS68. Lighting NOx emissions

141

were also included69. Biogenic volatile organic compounds (VOC) emissions were from the

142

MEGAN v2.1 inventory70–72. Biogenic soil NOx emissions were from Hudman et al.73 Volcano

143

emissions were implemented by Fisher et al.52 Marine dimethyl sulfide (DMS) emissions were

144

from Breider et al.74

145

2.3 Sector sensitivity analyses

146 147

We conducted a baseline simulation for the year 2013 using the emissions described above over North America. We quantified the impact of individual sectors by conducting 6

ACS Paragon Plus Environment

Page 6 of 31

Page 7 of 31

Environmental Science & Technology

148

sensitivity simulations that individually exclude each emission sector from the baseline

149

simulation. This method had been extensively used in previous studies to evaluate the

150

contribution of different sectors or regions to PM2.5 concentrations or health impacts17–19,75,76.

151

This method may lead to uncertainty due to the non-linear response to emission changes. We

152

studied five anthropogenic emission sectors (Power Generation, Agriculture, Transportation,

153

Industry and Residential Combustion), as well as wildfires, sea salt, and other sources (mineral

154

dust, biogenic secondary organic aerosol, DMS, volcanos, and long-range transport). We also

155

investigated the diesel sector, which is a sub-sector of the transportation sector.

156

The sectoral emissions for our sensitivity simulations were from APEI for Canada and

157

from the U.S. NEI 2011 v6.377 for the United States. The power generation sector included coal

158

burning for electric power generation. The agriculture sector primarily included ammonia from

159

livestock and agricultural soils. The transportation sector contained mobile sources and dust from

160

paved and unpaved roads. The diesel sector, which included emissions from diesel engine

161

vehicles and trucks and off-road use of diesel, was a sub-sector of the transportation sector. The

162

industry sector contained multiple industrial sources including the petroleum industry, chemical

163

industry, mineral product industry, pulp and paper industry, and aluminum industry. The

164

residential combustion sector included residential fuel and wood combustion emissions.

165

We individually excluded each sectoral emission from the baseline simulation by

166

applying the sectoral scale factor from APEI and the U.S. NEI 2011 v6.3 to baseline emission

167

inventories (CAC and NEI2011) respectively. For the five major anthropogenic sectors, we also

168

further separated the contribution from U.S emissions by performing five extra sensitivity

169

simulations that only exclude the emissions from the Canadian sources.

7

ACS Paragon Plus Environment

Environmental Science & Technology

170 171

2.4 Sectoral contribution trend analysis We conducted sectoral sensitivity analyses for selected years (1990, 2000 and 2010) over

172

the last two decades to investigate trends in the sectoral contributions across Canada. We

173

conducted GEOS-Chem baseline and sectoral sensitivity simulations for the years 1990, 2000

174

and 2010, driven by assimilated meteorology data from the Modern-Era Retrospective analysis

175

for Research and Application, version 2 (MERRA-2), which included updates in both the

176

Goddard Earth Observing System Model and the assimilation system back to 198078. We first

177

conducted global simulations at coarse resolution of 2 x 2.5 to archive boundary conditions.

178

Then, we conducted regional (nested-grid) simulations at the finest resolution available for

179

MERRA-2 (0.5 x 0.625) over North America.

180

For baseline simulations, we used the Criteria Air Contaminants (CAC) over Canada

181

(http://www.ec.gc.ca/inrp-npri/) and the Community Emissions Data System (CEDS)79 historical

182

emission inventory over the United States. We used annual scale factors obtained from other

183

available datasets to scale the emission inventories to our simulation year. For CAC, we

184

calculated annual scale factors from Canada’s Air Pollutant Emission Inventory (APEI)62, which

185

had a time span from 1990 to 2016. We used the 3-hour resolution of GFED466 for wildfire

186

emissions for 2000 and 2010 simulations. We implemented a ground-based North America fire

187

emission database80 into GEOS-Chem for wildfire emissions in the 1990 simulation.

188

For sectoral sensitivity simulations, we quantified the impact of individual sectors by

189

conducting simulations that individually exclude each sectoral emission from the baseline

190

simulation for each year (1990, 2000 and 2010). We grouped APEI into 5 sectors, which include

191

the agricultural, power generation, surface transport, industrial and residential combustion

192

sectors. CEDS had eight sectors, which included agricultural, energy transformation and

8

ACS Paragon Plus Environment

Page 8 of 31

Page 9 of 31

Environmental Science & Technology

193

extraction, industrial combustion and process, surface transport, residential combustion, solvents,

194

waste disposal and handling, and international shipping sectors. We individually excluded each

195

sector emission from the baseline simulations.

196

2.5 Ground-based measurements of PM2.5 and its chemical components

197

We collected ground-based measurements of PM2.5 concentrations and its chemical

198

components from several networks across North America in 2013 to evaluate our baseline

199

simulation. Detailed information on network selection and data processing are provided in the

200

Supporting Information (SI.1). Monitor locations are in Figure S1. Numerous studies have

201

described and evaluated these ground-based measurements81,82. We treated these ground-based

202

measurements as “truth” to evaluate model performance, even though these datasets do have

203

uncertainties82.

204

We compared the baseline simulated PM2.5 and its chemical components with ground-

205

based measurements using reduced major axis linear regression. We reported root mean square

206

error (RMSE), correlation (r), intercept as well as slopes. Details about the performance of the

207

baseline simulation in 2013 are provided in SI.2.

208 209

3 Results and Discussion

210

3.1 Sectoral contributions of emissions to PM2.5 concentrations over Canada.

211

Figure 1 shows the annual mean contributions of individual emission sectors to PM2.5

212

concentrations. For Canada, the wildfires sector is the leading contributor, responsible for 1.0 g

213

m-3 of the total population-weighted PM2.5 with the largest influences across northern Canada.

214

The transportation sector (0.96 g m-3) follows closely with large contributions across populated

9

ACS Paragon Plus Environment

Environmental Science & Technology

215

regions of southern Canada. The residential combustion sector (0.91 g m-3), the third largest

216

contributor, is most important in rural British Columbia and southern Quebec where wood is

217

used for residential heating. The industry (0.86 g m-3) and agriculture (0.63 g m-3) sectors are

218

most important in Alberta. The biogenic SOA sector (0.54 g m-3) most influences Ontario and

219

southern Quebec reflecting both isoprene and terpene sources. The power generation sector (0.44

220

g m-3) is most important along the southern border of central Canada where advection from US

221

sources is prevalent.

222

The relative contribution of different emission sectors varies seasonally across Canada. In

223

winter (Figure S4), residential combustion (1.6 g m-3) is the leading contributor due to home

224

heating. Both of the transportation (1.4 g m-3) and agriculture (1.2 g m-3) sectors are important

225

in winter due to the seasonal increase in ammonium nitrate. In summer (Figure S5), the

226

importance of the wildfires and biogenic SOA sectors increases across both Canada and the

227

United States. The contribution from the agriculture sector in summer is negative due to

228

nonlinearities in which there is enhanced PM2.5 formation with decreasing aerosol acidity as

229

ammonia emissions increase18,19,47,83.

230

Figure 2 shows the fractional contribution of different sectors to population weighted

231

annual mean PM2.5 concentrations over different regions (defined in Figure S6) of Canada. Over

232

80% of the population-weighted PM2.5 of 5.5 g m-3 across Canada arises from the five

233

anthropogenic sectors and the wildfires sector. The wildfires sector is the largest contributor

234

across Canada, responsible for 17% of population-weighted PM2.5, followed closely by the

235

transportation sector (16%), the residential combustion sector (15%) and the industry sector

236

(14%). The agriculture and power generation sectors account for 10% and 7% of population-

237

weighted PM2.5 respectively. Other sources, including sea salt, dust, DMS, volcanos, biogenic

10

ACS Paragon Plus Environment

Page 10 of 31

Page 11 of 31

Environmental Science & Technology

238

secondary organic aerosol and long-range transport, explain the remaining contribution. The

239

leading anthropogenic contribution of the transportation sector in Canada is consistent with

240

recent findings for the United States75, however, differs from regions such as India where

241

residential burning dominates84, China where coal burning dominates83, and globally where

242

residential burning dominates19,85.

243

The diesel sector is a specified subsector of the transportation sector, which is the leading

244

anthropogenic contributor across Canada in 2013 (Figure 2). Supplemental Table S1 shows the

245

fractional annual contribution of diesel to the transportation sector from Canadian sources across

246

different Canadian regions in 2013. The diesel sector accounts for 35% of population-weighted

247

mean PM2.5 attributed to transportation sector with little variation ( 2%) regionally.

248

The relative contribution of different emission sectors varies regionally across Canada. In

249

Central Canada, with the highest population-weighted PM2.5 (5.9 g m-3) among all the Canadian

250

regions, about 70% of population-weighted PM2.5 arises from five anthropogenic sectors. The

251

residential sector is the leading contributor (19%) followed closely by the transportation sector

252

(17%). In Western Canada, the wildfires sector is the largest contributor accounting for 18% of

253

population-weighted PM2.5 followed by the agriculture (15%) and transportation (15%) sectors.

