Spectroelectrochemical Determination of Heterogeneous Electron

oxidized form and that the optical absorbance of R, the product of the electron ... agreement with those reported using purely electrochemical tech-. ...
0 downloads 0 Views 3MB Size
2 Spectroelectrochemical Determination of Heterogeneous Electron Transfer Kinetic Parameters ERIC E . BANCROFT and HENRY N. BLOUNT

1

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

University of Delaware, Center for Catalytic Science and Technology, Brown Chemical Laboratory, Newark, D E 19711 FRED M. HAWKRIDGE

1

Virginia Commonwealth University, Department of Chemistry, Richmond, VA 23284

Four spectroelectrochemical approaches to the determination of heterogeneous electron transfer kinetic parameters are described. These include single potential step chronoabsorptometry for the characterization of irreversible heterogeneous electron transfer kinetics, single potential step chronoabsorptometry for the characterization of quasi-reversible heterogeneous electron transfer kinetics, asymmetric double potential step chronoabsorptometry for the characterization of both irreversible and quasi-reversible heterogeneous electron transfer kinetics, and derivative cyclic voltabsorptometry for the characterization of both irreversible and quasi-reversible electron transfer kinetics. The validity of these techniques is established for the irreversible oxidation of ferrocyanide at tin oxide optically transparent electrodes in pH 7.00 solution and for the quasi-reversible oxidation offerrocyanide at platinum optically transparent electrodes in the same medium. The applicability of these techniques to the determination of the potential dependence of the heterogeneous electron transfer rate constants for both the reduction of horse heart ferricytochrome c and its subsequent reoxidation is demonstrated.

1

To whom correspondence should be addressed. 0065-2393/82/0201-0023$07.75 © 1982 A m e r i c a n C h e m i c a l Society

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

24

BO ILOGC IAL REDOX COMPONENTS

' J^he

c o u p l i n g o f optical spectroscopic probes w i t h electrochemical

p e r t u r b a t i o n s o f o p t i c a l l y t r a n s p a r e n t e l e c t r o d e s ( O T E s ) has g i v e n rise

to fruitful

h y b r i d methodologies

trochemical properties

for t h e assessment o f elec­

o f biological molecules ( J ) . T h e majority o f

these investigations have addressed

the determination o f the formal

redox potentials a n d η - v a l u e s o f biological redox molecules

(BRMs)

t h r o u g h t h e u s e o f e l e c t r o c h e m i c a l m e d i a t o r titrants ( M T s ) (2). B o t h optically transparent thin-layer electrochemical ( O T T L E )

c e l l s , as

w e l l as s o m e w h a t l a r g e r " s m a l l v o l u m e " c e l l s , h a v e b e e n s u c c e s s f u l l y u s e d i n t h e s e s t u d i e s ( 3 , 4).

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

N e w O T E systems that facilitate d i r e c t e l e c t r o n transfer

between

the e l e c t r o d e p e r se a n d B R M s w i t h o u t a solution-resident M T p e r m i t spectroelectrochemical

kinetic

characterizations

o f heterogeneous

e l e c t r o n t r a n s f e r r e a c t i o n s o f t h e s e s p e c i e s (5-10). S u c h c h a r a c t e r i z a ­ tions a r e essential t o a n u n d e r s t a n d i n g o f the m e c h a n i s t i c aspects o f t h e i n v i v o r e a c t i o n s o f B R M s t h a t f u n c t i o n p h y s i o l o g i c a l l y as i n t e r f a c i a l e l e c t r o n transfer

agents

[e.g., t h e c y t o c h r o m e

c/cytochrome c

o x i d a s e s y s t e m (11)]. F o r those O T E s that either i n h e r e n t l y or b y v i r t u e o f surface m o d ­ ification

exhibit appreciable

BRMs,

single

sorptometry)

potential

rates o f d i r e c t e l e c t r o n

step

transfer

spectroelectrochemistry

with

(chronoab­

has recently been a p p l i e d tothe determination o f the

characteristic h e t e r o g e n e o u s e l e c t r o n transfer k i n e t i c parameters for these systems