254

In the Atlantic Canada region with low population-weighted PM2.5 (3.3 g m-3), the wildfires

255

sector accounts for 34% of total population-weighted PM2.5 followed by secondary organic

256

aerosol (13%) and then the transportation, industry, power generation and residential combustion

257

sectors (~7% - 9%). Northern Canada has the lowest level of PM2.5 concentration with

258

population-weighted PM2.5 of 1.4 g m-3 of which over half (59%) arises from the wildfires

259

sector.

11

ACS Paragon Plus Environment

Environmental Science & Technology

260

The relative contribution of different emission sectors over each region in Canada also

261

varies seasonally as shown in Figure S7 for winter and Figure S8 for summer. The percentage

262

contribution from the five anthropogenic emission sectors increases in winter to 95% for Central

263

Canada, 78% for Western Canada, 70% for Atlantic Canada and 30% for Northern Canada. In

264

summer, the percentage contribution from wildfires is the largest over all regions (78% over

265

Northern Canada, 55% over Atlantic Canada, 38% over Western Canada and 36% over Central

266

Canada). The seasonality of dominant sources (i.e. anthropogenic emissions in winter vs.

267

wildfires in summer) is similar across provinces (Figure S9 - S11).

268

We separate the contributions from the United States out of the five primary

269

anthropogenic emission sectors as shown in the hatched bars in Figure 2. We find that 27% of

270

population-weighted PM2.5 in Canada is from anthropogenic U.S. sources. The U.S. agriculture,

271

transportation and power generation sectors each account for 6% of population-weighted PM2.5

272

across Canada followed by the U.S. residential combustion (4%) and industry (4%) sectors. The

273

fractional contribution from the U.S. sources varies regionally. In Central Canada, 33% of

274

population-weighted PM2.5 is from the U.S. with the U.S. power generation source accounting for

275

9% of PM2.5 followed closely by the U.S. transportation sector (8%). In western Canada, 17% of

276

population-weighted PM2.5 is from the U.S. with the U.S. agriculture sector as the largest

277

contributor (6%). In Atlantic Canada, 17% of population-weighted PM2.5 is from U.S. sources

278

with the power generation sector as the largest contributor among U.S. sectors accounting for 6%

279

of PM2.5. The effects of U.S. emissions to PM2.5 in northern Canada is less than 2%. The

280

fractional contribution from the U.S. sources also varies seasonally with 46% from the U.S.

281

sources in winter and only 12% from the U.S. sources in summer.

12

ACS Paragon Plus Environment

Page 12 of 31

Page 13 of 31

Environmental Science & Technology

282

Figure 3 shows the Canadian population-weighted annual mean concentration of

283

chemical components attributable to different sectors. PM2.5 from the wildfires sector is

284

dominated by OM (94%). The main components of PM2.5 mass arising from the transportation

285

sector are OM (0.46 g m-3) and nitrate (0.32 g m-3), reflecting the NOx and VOC emissions

286

from traffic62. The contribution of sulfate attributable to the transportation sector is slightly

287

negative due to nonlinear chemistry because the oxidation efficiency of SO2 to sulfate increases

288

as the emission of NOx significantly decreases86,87 when eliminating the transportation sector.

289

The residential combustion population-weighted mean PM2.5 concentration of 0.91 g m-3 is

290

driven by OM (87%). PM2.5 from the industry sector includes contributions from OM (39%) and

291

sulfate (31%). PM2.5 from the power generation sector is driven by sulfate (61%) followed by

292

ammonium (24%). The population-weighted PM2.5 from the agriculture sector is dominated by

293

nitrate (64%) and ammonium (34%). The concentration of organic matter increases when

294

emissions from the agriculture sector are excluded due to the increase of aerosol acidity19,47,52.

295

The remaining other sectors include biogenic SOA, sulfate from DMS and volcanos, and sea salt.

296

Figure S12 shows the population weighted annual mean concentration of chemical components

297

attributed to different sectors over different regions in Canada. The relative contributions of

298

different chemical components remain similar across regions as the source magnitude varies.

299

Figure 4 shows the sectoral contribution to population weighted average PM2.5 as a

300

function of PM2.5 concentration levels in Canada. The importance of different sectors remains

301

similar for different PM2.5 concentration levels. Wildfires have a larger fractional contribution at

302

locations with smaller annual population weighted average PM2.5 concentrations. The percentage

303

contribution from the five primary anthropogenic emission sectors increases with the ambient

304

annual population weighted average PM2.5 concentrations. The sectoral contribution to PM2.5 in

13

ACS Paragon Plus Environment

Environmental Science & Technology

305

the U.S. is similar to that in Canada albeit with a weaker wildfire contribution and a stronger

306

anthropogenic contribution in the US (Figure S13).

307

3.2 The trend of sectoral contribution in the last two decades across Canada

308

Figure 5 shows the contributions of different sectors to population-weighted average

309

PM2.5 concentrations across Canada in 1990, 2000 and 2010. The population-weighted average

310

PM2.5 concentration across Canada decreased from 8.9 g m-3 in 1990 to 7.4 g m-3 in 2000, and

311

to 7.0 g m-3 in 2010. These values are close (within 16%) to observational constrained estimates

312

for these years88, supporting the PM2.5 trends from the simulations. The power generation sector

313

was the largest contributor to population-weighted average PM2.5 concentrations in 1990 (2.4 g

314

m-3) and 2000 (1.9 g m-3); while the wildfires sector has the largest contribution in 2010 (1.6 g

315

m-3) followed by the power generation sector (1.3 g m-3). The total contribution from the five

316

anthropogenic sectors decreased from 7.1 g m-3 1990 to 3.4 g m-3 in 2013, reflecting the

317

success of air quality control over the last three decades across North America. The contribution

318

from the power generation sector decreased from 2.4 g m-3 in 1990 to 1.3 g m-3 in 2010, while

319

the contribution from industry sector decreased from 1.4 g m-3 in 1990 to 0.7 g m-3 in 2010,

320

both of which reflect the successful controls on emissions9,62 reductions in coal burning. PM2.5

321

from the power generation sector continues to decrease dramatically after 2010 (Figure 2) driven

322

by a decrease in total SO2 emissions over 2010 to 2013 of 20% for Canada and of 42% for the

323

United States nationally. The relative sectoral contribution from the U.S. sources remains similar

324

during the last two decades, with the largest fraction from U.S. source from power generation

325

followed by agriculture.

14

ACS Paragon Plus Environment

Page 14 of 31

Page 15 of 31

326 327

Environmental Science & Technology

3.3 Variability in Wildfires contribution We examined how wildfire variability could affect the trends in section 3.2. Figure S14

328

shows the annual total dry matter time series from 1990 to 2015 in our wildfires emission

329

inventories across Canada. The total dry matter emitted in 2013 is 25 Tg, which is about the

330

average during 1990 to 2015, while lower than average in recent years given that the total dry

331

matter burnt time series from 1990 to 2015. Thus wildfires may play a proportionally larger role

332

in other years, or in a warmer climate in the future89,90.

333 334

Perspective. This assessment found that the contributions to PM2.5 at the low population-

335

weighted PM2.5 concentrations across Canada of 5.5 g m-3 is primarily (81%) from five major

336

anthropogenic sectors and the wildfires sector. The regionally-varying relative contribution of

337

different emission sectors across Canada implies that mitigation strategies will benefit from

338

regional policies. For example, across Central Canada, around 70% population-weighted PM2.5

339

arises from five major anthropogenic sectors with the residential combustion sector as the

340

leading contributor (19%) followed closely by the transportation sector (17%). The notable PM2.5

341

contributions from the contiguous United States (~30%) implies benefits from international

342

coordination. The leading U.S. contributors of the agricultural, transportation and power

343

generation sectors are also important contributors to PM2.5 in the United States implying mutual

344

benefits from reducing the emissions from these sources. The increasing contributions of

345

anthropogenic sectors with increasing PM2.5 found here may have implications for the shape of

346

the concentration-response function.

347

15

ACS Paragon Plus Environment

Environmental Science & Technology

348

Acknowledgement. This work was supported by Health Canada contract #4500358772. Jun

349

Meng was partially supported a Nova Scotia Research and Innovation Graduate Scholarship. We

350

are grateful to the Atlantic Computational Excellence Network and Compute Canada for

351

computing resources. We thank four anonymous reviewers for invaluable comments and

352

suggestions.

353

Supporting Information. Detailed description of ground-based measurements, baseline

354

simulation evaluation and supporting figures in this manuscript.

355

Figures and tables

356

357 358 359 360 361 362

Figure 1. Contribution of emission sectors to PM2.5 concentrations for 2013. Other Sources include volcano, dimethyl sulfide (DMS), and long-range transport (LRT) from Asia, Europe and Alaska. Inset values are population-weighted annual mean PM2.5 concentrations attributable to each sector across the U.S. (red) and Canada (blue). Absolute PM2.5 concentrations are in supporting information (SI) Figure S1. Figure was created using MATLAB_R2016b.