(8-10). A l t h o u g h u s e f u l , t h i s a p p r o a c h h a s b e e n r e ­

stricted ( v i d e infra) to the e x a m i n a t i o n o f u n i d i r e c t i o n a l e l e c t r o n trans­ fer p r o c e s s e s o f s y s t e m s t h a t e x h i b i t a v e r y l o w d e g r e e o f e l e c t r o c h e m ­ ical reversibility. Spectroelectrochemical techniques have now

been

d e v e l o p e d for t h e d e t e r m i n a t i o n o f t h e k i n e t i c p a r a m e t e r s c h a r a c t e r i s ­ tic o f b o t h t h e f o r w a r d a n d b a c k h e t e r o g e n e o u s e l e c t r o n transfer p r o ­ cesses for s y s t e m s e x h i b i t i n g a n y d e g r e e o f r e v e r s i b i l i t y . A h e t e r o g e n e o u s e l e c t r o n t r a n s f e r s y s t e m m a y b e r e p r e s e n t e d as *** Ο + ne~ where

k

fth

and k

bth

z± R

aretheheterogeneous

(1) electron

transfer

rate

c o n s t a n t s f o r t h e f o r w a r d ( O t o R) a n d b a c k ( R t o O ) p r o c e s s e s , r e s p e c t i v e l y . B o t h o f these rate constants c a n b e expressed i n t e r m s o f 1. T h e f o r m a l h e t e r o g e n e o u s e l e c t r o n t r a n s f e r s t a n t (kî'jt), w h i c h i s t h a t v a l u e o f e i t h e r k t h e f o r m a l p o t e n t i a l o f t h e s y s t e m (EOIR ).

fth

rate c o n ­ or k at

2. T h e t r a n s f e r c o e f f i c i e n t o f t h e e l e c t r o n t r a n s f e r

bth

process

(«). 3. T h e n u m b e r o f e l e c t r o n s i n v o l v e d i n t h e r a t e d e t e r m i n ­ i n g s t e p i n t h e e l e c t r o n t r a n s f e r p r o c e s s (n ). a

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

BANCROFT ET AL.

2.

25

Electron Transfer Kinetic Parameters

4 . T h e o v e r p o t e n t i a l (η) to w h i c h t h e s y s t e m is s u b j e c t e d (η = Ε - E°ôi , w h e r e Ε is t h e p o t e n t i a l o f t h e e l e c t r o d e at w h i c h t h e e l e c t r o n t r a n s f e r p r o c e s s is t a k i n g p l a c e ) . R

In B u t l e r - V o l m e r formalism, k

fth

and k

k,, = *°,' e x p [ - ^ h

Λ

are e x p r e s s e d as

bth

( Ε - E° ' )]

(2)

0 IR

and Kn = K Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

h

exp [

(

1

( £ - £&'„)]

(3)