16

ACS Paragon Plus Environment

Page 16 of 31

Page 17 of 31

363 364 365 366 367 368 369

Environmental Science & Technology

Figure 2. Fractional contribution of different sectors to population-weighted average PM2.5 concentrations over different regions in Canada for 2013. The number under each bar represents the total population-weighted annual mean PM2.5 concentrations over that region. The hatched part in each sector represents the fractional contribution from the United States. Others include dimethyl sulfide (DMS), volcano, and long-range transport (LRT) from Asia, Europe and Alaska.

370

17

ACS Paragon Plus Environment

Environmental Science & Technology

371 372 373 374 375 376

Figure 3. Population-weighted annual mean concentrations of chemical components (g m-3) attributed to different sectors (including the contribution from U.S.) across Canada for 2013. Other includes dimethyl sulfide (DMS), volcano, biogenic secondary organic aerosol (SOA) and long-range transport (LRT) from Asia, Europe and Alaska. Figure was created using MATLAB_R2016b.

377 378 379 380 381

18

ACS Paragon Plus Environment

Page 18 of 31

Page 19 of 31

382 383 384 385 386

Environmental Science & Technology

Figure 4. Population-weighted sectoral fractional contribution versus population-weighted PM2.5 over Canada for 2013. Stacked bar plots show percentage of each sector in different PM2.5 levels. Other includes dimethyl sulfide (DMS), volcano, and long-range transport (LRT) from Asia, Europe and Alaska.

387 388

19

ACS Paragon Plus Environment

Environmental Science & Technology

389 390 391 392 393 394

Figure 5. Contribution of different sectors to population-weighted average PM2.5 concentrations over Canada in 1990, 2000 and 2010. The number under each bar represents the total population-weighted annual mean PM2.5 concentrations in that year. The hatched part in each sector represents the fractional contribution from the United States. Others include dimethyl sulfide (DMS), volcano, and long-range transport (LRT) from Asia, Europe and Alaska.

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

20

ACS Paragon Plus Environment

Page 20 of 31

Page 21 of 31

Environmental Science & Technology

413

References

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

(1) Baccarelli, A.; Wright, R. O.; Bollati, V.; Tarantini, L.; Litonjua, A. A.; Suh, H. H.; Zanobetti, A.; Sparrow, D.; Vokonas, P. S.; Schwartz, J. Rapid DNA Methylation Changes after Exposure to Traffic Particles. Am. J. Respir. Crit. Care Med. 2009, 179 (7), 572–578. https://doi.org/10.1164/rccm.200807-1097OC. (2) Brook, R. D.; Rajagopalan, S.; Pope, C. A.; Brook, J. R.; Bhatnagar, A.; Diez-Roux, A. V.; Holguin, F.; Hong, Y.; Luepker, R. V.; Mittleman, M. A.; Peters, A.; Siscovick, D.; Smith, S. C.; Whitsel, L.; Kaufman, J. D. Particulate Matter Air Pollution and Cardiovascular Disease: An Update to the Scientific Statement from the American Heart Association. Circulation 2010, 121 (21), 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1. (3) Hamra, G. B.; Guha, N.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J. M.; Vineis, P.; Forastiere, F.; Saldiva, P.; Yorifuji, T.; Loomis, D. Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2014, 122 (9), 906–911. https://doi.org/10.1289/ehp/1408092. (4) Krewski, D.; Jerrett, M.; Burnett, R. T.; Ma, R.; Hughes, E.; Shi, Y.; Turner, M. C.; Pope, C. A.; Thurston, G.; Calle, E. E.; Thun, M. J.; Beckerman, B.; DeLuca, P.; Finkelstein, N.; Ito, K.; Moore, D. K.; Newbold, K. B.; Ramsay, T.; Ross, Z.; Shin, H.; Tempalski, B. Extended Follow-up and Spatial Analysis of the American Cancer Society Study Linking Particulate Air Pollution and Mortality. Res Rep Health Eff Inst 2009, No. 140, 5–114; discussion 115-136. (5) Lepeule, J.; Laden, F.; Dockery, D.; Schwartz, J. Chronic Exposure to Fine Particles and Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009. Environ. Health Perspect. 2012, 120 (7), 965–970. https://doi.org/10.1289/ehp.1104660. (6) Gakidou, E.; Afshin, A.; Abajobir, A. A.; Abate, K. H.; Abbafati, C.; Abbas, K. M.; AbdAllah, F.; Abdulle, A. M.; Abera, S. F.; Aboyans, V.; Abu-Raddad, L. J.; Abu-Rmeileh, N. M. E.; Abyu, G. Y.; Adedeji, I. A.; Adetokunboh, O.; Afarideh, M.; Agrawal, A.; Agrawal, S.; Ahmadieh, H.; Ahmed, M. B.; Aichour, M. T. E.; Aichour, A. N.; Aichour, I.; Akinyemi, R. O.; Akseer, N.; Alahdab, F.; Al-Aly, Z.; Alam, K.; Alam, N.; Alam, T.; Alasfoor, D.; Alene, K. A.; Ali, K.; Alizadeh-Navaei, R.; Alkerwi, A.; Alla, F.; Allebeck, P.; Al-Raddadi, R.; Alsharif, U.; Altirkawi, K. A.; Alvis-Guzman, N.; Amare, A. T.; Amini, E.; Ammar, W.; Amoako, Y. A.; Ansari, H.; Antó, J. M.; Antonio, C. A. T.; Anwari, P.; Arian, N.; Ärnlöv, J.; Artaman, A.; Aryal, K. K.; Asayesh, H.; Asgedom, S. W.; Atey, T. M.; Avila-Burgos, L.; Avokpaho, E. F. G. A.; Awasthi, A.; Azzopardi, P.; Bacha, U.; Badawi, A.; Balakrishnan, K.; Ballew, S. H.; Barac, A.; Barber, R. M.; Barker-Collo, S. L.; Bärnighausen, T.; Barquera, S.; Barregard, L.; Barrero, L. H.; Batis, C.; Battle, K. E.; Baumgarner, B. R.; Baune, B. T.; Beardsley, J.; Bedi, N.; Beghi, E.; Bell, M. L.; Bennett, D. A.; Bennett, J. R.; Bensenor, I. M.; Berhane, A.; Berhe, D. F.; Bernabé, E.; Betsu, B. D.; Beuran, M.; Beyene, A. S.; Bhansali, A.; Bhutta, Z. A.; Bicer, B. K.; Bikbov, B.; Birungi, C.; Biryukov, S.; Blosser, C. D.; Boneya, D. J.; Bou-Orm, I. R.; Brauer, M.; Breitborde, N. J. K.; Brenner, H.; Brugha, T. S.; Bulto, L. N. B.; Butt, Z. A.; Cahuana-Hurtado, L.; Cárdenas, R., Carrero, J.J., Castañeda-Orjuela, C. A., Catalá-López, F., Cercy, K., Chang, H.-Y., Charlson, F.J., Chimed-Ochir, O., Chisumpa, V.H., Chitheer, A.A., Christensen, H., Christopher, D. J.; Cirillo, M.; Cohen, A. J.; Comfort, H.; Cooper, C.; Coresh, J.; Cornaby, L.; Cortesi, P. A.; Criqui, M. H.; Crump, J. A.; Dandona, L.; Dandona, R.; Neves, J. das; Davey, G.; Davitoiu, D. V.; Davletov, K.; Courten, B. de; Defo, B. K.; Degenhardt, L.; Deiparine, S.; Dellavalle, R. P.; Deribe, K.; Deshpande, A.; Dharmaratne, S. D.; Ding, E. 21

ACS Paragon Plus Environment

Environmental Science & Technology

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

L.; Djalalinia, S.; Do, H. P.; Dokova, K.; Doku, D. T.; van Donkelaar, A.; Dorsey, E. R.; Driscoll, T. R.; Dubey, M.; Duncan, B. B.; Duncan, S.; Ebrahimi, H.; El-Khatib, Z. Z.; Enayati, A.; Endries, A. Y.; Ermakov, S. P.; Erskine, H. E.; Eshrati, B.; Eskandarieh, S.; Esteghamati, A.; Estep, K.; Faraon, E. J. A.; Farinha, C. S. e S.; Faro, A.; Farzadfar, F.; Fay, K.; Feigin, V. L.; Fereshtehnejad, S.-M.; Fernandes, J. C.; Ferrari, A. J.; Feyissa, T. R.; Filip, I.; Fischer, F.; Fitzmaurice, C.; Flaxman, A. D.; Foigt, N.; Foreman, K. J.; Frostad, J. J.; Fullman, N.; Fürst, T.; Furtado, J. M.; Ganji, M.; Garcia-Basteiro, A. L.; Gebrehiwot, T. T.; Geleijnse, J. M.; Geleto, A.; Gemechu, B. L.; Gesesew, H. A.; Gething, P. W.; Ghajar, A.; Gibney, K. B. Gill, P. S.; Gillum, R. F.; Giref, A. Z.; Gishu, M. D.; Giussani, G.; Godwin, W. W.; Gona, P. N.; Goodridge, A.; Gopalani, S. V.; Goryakin, Y.; Goulart, A. C.; Graetz, N.; Gugnani, H. C.; Guo, J.; Gupta, R.; Gupta, T.; Gupta, V.; Gutiérrez, R. A.; Hachinski, V.; Hafezi-Nejad, N.; Hailu, G. B.; Hamadeh, R. R.; Hamidi, S.; Hammami, M.; Handal, A. J.; Hankey, G. J.; Hanson, S. W.; Harb, H. L.; Hareri, H. A.; Hassanvand, M. S.; Havmoeller, R.; Hawley, C.; Hay, S. I.; Hedayati, M. T.; Hendrie, D.; Heredia-Pi, I. B.; Hernandez, J. C. M.; Hoek, H. W.; Horita, N.; Hosgood, H. D.; Hostiuc, S.; Hoy, D. G.; Hsairi, M.; Hu, G.; Huang, J. J.; Huang, H.; Ibrahim, N. M.; Iburg, K. M.; Ikeda, C.; Inoue, M.; Irvine, C. M. S.; Jackson, M. D.; Jacobsen, K. H.; Jahanmehr, N.; Jakovljevic, M. B.; Jauregui, A.; Javanbakht, M.; Jeemon, P.; Johansson, L. R. K.; Johnson, C. O.; Jonas, J. B.; Jürisson, M.; Kabir, Z.; Kadel, R.; Kahsay, A.; Kamal, R.; Karch, A.; Karema, C. K.; Kasaeian, A.; Kassebaum, N. J.; Kastor, A.; Katikireddi, S. V.; Kawakami, N.; Keiyoro, P. N.; Kelbore, S. G.; Kemmer, L.; Kengne, A. P.; Kesavachandran, C. N.; Khader, Y. S.; Khalil, I. A.; Khan, E. A.; Khang, Y.-H.; Khosravi, A.; Khubchandani, J.; Kiadaliri, A. A.; Kieling, C.; Kim, J. Y.; Kim, Y. J.; Kim, D.; Kimokoti, R. W.; Kinfu, Y.; Kisa, A.; Kissimova-Skarbek, K. A.; Kivimaki, M.; Knibbs, L. D.; Knudsen, A. K.; Kopec, J. A.; Kosen, S.; Koul, P. A.; Koyanagi, A.; Kravchenko, M.; Krohn, K. J.; Kromhout, H.; Kumar, G. A.; Kutz, M.; Kyu, H. H.; Lal, D. K.; Lalloo, R.; Lallukka, T.; Lan, Q.; Lansingh, V. C.; Larsson, A.; Lee, P. H.; Lee, A.; Leigh, J.; Leung, J.; Levi, M.; Levy, T. S.; Li, Yichong; Li, Yongmei; Liang, X.; Liben, M. L.; Linn, S.; Liu, P.; Lodha, R.; Logroscino, G.; Looker, K. J.; Lopez, A. D.; Lorkowski, S.; Lotufo, P. A.; Lozano, R.; Lunevicius, R.; Macarayan, E. R. K.; Razek, H. M. A. E.; Razek, M. M. A. E.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malhotra, R.; Malta, D. C.; Mamun, A. A.; Manguerra, H.; Mantovani, L. G.; Mapoma, C. C.; Martin, R. V.; Martinez-Raga, J.; Martins-Melo, F. R.; Mathur, M. R.; Matsushita, K.; Matzopoulos, R.; Mazidi, M.; McAlinden, C.; McGrath, J. J.; Mehata, S.; Mehndiratta, M. M.; Meier, T.; Melaku, Y. A.; Memiah, P.; Memish, Z. A.; Mendoza, W.; Mengesha, M. M.; Mensah, G. A.; Mensink, G. B. M.; Mereta, S. T.; Meretoja, T. J.; Meretoja, A.; Mezgebe, H. B.; Micha, R.; Millear, A.; Miller, T. R.; Minnig, S.; Mirarefin, M.; Mirrakhimov, E. M.; Misganaw, A.; Mishra, S. R.; Mohammad, K. A.; Mohammed, K. E.; Mohammed, S.; Mohan, M. B. V.; Mokdad, A. H.; Monasta, L.; Montico, M.; Moradi-Lakeh, M.; Moraga, P.; Morawska, L.; Morrison, S. D.; Mountjoy-Venning, C.; Mueller, U. O.; Mullany, E. C.; Muller, K.; Murthy, G. V. S.; Musa, K. I.; Naghavi, M.; Naheed, A.; Nangia, V.; Natarajan, G.; Negoi, R. I.; Negoi, I.; Nguyen, C. T.; Nguyen, Q. L.; Nguyen, T. H.; Nguyen, G.; Nguyen, M.; Nichols, E.; Ningrum, D. N. A.; Nomura, M.; Nong, V. M.; Norheim, O. F.; Norrving, B.; Noubiap, J. J. N.; Obermeyer, C. M.; Ogbo, F. A.; Oh, I.-H.; Oladimeji, O.; Olagunju, A. T.; Olagunju, T. O.; Olivares, P. R.; Olsen, H. E.; Olusanya, B. O.; Olusanya, J. O.; Opio, J. N.; Oren, E.; Ortiz, A.; Ota, E.; Owolabi, M. O.; Pa, M.; Pacella, R. E.; Pana, A.; Panda, B. K.; Panda-

22

ACS Paragon Plus Environment

Page 22 of 31

Page 23 of 31

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550

Environmental Science & Technology

Jonas, S.; Pandian, J. D.; Papachristou, C.; Park, E.-K.; Parry, C. D.; Patten, S. B.; Patton, G. C.; Pereira, D. M.; Perico, N.; Pesudovs, K.; Petzold, M.; Phillips, M. R.; Pillay, J. D.; Piradov, M. A.; Pishgar, F.; Plass, D.; Pletcher, M. A.; Polinder, S.; Popova, S.; Poulton, R. G.; Pourmalek, F.; Prasad, N.; Purcell, C.; Qorbani, M.; Radfar, A.; Rafay, A.; RahimiMovaghar, A.; Rahimi-Movaghar, V.; Rahman, M. H. U.; Rahman, M. A.; Rahman, M.; Rai, R. K.; Rajsic, S.; Ram, U.; Rawaf, S.; Rehm, C. D.; Rehm, J.; Reiner, R. C.; Reitsma, M. B.; Remuzzi, G.; Renzaho, A. M. N.; Resnikoff, S.; Reynales-Shigematsu, L. M.; Rezaei, S.; Ribeiro, A. L.; Rivera, J. A.; Roba, K. T.; Rojas-Rueda, D.; Roman, Y.; Room, R.; Roshandel, G.; Roth, G. A.; Rothenbacher, D.; Rubagotti, E.; Rushton, L.; Sadat, N.; Safdarian, M.; Safi, S.; Safiri, S.; Sahathevan, R.; Salama, J.; Salomon, J. A.; Samy, A. M.; Sanabria, J. R.; Sanchez-Niño, M. D.; Sánchez-Pimienta, T. G.; Santomauro, D.; Santos, I. S.; Milicevic, M. M. S.; Sartorius, B.; Satpathy, M.; Sawhney, M.; Saxena, S.; Schmidt, M. I.; Schneider, I. J. C.; Schutte, A. E.; Schwebel, D. C.; Schwendicke, F.; Seedat, S.; Sepanlou, S. G.; Serdar, B.; Servan-Mori, E. E.; Shaddick, G.; Shaheen, A.; Shahraz, S.; Shaikh, M. A.; Shamsipour, M.; Shamsizadeh, M.; Islam, S. M. S.; Sharma, J.; Sharma, R.; She, J.; Shen, J.; Shi, P.; Shibuya, K.; Shields, C.; Shiferaw, M. S.; Shigematsu, M.; Shin, M.-J.; Shiri, R.; Shirkoohi, R.; Shishani, K.; Shoman, H.; Shrime, M. G.; Sigfusdottir, I. D.; Silva, D. A. S.; Silva, J. P.; Silveira, D. G. A.; Singh, J. A.; Singh, V.; Sinha, D. N.; Skiadaresi, E.; Slepak, E. L.; Smith, D. L.; Smith, M.; Sobaih, B. H. A.; Sobngwi, E.; Soneji, S.; Sorensen, R. J. D.; Sposato, L. A.; Sreeramareddy, C. T.; Srinivasan, V.; Steel, N.; Stein, D. J.; Steiner, C.; Steinke, S.; Stokes, M. A.; Strub, B.; Subart, M.; Sufiyan, M. B.; Suliankatchi, R. A.; Sur, P. J.; Swaminathan, S.; Sykes, B. L.; Szoeke, C. E. I.; TabarésSeisdedos, R.; Tadakamadla, S. K.; Takahashi, K.; Takala, J. S.; Tandon, N.; Tanner, M.; Tarekegn, Y. L.; Tavakkoli, M.; Tegegne, T. K.; Tehrani-Banihashemi, A.; Terkawi, A. S.; Tesssema, B.; Thakur, J. S.; Thamsuwan, O.; Thankappan, K. R.; Theis, A. M.; Thomas, M. L.; Thomson, A. J.; Thrift, A. G.; Tillmann, T.; Tobe-Gai, R.; Tobollik, M.; Tollanes, M. C.; Tonelli, M.; Topor-Madry, R.; Torre, A.; Tortajada, M.; Touvier, M.; Tran, B. X.; Truelsen, T.; Tuem, K. B.; Tuzcu, E. M.; Tyrovolas, S.; Ukwaja, K. N.; Uneke, C. J.; Updike, R.; Uthman, O. A.; van Boven, J. F. M.; Varughese, S.; Vasankari, T.; Veerman, L. J.; Venkateswaran, V.; Venketasubramanian, N.,;Violante, F. S.; Vladimirov, S. K.; Vlassov, V. V.; Vollset, S. E.; Vos, T.; Wadilo, F.; Wakayo, T.; Wallin, M. T.; Wang, Y.P.; Weichenthal, S.; Weiderpass, E.; Weintraub, R. G.; Weiss, D. J.; Werdecker, A.; Westerman, R.; Whiteford, H. A.; Wiysonge, C. S.; Woldeyes, B. G.; Wolfe, C. D. A.; Woodbrook, R.; Workicho, A.; Xavier, D.,;Xu, G.; Yadgir, S.; Yakob, B.; Yan, L. L.; Yaseri, M.; Yimam, H. H.; Yip, P.; Yonemoto, N.; Yoon, S.-J.; Yotebieng, M.; Younis, M. Z.; Zaidi, Z.; Zaki, M. E. S.; Zavala-Arciniega, L.; Zhang, X.; Zimsen, S. R. M.; Zipkin, B.; Zodpey, S.; Lim, S. S.; Murray, C. J. L. Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet 2017, 390 (10100), 1345–1422. https://doi.org/10.1016/S01406736(17)32366-8. (7) Cohen, A. J.; Brauer, M.; Burnett, R.; Anderson, H. R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; Feigin, V.; Freedman, G.; Hubbell, B.; Jobling, A.; Kan, H.; Knibbs, L.; Liu, Y.; Martin, R. V.; Morawska, L.; Pope, C. A.; Shin, H.; Straif, K.; Shaddick, G.; Thomas, M.; van Dingenen, R.; van Donkelaar, A.; Vos, T.; Murray, C. J. L.; Forouzanfar, M. H. Estimates and 25-Year Trends of the Global Burden of