T h e p e r c e i v e d degree o f e l e c t r o c h e m i c a l r e v e r s i b i l i t y o f the heteroge­ n e o u s c h a r g e t r a n s f e r p r o c e s s is a m a n i f e s t a t i o n o f t h e m a g n i t u d e o f k ^ a n d the t i m e scale o f the observation o f the s y s t e m . I f the heterogene­ o u s e l e c t r o n t r a n s f e r k i n e t i c s o f a s y s t e m are s u f f i c i e n t l y s l o w ( s m a l l k° ' ) t h a t a p p l i c a t i o n o f n e g a t i v e o v e r p o t e n t i a l s ( f a v o r i n g t h e f o r w a r d r e a c t i o n , E q u a t i o n 2) r e s u l t s i n a flux o f m a t e r i a l t h a t is d e p e n d e n t o n k b u t is i n d e p e n d e n t o f k , t h e n t h i s s y t e m c a n b e s a i d to b e e l e c t r o c h e m i c a l l y i r r e v e r s i b l e o n the t i m e scale o f the e x p e r i m e n t . T h e d e t e r m i n a t i o n o f k as a f u n c t i o n o f η f r o m e i t h e r e l e c t r o c h e m i c a l o r spectroelectrochemical measurements is straightforward a n d gives rise to the e v a l u a t i o n o f a n d a. H o w e v e r , i f t h e h e t e r o g e n e o u s e l e c t r o n t r a n s f e r k i n e t i c s o f a s y s t e m a r e m o r e f a c i l e ( m o d e r a t e fc^), t h e n a p p l i c a t i o n o f n e g a t i v e o v e r p o t e n t i a l s c a n r e s u l t i n a flux o f m a t e ­ r i a l t h a t is i m p a c t e d b y b o t h k a n d k . S u c h s y s t e m s a r e s a i d to e x h i b i t q u a s i - r e v e r s i b l e b e h a v i o r o n the t i m e scale o f the e x p e r i m e n t . T h e e v a l u a t i o n o f h e t e r o g e n e o u s e l e c t r o n transfer k i n e t i c parameters f r o m e l e c t r o c h e m i c a l or s p e c t r o e l e c t r o c h e m i c a l c h a r a c t e r i z a t i o n s o f t h e s e q u a s i - r e v e r s i b l e s y s t e m s i s s o m e w h a t m o r e c o m p l e x t h a n for i r r e v e r s i b l e systems, b u t c a n be more informative i n that k i n e t i c i n ­ f o r m a t i o n r e g a r d i n g t h e b a c k r e a c t i o n is a l s o o b t a i n e d . T o d a t e , h e t e r o ­ g e n e o u s e l e c t r o n t r a n s f e r k i n e t i c s h a v e b e e n r e p o r t e d for t h r e e b i o l o g ­ i c a l m o l e c u l e s . M y o g l o b i n e x h i b i t s i r r e v e r s i b l e e l e c t r o n transfer k i n e t i c b e h a v i o r at v i o l o g e n - m o d i f i e d g o l d e l e c t r o d e s (fc°^ — 1 0 ~ to 1 0 " cm/s). I n contrast, c y t o c h r o m e c b e h a v e s i n a q u a s i - r e v e r s i b l e m a n n e r at s e m i c o n d u c t o r a n d m o d i f i e d g o l d surfaces (k^ — 1 0 ~ to 1 0 " cm/s). S o l u b l e s p i n a c h f e r r i d o x i n also exhibits quasi-reversible b e h a v i o r at v i o l o g e n - m o d i f i e d g o l d e l e c t r o d e s (k ^ — 1 0 " c m / s ) . 0

s th

fth

bth

fth

fth

bth

9

1 1

4

5

0

5

For b o t h reversible a n d irreversible systems, k n o w l e d g e o f the k i n e t i c p a r a m e t e r s c h a r a c t e r i s t i c o f t h e b a c k r e a c t i o n is e s s e n t i a l to a n u n d e r s t a n d i n g o f t h e m e c h a n i s m s o f h e t e r o g e n e o u s e l e c t r o n transfer. I n t h e c o n t e x t o f E q u a t i o n 1, k i n e t i c c h a r a c t e r i z a t i o n o f t h e b a c k r e a c ­ tion c o u l d be r e a d i l y r e a l i z e d b y s i m p l y c a r r y i n g out e l e c t r o c h e m i c a l or s p e c t r o e l e c t r o c h e m i c a l e x p e r i m e n t s w i t h s o l u t i o n s c o n t a i n i n g R

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

26

BO ILOGC IAL REDOX COMPONENTS

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

r a t h e r t h a n Ο as i m p l i e d i n t h e f o r e g o i n g d i s c u s s i o n . A l t h o u g h t r u e i n p r i n c i p l e , this a p p r o a c h m a y n o t b e attractive either b e c a u s e o f ex­ p e r i m e n t a l constraints or because o f s a m p l e integrity. T h u s , experi­ m e n t a l s t r a t e g i e s t h a t s i m u l t a n e o u s l y afford k i n e t i c i n f o r m a t i o n r e ­ g a r d i n g b o t h forward a n d reverse heterogeneous e l e c t r o n transfer reactions are h i g h l y desirable. T h e utility o fspectroelectrochemical techniques i n the study of e l e c t r o n t r a n s f e r p r o c e s s e s h a s b e e n a m p l y d e m o n s t r a t e d (12-15). T w o major advantages o f speetroelectroehemistry c o m p a r e d to p u r e l y e l e c t r o c h e m i c a l m e t h o d s for t h e d e t e r m i n a t i o n o f h e t e r o g e n e o u s e l e c ­ tron transfer k i n e t i c parameters are t h e m o l e c u l a r specificity o f t h e o p t i c a l m e a s u r e m e n t a n d f r e e d o m f r o m errors a s s o c i a t e d w i t h c h a r g e transfer processes, b o t h faradaic a n d nonfaradaic, other t h a n the r e d o x reaction o f interest. B i o l o g i c a l s a m p l e preparations often c o n t a i n u n ­ k n o w n i m p u r i t i e s as a c o n s e q u e n c e o f i s o l a t i o n a n d p u r i f i c a t i o n p r o c e ­ d u r e s , a n d s u c h i m p u r i t i e s a r e far m o r e l i k e l y t o a d v e r s e l y i m p a c t a n electrochemical measurement than the corresponding spectroelec­ trochemical one.

Single Potential Step Chronoabsorptometry: Irreversible Systems T h e e x p e r i m e n t a l heterogeneous e l e c t r o n transfer s y s t e m c a n b e r e p r e s e n t e d b y E q u a t i o n 1. A s s u m e t h a t t h e s a m p l e i s p r e s e n t i n t h e o x i d i z e d form a n d that the o p t i c a l absorbance o f R , the p r o d u c t o f the e l e c t r o n transfer reaction, w i l l b e m o n i t o r e d w i t h o u t interference from the precursor, O . F o r t h e c h a r g e t r a n s f e r p r o c e s s g i v e n b y E q u a t i o n 1, a p p l i c a t i o n o f a p o t e n t i a l s t e p o f s u f f i c i e n t m a g n i t u d e to c a u s e t h e f o r w a r d r e a c t i o n t o p r o c e e d at a rate g o v e r n e d b y k g i v e s r i s e (15) to t h e t i m e - d e p e n d e n t a b s o r b a n c e A (\,t) o f t h e e l e c t r o d e r e a c t i o n p r o d u c t : fth

R

A (k,t) =

il2

€*(λ) σ ρ 0

R

0

r 2k t fth

+ exp

w h e r e C £ a n d D are t h e b u l k c o n c e n t r a t i o n a n d diffusion

coefficient,

0

r e s p e c t i v e l y , o f the precursor a n d e

R

is t h e m o l a r a b s o r p t i v i t y o f the

product. I f the m a g n i t u d e o f the p o t e n t i a l step a p p l i e d to t h e O T E is s u f f i c i e n t l y l a r g e t o c a u s e t h e f o r w a r d r e a c t i o n i n E q u a t i o n 1 t o proceed

at a d i f f u s i o n - c o n t r o l l e d

rate,

then

the time-dependent

optical absorbance o f the electrode reaction product, A , b y (16) R

is g i v e n

(5)

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Electron

Transfer

2. BANCROFT ET AL.

Kinetic

27

Parameters

T h e ratio o f the k i n e t i c a l l y c o n t r o l l e d absorbance ( E q u a t i o n 4) to t h e diffusion-con t r o l l e d absorbance

( E q u a t i o n 5) affords t h e n o r m a l i z e d

absorbance, A : N

2

A (\,t) = 1 +

[exp(£ )erfcU) - 1]

N

(6)

where

i =^ T

(7)

T h e n o r m a l i z e d absorbance o f the e l e c t r o d e reaction p r o d u c t d e p e n d s Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

ll2

112

o n t h e d i m e n s i o n l e s s k i n e t i c p a r a m e t e r s kf t /D th

0

as s h o w n i n F i g ­

u r e 1, a n d t h i s w o r k i n g c u r v e p r o v i d e s a c o n v e n i e n t m e a n s o f d e t e r ­ m i n i n g kf, (15). h

T h e utility o f this a p p r o a c h

has b e e n

experimentally

demon­

strated w i t h a m o d e l s y s t e m , t h e o x i d a t i o n o f f e r r o c y a n i d e i n p H 7.00 s o l u t i o n at t i n o x i d e O T E s , a n d t h e r e s u l t s o b t a i n e d w e r e i n e x c e l l e n t agreement w i t h those reported u s i n g p u r e l y e l e c t r o c h e m i c a l tech-

-2.0

-1.0

0.0 L0G(k t t h

, / 2

1.0

2.0

/D^ ) / 2

Figure 1. Working curve for spectroelectrochemical determination of heterogeneous electron transfer rate constants for irreversible reactions (15).