23

ACS Paragon Plus Environment

Environmental Science & Technology

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

(8)

(9) (10)

(11) (12)

(13)

(14) (15)

(16)

(17)

Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015. The Lancet 2017, 389 (10082), 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6. Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C. A.; Apte, J. S.; Brauer, M.; Cohen, A.; Weichenthal, S.; Coggins, J.; Di, Q.; Brunekreef, B.; Frostad, J.; Lim, S. S.; Kan, H.; Walker, K. D.; Thurston, G. D.; Hayes, R. B.; Lim, C. C.; Turner, M. C.; Jerrett, M.; Krewski, D.; Gapstur, S. M.; Diver, W. R.; Ostro, B.; Goldberg, D.; Crouse, D. L.; Martin, R. V.; Peters, P.; Pinault, L.; Tjepkema, M.; van Donkelaar, A.; Villeneuve, P. J.; Miller, A. B.; Yin, P.; Zhou, M.; Wang, L.; Janssen, N. A. H.; Marra, M.; Atkinson, R. W.; Tsang, H.; Quoc Thach, T.; Cannon, J. B.; Allen, R. T.; Hart, J. E.; Laden, F.; Cesaroni, G.; Forastiere, F.; Weinmayr, G.; Jaensch, A.; Nagel, G.; Concin, H.; Spadaro, J. V. Global Estimates of Mortality Associated with Long-Term Exposure to Outdoor Fine Particulate Matter. PNAS 2018, 201803222. https://doi.org/10.1073/pnas.1803222115. U. S. EPA. Air Quality Improves as America Grows. https://gispub.epa.gov/air/trendsreport/2017/ (accessed Nov 11, 2018). Environment and Climate Change Canada. Canadian environmental sustainability indicators: Air pollutant emissions. https://www.canada.ca/en/environment-climatechange/services/environmental-indicators/air-pollutant-emissions.html (accessed Sep 15, 2018). Pinault, L.; van Donkelaar, A.; Martin, R. V. Exposure to Fine Particulate Matter Air Pollution in Canada. Health Rep 2017, 28 (3), 9–16. van Donkelaar, A.; Martin, R. V.; Spurr, R. J. D.; Burnett, R. T. High-Resolution SatelliteDerived PM2.5 from Optimal Estimation and Geographically Weighted Regression over North America. Environ. Sci. Technol. 2015, 49 (17), 10482–10491. https://doi.org/10.1021/acs.est.5b02076. Crouse, D. L.; Peters, P. A.; van Donkelaar, A.; Goldberg, M. S.; Villeneuve, P. J.; Brion, O.; Khan, S.; Atari, D. O.; Jerrett, M.; Pope, C. A.; Brauer, M.; Brook, J. R.; Martin, R. V.; Stieb, D.; Burnett, R. T. Risk of Nonaccidental and Cardiovascular Mortality in Relation to Long-Term Exposure to Low Concentrations of Fine Particulate Matter: A Canadian National-Level Cohort Study. Environ. Health Perspect. 2012, 120 (5), 708–714. https://doi.org/10.1289/ehp.1104049. Hales, S.; Blakely, T.; Woodward, A. Air Pollution and Mortality in New Zealand: Cohort Study. J Epidemiol Community Health 2012, 66 (5), 468–473. https://doi.org/10.1136/jech.2010.112490. Pinault, L.; Tjepkema, M.; Crouse, D. L.; Weichenthal, S.; van Donkelaar, A.; Martin, R. V.; Brauer, M.; Chen, H.; Burnett, R. T. Risk Estimates of Mortality Attributed to Low Concentrations of Ambient Fine Particulate Matter in the Canadian Community Health Survey Cohort. Environ Health 2016, 15, 18. https://doi.org/10.1186/s12940-016-0111-6. Shi, L.; Zanobetti, A.; Kloog, I.; Coull, B. A.; Koutrakis, P.; Melly, S. J.; Schwartz, J. D. Low-Concentration PM2.5 and Mortality: Estimating Acute and Chronic Effects in a Population-Based Study. Environ. Health Perspect. 2016, 124 (1), 46–52. https://doi.org/10.1289/ehp.1409111. Lelieveld, J.; Evans, J. S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525 (7569), 367–371. https://doi.org/10.1038/nature15371.

24

ACS Paragon Plus Environment

Page 24 of 31

Page 25 of 31

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

Environmental Science & Technology

(18) Silva, R. A.; Adelman, Z.; Fry, M. M.; West, J. J. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality Due to Ambient Air Pollution. Environ. Health Perspect. 2016, 124 (11), 1776–1784. https://doi.org/10.1289/EHP177. (19) Weagle, C. L.; Snider, G.; Li, C.; van Donkelaar, A.; Philip, S.; Bissonnette, P.; Burke, J.; Jackson, J.; Latimer, R.; Stone, E.; Abboud, I.; Akoshile, C.; Anh, N. X.; Brook, J. R.; Cohen, A.; Dong, J.; Gibson, M. D.; Griffith, D.; He, K. B.; Holben, B. N.; Kahn, R.; Keller, C. A.; Kim, J. S.; Lagrosas, N.; Lestari, P.; Khian, Y. L.; Liu, Y.; Marais, E. A.; Martins, J. V.; Misra, A.; Muliane, U.; Pratiwi, R.; Quel, E. J.; Salam, A.; Segev, L.; Tripathi, S. N.; Wang, C.; Zhang, Q.; Brauer, M.; Rudich, Y.; Martin, R. V. Global Sources of Fine Particulate Matter: Interpretation of PM2.5 Chemical Composition Observed by SPARTAN Using a Global Chemical Transport Model. Environ. Sci. Technol. 2018. https://doi.org/10.1021/acs.est.8b01658. (20) Brook, J. R.; Lillyman, C. D.; Shepherd, M. F.; Mamedov, A. Regional Transport and Urban Contributions to Fine Particle Concentrations in Southeastern Canada. Journal of the Air & Waste Management Association 2002, 52 (7), 855–866. https://doi.org/10.1080/10473289.2002.10470821. (21) Brook, J. R.; Poirot, R. L.; Dann, T. F.; Lee, P. K. H.; Lillyman, C. D.; Ip, T. Assessing Sources of PM2.5 in Cities Influenced by Regional Transport. Journal of Toxicology and Environmental Health, Part A 2007, 70 (3–4), 191–199. https://doi.org/10.1080/15287390600883000. (22) Brook, J. R.; Graham, L.; Charland, J. P.; Cheng, Y.; Fan, X.; Lu, G.; Li, S. M.; Lillyman, C.; MacDonald, P.; Caravaggio, G.; MacPhee, J.A. Investigation of the Motor Vehicle Exhaust Contribution to Primary Fine Particle Organic Carbon in Urban Air. Atmospheric Environment 2007, 41 (1), 119–135. https://doi.org/10.1016/j.atmosenv.2006.07.050. (23) Hong, K. Y.; King, G. H.; Saraswat, A.; Henderson, S. B. Seasonal Ambient Particulate Matter and Population Health Outcomes among Communities Impacted by Road Dust in British Columbia, Canada. J Air Waste Manag Assoc 2017, 67 (9), 986–999. https://doi.org/10.1080/10962247.2017.1315348. (24) Barker, H. W. Isolating the Industrial Contribution of PM2.5 in Hamilton and Burlington, Ontario. J. Appl. Meteor. Climatol. 2012, 52 (3), 660–667. https://doi.org/10.1175/JAMCD-12-0163.1. (25) Goodarzi, F. The Rates of Emissions of Fine Particles from Some Canadian Coal-Fired Power Plants. Fuel 2006, 85 (4), 425–433. https://doi.org/10.1016/j.fuel.2005.07.008. (26) Landis, M. S.; Edgerton, E. S.; White, E. M.; Wentworth, G. R.; Sullivan, A. P.; Dillner, A. M. The Impact of the 2016 Fort McMurray Horse River Wildfire on Ambient Air Pollution Levels in the Athabasca Oil Sands Region, Alberta, Canada. Sci. Total Environ. 2018, 618, 1665–1676. https://doi.org/10.1016/j.scitotenv.2017.10.008. (27) Sofowote, U.; Dempsey, F. Impacts of Forest Fires on Ambient near–Real–Time PM2.5 in Ontario, Canada: Meteorological Analyses and Source Apportionment of the July 2011– 2013 Episodes. Atmospheric Pollution Research 2015, 6 (1), 1–10. https://doi.org/10.5094/APR.2015.001. (28) Jeong, C.-H.; Evans, G. J.; Dann, T.; Graham, M.; Herod, D.; Dabek-Zlotorzynska, E.; Mathieu, D.; Ding, L.; Wang, D. Influence of Biomass Burning on Wintertime Fine Particulate Matter: Source Contribution at a Valley Site in Rural British Columbia.