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

28

BO ILOGC IAL REDOX COMPONENTS

n i q u e s (15). T h e c h r o n o a b s o r p t o m e t r i c m e t h o d has b e e n successfully a p p l i e d to t h e d e t e r m i n a t i o n o f k° ' a n d a for t h e r e d u c t i o n o f m y o g l o ­ 8 th

b i n at v i o l o g e n - m o d i f i e d g o l d m i n i g r i d O T E s ( 8 ) . T h e v a l i d i t y o f this a p p r o a c h to the d e t e r m i n a t i o n o f h e t e r o g e n e ­ ous e l e c t r o n transfer k i n e t i c p a r a m e t e r s is p r e d i c a t e d on the i r r e v e r s i ­ b i l i t y o f the charge transfer process (15). U s e o f the w o r k i n g c u r v e shown

i n Figure

1 for t h e

reversible systems

analysis

o f data d e r i v e d from

c a n r e s u l t i n significant errors i n the

quasi-

calculated

h e t e r o g e n e o u s rate c o n s t a n t s a n d , i n t u r n , c a n l e a d t o f a l s e c o n c l u s i o n s r e g a r d i n g k° ' a n d a ( v i d e i n f r a ) . Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

8 th

Single Potential Step Chronoabsorptometry: Quasi-Reversible Systems I f the e l e c t r o n transfer k i n e t i c s o f the reaction g i v e n i n E q u a t i o n 1 are s u f f i c i e n t l y f a c i l e s u c h t h a t a p p l i c a t i o n o f a p o t e n t i a l s t e p p e r t u r b a ­ t i o n w h i c h favors t h e f o r w a r d p r o c e s s r e s u l t s i n a flux o f m a t e r i a l t h a t d e p e n d s o n both k

fth

a n d k , then the t i m e - d e p e n d e n t bth

t h e e l e c t r o d e r e a c t i o n p r o d u c t is g i v e n b y

Α (χ R

{

,

rt = )

*MCok

Γ /

M

( JSLL. VD m

0

absorbance of

(17)

. JSM_\

0

2

, A s _ V L VD " D„>'V

2 +

0

D ">) R

π»

2

I n concert w i t h the diffusion-controlled absorbance g i v e n i n E q u a t i o n 5, t h e n o r m a l i z e d a b s o r b a n c e for t h i s q u a s i - r e v e r s i b l e c a s e , AR(K,t)/ A g ( X , i ) , is g i v e n b y MKt)

=

(9)

2

[

+ exp(f )erfc(£) " 1

w h e r e ζ is d e f i n e d b y E q u a t i o n 7 a n d

kb,h - D Ο

l/2

(10)

DR

B e c a u s e E q u a t i o n 9 e m b o d i e s b o t h ζ a n d ξ, t h i s f o r m d o e s n o t r e a d i l y l e n d i t s e l f to t h e e x p r e s s i o n o f a w o r k i n g c u r v e w h e r e can b e evaluated

from a n experimentally d e t e r m i n e d

kf a n d th

k

bth

normalized

absorbance. F o r m a t i o n o f the ratio

a n d s u b s t i t u t i o n o f E q u a t i o n s 2 a n d 3 i n t o E q u a t i o n 10 affords

ξ = ζ[1 + (Dè>yD "*)exp{n F(E H

a

- E°^)/RT}]

(12)

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

2.

BANCROFT ET AL.

29 Electron

Transfer

Kinetic

Parameters

I n v i e w o f the r e l a t i o n s h i p b e t w e e n ξ a n d ζ g i v e n i n E q u a t i o n 12, the n o r m a l i z e d a b s o r b a n c e for t h e q u a s i - r e v e r s i b l e p r o c e s s ( E q u a t i o n 9) c a n b e e x p r e s s e d as a f u n c t i o n o f ζ a n d g i v e s r i s e to a u n i q u e w o r k i n g c u r v e for e a c h v a l u e o f t h e o v e r p o t e n t i a l e m p l o y e d . F i g u r e 2 s h o w s a f a m i l y o f s u c h w o r k i n g c u r v e s c o n s t r u c t e d for n

a

= 1 and overpoten­

t i a l s t h a t r a n g e f r o m v a l u e s a n o d i c o f t h e E ° ' o f t h e s y s t e m (η > 0) to v a l u e s s u f f i c i e n t l y c a t h o d i c o f t h e Ε°' (η < 0) t h a t t h e s y s t e m is c a u s e d to b e h a v e i n a n i r r e v e r s i b l e f a s h i o n ( i . e . , t h e b a c k r e a c t i o n

becomes

n e g l i g i b l e ) . T h e q u a s i - r e v e r s i b l e w o r k i n g c u r v e for η < —160 m V is i n d i s t i n g u i s h a b l e f r o m t h e i r r e v e r s i b l e c a s e ( F i g u r e 1).