25

ACS Paragon Plus Environment

Environmental Science & Technology

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

(29)

(30)

(31)

(32)

(33) (34)

(35)

(36) (37)

(38)

(39)

Atmospheric Environment 2008, 42 (16), 3684–3699. https://doi.org/10.1016/j.atmosenv.2008.01.006. Weichenthal, S.; Kulka, R.; Lavigne, E.; van Rijswijk, D.; Brauer, M.; Villeneuve, P. J.; Stieb, D.; Joseph, L.; Burnett, R. T. Biomass Burning as a Source of Ambient Fine Particulate Air Pollution and Acute Myocardial Infarction. Epidemiology 2017, 28 (3), 329– 337. https://doi.org/10.1097/EDE.0000000000000636. Pappin Amanda Joy; Hakami Amir. Source Attribution of Health Benefits from Air Pollution Abatement in Canada and the United States: An Adjoint Sensitivity Analysis. Environmental Health Perspectives 2013, 121 (5), 572–579. https://doi.org/10.1289/ehp.1205561. Cho, S.; McEachern, P.; Morris, R.; Shah, T.; Johnson, J.; Nopmongcol, U. Emission Sources Sensitivity Study for Ground-Level Ozone and PM2.5 Due to Oil Sands Development Using Air Quality Modeling System: Part I- Model Evaluation for Current Year Base Case Simulation. Atmospheric Environment 2012, 55, 533–541. https://doi.org/10.1016/j.atmosenv.2012.02.026. Bey, I.; Jacob, D. J.; Yantosca, R. M.; Logan, J. A.; Field, B. D.; Fiore, A. M.; Li, Q.; Liu, H. Y.; Mickley, L. J.; Schultz, M. G. Global Modeling of Tropospheric Chemistry with Assimilated Meteorology: Model Description and Evaluation. Journal of Geophysical Research: Atmospheres 2001, 106 (D19), 23073–23095. https://doi.org/10.1029/2001JD000807. Park, R. J.; Jacob, D. J.; Field, B.; Yantosca, R. M.; Chin, M. Natural and Transboundary Pollution Influences on Sulfate-Nitrate-Ammonium Aerosols in the United States: Implications for Policy. 2004. Parrella, J. P.; Jacob, D. J.; Liang, Q.; Zhang, Y.; Mickley, L. J.; Miller, B.; Evans, M. J.; Yang, X.; Pyle, J. A.; Theys, N.; Roozendael, M.V. Tropospheric Bromine Chemistry: Implications for Present and Pre-Industrial Ozone and Mercury. Atmospheric Chemistry and Physics 2012, 12 (15), 6723–6740. https://doi.org/10.5194/acp-12-6723-2012. Fountoukis, C.; Nenes, A. ISORROPIA II: A Computationally Efficient Thermodynamic Equilibrium Model for K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O Aerosols. Atmospheric Chemistry and Physics 2007, 7 (17), 4639–4659. https://doi.org/10.5194/acp7-4639-2007. Pye, H. O. T.; Liao, H.; Wu, S.; Mickley, L. J.; Jacob, D. J.; Henze, D. K.; Seinfeld, J. H. Effect of Changes in Climate and Emissions on Future Sulfate-Nitrate-Ammonium Aerosol Levels in the United States. 2009. Martin, R. V.; Jacob, D. J.; Yantosca, R. M.; Chin, M.; Ginoux, P. Global and Regional Decreases in Tropospheric Oxidants from Photochemical Effects of Aerosols. Journal of Geophysical Research: Atmospheres 2003, 108 (D3). https://doi.org/10.1029/2002JD002622. Hammer, M. S.; Martin, R. V.; van Donkelaar, A.; Buchard, V.; Torres, O.; Ridley, D. A.; Spurr, R. J. D. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects. Atmospheric Chemistry and Physics 2016, 16 (4), 2507–2523. https://doi.org/10.5194/acp-16-2507-2016. Jacob, D. J. Heterogeneous Chemistry and Tropospheric Ozone. Atmospheric Environment 2000, 34 (12), 2131–2159. https://doi.org/10.1016/S1352-2310(99)00462-8.

26

ACS Paragon Plus Environment

Page 26 of 31

Page 27 of 31

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730

Environmental Science & Technology

(40) Evans, M. J.; Jacob, D. J. Impact of New Laboratory Studies of N2O5 Hydrolysis on Global Model Budgets of Tropospheric Nitrogen Oxides, Ozone, and OH. Geophysical Research Letters 2005, 32 (9). https://doi.org/10.1029/2005GL022469. (41) Mao, J.; Fan, S.; Jacob, D. J.; Travis, K. R. Radical Loss in the Atmosphere from Cu-Fe Redox Coupling in Aerosols. Atmospheric Chemistry and Physics 2013, 13 (2), 509–519. https://doi.org/10.5194/acp-13-509-2013. (42) Fairlie, T. D.; Jacob, D. J.; Park, R. J. The Impact of Transpacific Transport of Mineral Dust in the United States. Atmospheric Environment 2007, 41 (6), 1251–1266. https://doi.org/10.1016/j.atmosenv.2006.09.048. (43) Jaeglé, L.; Quinn, P. K.; Bates, T. S.; Alexander, B.; Lin, J.-T. Global Distribution of Sea Salt Aerosols: New Constraints from in Situ and Remote Sensing Observations. Atmospheric Chemistry and Physics 2011, 11 (7), 3137–3157. https://doi.org/10.5194/acp11-3137-2011. (44) Park, R. J.; Jacob, D. J.; Chin, M.; Martin, R. V. Sources of Carbonaceous Aerosols over the United States and Implications for Natural Visibility. Journal of Geophysical Research: Atmospheres 2003, 108 (D12), 4355. https://doi.org/10.1029/2002JD003190. (45) Wang, Q.; J. Jacob, D.; Ryan Spackman, J.; Perring, A.; Schwarz, J.; Moteki, N.; A. Marais, E.; Ge, C.; Wang, J.; R. H. Barrett, S. Global Budget and Radiative Forcing of Black Carbon Aerosol: Constraints from Pole-to-Pole (HIPPO) Observations across the Pacific. Journal of Geophysical Research: Atmospheres 2014, 119, 195–206. https://doi.org/10.1002/2013JD020824. (46) Pye, H. O. T.; Chan, A. W. H.; Barkley, M. P.; Seinfeld, J. H. Global Modeling of Organic Aerosol: The Importance of Reactive Nitrogen (NOx and NO3). Atmospheric Chemistry and Physics 2010, 10 (22), 11261–11276. https://doi.org/10.5194/acp-10-11261-2010. (47) Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.; Fisher, J. A.; Travis, K.; Yu, K.; Hanisco, T. F.; Wolfe, G. M.; Arkinson, H. L.; Pye, H. O. T.; Froyd, K. D.; Liao, J.; McNeill, V. F. Aqueous-Phase Mechanism for Secondary Organic Aerosol Formation from Isoprene: Application to the Southeast United States and Co-Benefit of SO2 Emission Controls. Atmospheric Chemistry and Physics 2016, 16 (3), 1603–1618. https://doi.org/10.5194/acp16-1603-2016. (48) Philip, S.; Martin, R. V.; Pierce, J. R.; Jimenez, J. L.; Zhang, Q.; Canagaratna, M. R.; Spracklen, D. V.; Nowlan, C. R.; Lamsal, L. N.; Cooper, M. J.; Krotkov, N. A. Spatially and Seasonally Resolved Estimate of the Ratio of Organic Mass to Organic Carbon. Atmospheric Environment 2014, 87, 34–40. https://doi.org/10.1016/j.atmosenv.2013.11.065. (49) Heald, C. L.; Jr, C.; L, J.; Lee, T.; Benedict, K. B.; Schwandner, F. M.; Li, Y.; Clarisse, L.; Hurtmans, D. R.; Damme, M. V.; Clerbaux, C.; Coheur, P.-F.; Philip, S.; Martin, R. V.; Pye, H. O. T. Atmospheric Ammonia and Particulate Inorganic Nitrogen over the United States. Atmospheric Chemistry and Physics 2012, 12 (21), 10295–10312. https://doi.org/10.5194/acp-12-10295-2012. (50) Zhang, L.; Kok, J. F.; Henze, D. K.; Li, Q.; Zhao, C. Improving Simulations of Fine Dust Surface Concentrations over the Western United States by Optimizing the Particle Size Distribution. Geophysical Research Letters 2013, 40 (12), 3270–3275. https://doi.org/10.1002/grl.50591.

27

ACS Paragon Plus Environment

Environmental Science & Technology

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

(51) Ridley, D. A.; Heald, C. L.; Ford, B. North African Dust Export and Deposition: A Satellite and Model Perspective. Journal of Geophysical Research (Atmospheres) 2012, 117 (D2), D02202. https://doi.org/10.1029/2011JD016794. (52) Fisher, J. A.; Jacob, D. J.; Wang, Q.; Bahreini, R.; Carouge, C. C.; Cubison, M. J.; Dibb, J. E.; Diehl, T.; Jimenez, J. L.; Leibensperger, E. M.; Lu, Z.; Meinders, M. B. J.; Pye, H. O. T.; Quinn, P. K.; Sharma, S.; Streets, D. G.; van Donkelaar, A.; Yantosca, R. M. Sources, Distribution, and Acidity of Sulfate–Ammonium Aerosol in the Arctic in Winter–Spring. Atmospheric Environment 2011, 45 (39), 7301–7318. https://doi.org/10.1016/j.atmosenv.2011.08.030. (53) Amos, H. M.; Jacob, D. J.; Holmes, C. D.; Fisher, J. A.; Wang, Q.; Yantosca, R. M.; Corbitt, E. S.; Galarneau, E.; Rutter, A. P.; Gustin, M. S.; Steffen, A.; Schauer, J. J.; Graydon, J. A.; Louis, V. L. S.; Talbot, R. W.; Edgerton, E. S.; Zhang, Y.; Sunderland, E. M. Gas-Particle Partitioning of Atmospheric Hg(II) and Its Effect on Global Mercury Deposition. Atmospheric Chemistry and Physics 2012, 12 (1), 591–603. https://doi.org/10.5194/acp-12-591-2012. (54) Wang, Q.; Jacob, D. J.; Fisher, J. A.; Mao, J.; Leibensperger, E. M.; Carouge, C. C.; Sager, P. L.; Kondo, Y.; Jimenez, J. L.; Cubison, M. J.; Doherty, S. J. Sources of Carbonaceous Aerosols and Deposited Black Carbon in the Arctic in Winter-Spring: Implications for Radiative Forcing. Atmospheric Chemistry and Physics 2011, 11 (23), 12453–12473. https://doi.org/10.5194/acp-11-12453-2011. (55) Wang, Y. X.; McElroy, M. B.; Jacob, D. J.; Yantosca, R. M. A Nested Grid Formulation for Chemical Transport over Asia: Applications to CO. Journal of Geophysical Research: Atmospheres 2004, 109 (D22). https://doi.org/10.1029/2004JD005237. (56) Kim, P. S.; Jacob, D. J.; Fisher, J. A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Jimenez, J. L.; Campuzano-Jost, P.; Froyd, K. D.; Liao, J.; Hair, J. W.; Fenn, M. A.; Butler, C. F.; Wagner, N. L.; Gordon, T. D.; Welti, A.; Wennberg, P. O.; Crounse, J. D.; Clair, J. M. S.; Teng, A. P.; Millet, D. B.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E. Sources, Seasonality, and Trends of Southeast US Aerosol: An Integrated Analysis of Surface, Aircraft, and Satellite Observations with the GEOS-Chem Chemical Transport Model. Atmospheric Chemistry and Physics 2015, 15 (18), 10411–10433. https://doi.org/10.5194/acp-15-10411-2015. (57) Philip, S.; Martin, R. V.; Keller, C. A. Sensitivity of Chemistry-Transport Model Simulations to the Duration of Chemical and Transport Operators: A Case Study with GEOS-Chem V10-01. Geosci. Model Dev. 2016, 9 (5), 1683–1695. https://doi.org/10.5194/gmd-9-1683-2016. (58) van Donkelaar, A.; Martin, R. V.; Li, C.; Burnett, R. T. Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2019. https://doi.org/10.1021/acs.est.8b06392. (59) Gridded Population of the World (GPW), v4, SEDAC http://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (accessed Aug 8, 2018). (60) Keller, C. A.; Long, M. S.; Yantosca, R. M.; Silva, D.; M, A.; Pawson, S.; Jacob, D. J. HEMCO v1.0: A Versatile, ESMF-Compliant Component for Calculating Emissions in Atmospheric Models. Geoscientific Model Development 2014, 7 (4), 1409–1417. https://doi.org/10.5194/gmd-7-1409-2014.

28

ACS Paragon Plus Environment

Page 28 of 31

Page 29 of 31

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

Environmental Science & Technology

(61) Kuhns, H.; Knipping, E. M.; Vukovich, J. M. Development of a United States-Mexico Emissions Inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study. J Air Waste Manag Assoc 2005, 55 (5), 677–692. (62) Environment and Climate Change Canada. Air Pollutant Emissions Inventory: overview. https://www.canada.ca/en/environment-climate-change/services/pollutants/air-emissionsinventory-overview.html (accessed Sep 15, 2018). (63) Reff, A.; Bhave, P. V.; Simon, H.; Pace, T. G.; Pouliot, G. A.; Mobley, J. D.; Houyoux, M. Emissions Inventory of PM2.5 Trace Elements across the United States. Environ. Sci. Technol. 2009, 43 (15), 5790–5796. https://doi.org/10.1021/es802930x. (64) Li, C.; Martin, R. V.; van Donkelaar, A.; Boys, B. L.; Hammer, M. S.; Xu, J.-W.; Marais, E. A.; Reff, A.; Strum, M.; Ridley, D. A.; Crippa, M.; Brauer, M.; Zhang, Q. Trends in Chemical Composition of Global and Regional Population-Weighted Fine Particulate Matter Estimated for 25 Years. Environ. Sci. Technol. 2017, 51 (19), 11185–11195. https://doi.org/10.1021/acs.est.7b02530. (65) Ridley, D. A.; Heald, C. L.; Ridley, K. J.; Kroll, J. H. Causes and Consequences of Decreasing Atmospheric Organic Aerosol in the United States. PNAS 2018, 115 (2), 290– 295. https://doi.org/10.1073/pnas.1700387115. (66) Giglio, L.; Randerson, J. T.; Werf, G. R. van der. Analysis of Daily, Monthly, and Annual Burned Area Using the Fourth-Generation Global Fire Emissions Database (GFED4). Journal of Geophysical Research: Biogeosciences 2013, 118 (1), 317–328. https://doi.org/10.1002/jgrg.20042. (67) Stettler, M. E. J.; Eastham, S.; Barrett, S. R. H. Air Quality and Public Health Impacts of UK Airports. Part I: Emissions. Atmospheric Environment 2011, 45 (31), 5415–5424. https://doi.org/10.1016/j.atmosenv.2011.07.012. (68) Lee, C.; Martin, R. V.; van Donkelaar, A.; Lee, H.; Dickerson, R. R.; Hains, J. C.; Krotkov, N.; Richter, A.; Vinnikov, K.; Schwab, J. J. SO2 Emissions and Lifetimes: Estimates from Inverse Modeling Using in Situ and Global, Space-Based (SCIAMACHY and OMI) Observations. Journal of Geophysical Research: Atmospheres 2011, 116 (D6). https://doi.org/10.1029/2010JD014758. (69) Murray, L. T.; Jacob, D. J.; Logan, J. A.; Hudman, R. C.; Koshak, W. J. Optimized Regional and Interannual Variability of Lightning in a Global Chemical Transport Model Constrained by LIS/OTD Satellite Data. https://doi.org/10.1029/2012JD017934. (70) Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L. K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature Version 2.1 (MEGAN2.1): An Extended and Updated Framework for Modeling Biogenic Emissions. Geosci. Model Dev. 2012, 5 (6), 1471–1492. https://doi.org/10.5194/gmd-5-1471-2012. (71) Hu, L.; Millet, D. B.; Baasandorj, M.; Griffis, T. J.; Turner, P.; Helmig, D.; Curtis, A. J.; Hueber, J. Isoprene Emissions and Impacts over an Ecological Transition Region in the U.S. Upper Midwest Inferred from Tall Tower Measurements. Journal of Geophysical Research: Atmospheres 2015, 120 (8), 3553–3571. https://doi.org/10.1002/2014JD022732. (72) Tai, A. P. K.; Mickley, L. J.; Heald, C. L.; Wu, S. Effect of CO2 Inhibition on Biogenic Isoprene Emission: Implications for Air Quality under 2000 to 2050 Changes in Climate, Vegetation, and Land Use. Geophysical Research Letters 2013, 40 (13), 3479–3483. https://doi.org/10.1002/grl.50650. (73) Hudman, R. C.; Moore, N. E.; Mebust, A. K.; Martin, R. V.; Russell, A. R.; Valin, L. C.; Cohen, R. C. Steps towards a Mechanistic Model of Global Soil Nitric Oxide Emissions:

29

ACS Paragon Plus Environment

Environmental Science & Technology

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

(74)

(75)

(76) (77)

(78)

(79)

(80)

(81)

(82)

(83)

Implementation and Space Based-Constraints. Atmospheric Chemistry and Physics 2012, 12 (16), 7779–7795. https://doi.org/10.5194/acp-12-7779-2012. Breider, T. J.; Mickley, L. J.; Jacob, D. J.; Ge, C.; Wang, J.; Sulprizio, M. P.; Croft, B.; Ridley, D. A.; McConnell, J. R.; Sharma, S.; Husain, L.; Dutkiewicz, V. A.; Eleftheriadis, K.; Skov, H.; Hopke, P. K. Multidecadal Trends in Aerosol Radiative Forcing over the Arctic: Contribution of Changes in Anthropogenic Aerosol to Arctic Warming since 1980. Journal of Geophysical Research: Atmospheres 2017, 122 (6), 3573–3594. https://doi.org/10.1002/2016JD025321. Caiazzo, F.; Ashok, A.; Waitz, I. A.; Yim, S. H. L.; Barrett, S. R. H. Air Pollution and Early Deaths in the United States. Part I: Quantifying the Impact of Major Sectors in 2005. Atmospheric Environment 2013, 79, 198–208. https://doi.org/10.1016/j.atmosenv.2013.05.081. Li, Y.; Henze, D. K.; Jack, D.; Kinney, P. L. The Influence of Air Quality Model Resolution on Health Impact Assessment for Fine Particulate Matter and Its Components. Air Qual Atmos Health 2016, 9 (1), 51–68. https://doi.org/10.1007/s11869-015-0321-z. Tzompa-Sosa, Z. A.; Henderson, B. H.; Keller, C. A.; Travis, K.; Mahieu, E.; Franco, B.; Estes, M.; Helmig, D.; Fried, A.; Richter, D.; Weibring, P.; Walega, J.; Blake, D. R.; Hannigan, J. W.; Ortega, I.; Conway, S.; Strong, K.; Fischer, E. V. Atmospheric Implications of Large C2-C5 Alkane Emissions from the U.S. Oil and Gas Industry. Journal of Geophysical Research: Atmospheres 0 (ja). https://doi.org/10.1029/2018JD028955. Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA2. Geoscientific Model Development 2015, 8 (5), 1339–1356. https://doi.org/10.5194/gmd-81339-2015. Hoesly, R. M.; Smith, S. J.; Feng, L.; Klimont, Z.; Janssens-Maenhout, G.; Pitkanen, T.; Seibert, J. J.; Vu, L.; Andres, R. J.; Bolt, R. M.; Bond, T. C.; Dawidowski, L.; Kholod, N.; Kurokawa, J.; Li, M.; Liu, L.; Lu, Z.; Moura, M. C. P.; O’Rourke, P. R.; Zhang, Q. Historical (1750–2014) Anthropogenic Emissions of Reactive Gases and Aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development 2018, 11 (1), 369–408. https://doi.org/10.5194/gmd-11-369-2018. Yue, X.; Mickley, L. J.; Logan, J. A.; Kaplan, J. O. Ensemble Projections of Wildfire Activity and Carbonaceous Aerosol Concentrations over the Western United States in the Mid-21st Century. Atmos Environ (1994) 2013, 77, 767–780. https://doi.org/10.1016/j.atmosenv.2013.06.003. Dabek-Zlotorzynska, E.; Dann, T. F.; Kalyani Martinelango, P.; Celo, V.; Brook, J. R.; Mathieu, D.; Ding, L.; Austin, C. C. Canadian National Air Pollution Surveillance (NAPS) PM2.5 Speciation Program: Methodology and PM2.5 Chemical Composition for the Years 2003–2008. Atmospheric Environment 2011, 45 (3), 673–686. https://doi.org/10.1016/j.atmosenv.2010.10.024. Hand, J. L.; Schichtel, B. A.; Pitchford, M.; Malm, W. C.; Frank, N. H. Seasonal Composition of Remote and Urban Fine Particulate Matter in the United States. Journal of Geophysical Research: Atmospheres 2012, 117 (D5). https://doi.org/10.1029/2011JD017122. Ma, Q.; Cai, S.; Wang, S.; Zhao, B.; Martin, R. V.; Brauer, M.; Cohen, A.; Jiang, J.; Zhou, W.; Hao, J.; Frostad, J.; Forouzanfar, M. H.; Burnett, R. T. Impacts of Coal Burning on

30

ACS Paragon Plus Environment

Page 30 of 31

Page 31 of 31

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

Environmental Science & Technology

(84)

(85)

(86)

(87) (88)

(89) (90)

Ambient PM2.5 Pollution in China. Atmospheric Chemistry and Physics 2017, 17 (7), 4477– 4491. https://doi.org/10.5194/acp-17-4477-2017. Venkataraman, C.; Brauer, M.; Tibrewal, K.; Sadavarte, P.; Ma, Q.; Cohen, A.; Chaliyakunnel, S.; Frostad, J.; Klimont, Z.; Martin, R. V.; Millet, D. B.; Philip, S.; Walker, K.; Wang, S. Source Influence on Emission Pathways and Ambient PM2.5 Pollution over India (2015–2050). Atmospheric Chemistry and Physics 2018, 18 (11), 8017–8039. https://doi.org/10.5194/acp-18-8017-2018. Philip, S.; Martin, R. V.; van Donkelaar, A.; Lo, J. W.-H.; Wang, Y.; Chen, D.; Zhang, L.; Kasibhatla, P. S.; Wang, S.; Zhang, Q.; Lu, Z.; Streets, D. G.; Bittman, S.; Macdonald, D. J. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment. Environ. Sci. Technol. 2014, 48 (22), 13060–13068. https://doi.org/10.1021/es502965b. Shah, V.; Jaeglé, L.; Thornton, J. A.; Lopez-Hilfiker, F. D.; Lee, B. H.; Schroder, J. C.; Campuzano-Jost, P.; Jimenez, J. L.; Guo, H.; Sullivan, A. P.; Weber, R. J.; Green, J. R.; Fiddler, M. N.; Bililign, S.; Campos, T. L.; Stell, M.; Weinheimer, A. J.; Montzka, D. D.; Brown, S. S. Chemical Feedbacks Weaken the Wintertime Response of Particulate Sulfate and Nitrate to Emissions Reductions over the Eastern United States. PNAS 2018, 201803295. https://doi.org/10.1073/pnas.1803295115. Holt, J.; Selin, N. E.; Solomon, S. Changes in Inorganic Fine Particulate Matter Sensitivities to Precursors Due to Large-Scale US Emissions Reductions. Environ. Sci. Technol. 2015, 49 (8), 4834–4841. https://doi.org/10.1021/acs.est.5b00008. Meng, J.; Li, C.; Martin, R. V.; van Donkelaar, A.; Hystad, P.; Brauer, M. Estimated LongTerm (1981-2016) Concentrations of Ambient Fine Particulate Matter across North America from Chemical Transport Modeling, Satellite Remote Sensing and Ground-Based Measurements. Environ. Sci. Technol. 2019. https://doi.org/10.1021/acs.est.8b06875. Hurteau, M. D.; Westerling, A. L.; Wiedinmyer, C.; Bryant, B. P. Projected Effects of Climate and Development on California Wildfire Emissions through 2100. Environ. Sci. Technol. 2014, 48 (4), 2298–2304. https://doi.org/10.1021/es4050133. Randerson, J. T.; Chen, Y.; Werf, G. R. van der; Rogers, B. M.; Morton, D. C. Global Burned Area and Biomass Burning Emissions from Small Fires. Journal of Geophysical Research: Biogeosciences 2012, 117 (G4). https://doi.org/10.1029/2012JG002128.

31

ACS Paragon Plus Environment