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

A

convenient

experimental

t e s t for t h i s

predicted

chronoab-

s o r p t o m e t r i c b e h a v i o r o f q u a s i - r e v e r s i b l e s y s t e m s is p r o v i d e d b y t h e o x i d a t i o n o f f e r r o c y a n i d e to f e r r i c y a n i d e at a p l a t i n u m o p t i c a l l y trans­ p a r e n t e l e c t r o d e i n p H 7.00 p h o s p h a t e b u f f e r . T h e c y c l i c v o l t a m m e t r y o f t h i s q u a s i - r e v e r s i b l e s y s t e m is s h o w n i n F i g u r e 3 . A c q u i s i t i o n o f chronoabsorptometric ranging from η =

data

following

steps to o v e r p o t e n t i a l

+ 7 8 to - 2 6 m V (see

values

F i g u r e 3) g a v e r i s e to

the

-1.0 L0G(k

f h

t

, / 2

/Di

/ 2

)

Figure 2. Working curves for spectroelectrochemical determination of heterogeneous electron transfer rate constants for quasi-reversible reactions. Numerical values correspond to n i? where η is expressed in mV (17). a

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

30

BO ILOGC IAL REDOX COMPONENTS ι

I

1

1

1

1

ι.

I

1

1

τ IOOUA

1

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

-

m

Β

A

C D EF G I

600

I

400

200

_ 1 _

0

E (mV v s NHE) Figure 3. Cyclic voltammetry of 4.71 m M KfFefCNJe in pH 7.00 phos­ phate buffer at a platinum OTE. Area = 0.30 cm , sweep rate = 50 mV/s. For single potential step experiments, initial potential A = 66 mV, diffusion step limit Β = 740 mV, kinetic step limits: C = 502 mV, D = 472 mV, Ε = 447 mV, F = 421 mV, and G = 398 mV (17). 2

a b s o r b a n c e - t i m e transients s h o w n i n F i g u r e 4. N o t e that i n this ex­ p e r i m e n t a l s y s t e m , t h e p r e c u r s o r is t h e r e d u c e d f o r m o f t h e c o u p l e a n d t h e " f o r w a r d " s t e p for t h e o x i d a t i o n o f f e r r o c y a n i d e c o r r e s p o n d s t o k i n E q u a t i o n 1. T h e a b s o r b a n c e t r a n s i e n t s s h o w n i n F i g u r e 4 w e r e n o r ­ m a l i z e d t o t h e d i f f u s i o n - c o n t r o l l e d c a s e ( T r a c e B , F i g u r e 4) a n d w e r e a n a l y z e d using both the irreversible m o d e l a n d the quasi-reversible m o d e l . F o r data analysis b y the irreversible m o d e l , the w o r k i n g c u r v e s h o w n i n F i g u r e 1 w a s u s e d ; for a n a l y s i s o f t h e d a t a a c c o r d i n g t o t h e q u a s i - r e v e r s i b l e m o d e l , w o r k i n g curves a n a l o g o u s to those s h o w n i n bJl

F i g u r e 2 w e r e u s e d , b u t w e r e c o n s t r u c t e d for t h e e x p e r i m e n t a l o v e r p o ­ tentials e m p l o y e d . T h e results o f these analyses are s h o w n i n T a b l e I. T h e s o l i d c i r c l e s s h o w n i n F i g u r e 4 are t h e theoretical absorbance v a l u e s c a l c u l a t e d f r o m E q u a t i o n s 8 a n d 12 t o g e t h e r w i t h t h e v a l u e s o f y) e m p l o y e d i n t h e e x p e r i m e n t s . A c c o r d i n g t o s i m p l e e l e c t r o n t r a n s f e r t h e o r y ( E q u a t i o n s 2 a n d 3), l o g (k ) s h o u l d v a r y l i n e a r l y w i t h o v e r p o ­ t e n t i a l . A s s h o w n i n F i g u r e 5 , t h e h e t e r o g e n e o u s e l e c t r o n transfer r a t e bth

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Electron

2. BANCROFT ET AL.

Transfer

Kinetic

Parameters

31

c o n s t a n t for t h e o x i d a t i o n o f f e r r o c y a n i d e , e v a l u a t e d a c c o r d i n g to t h e quasi-reversible m o d e l , e x h i b i t s the e x p e c t e d b e h a v i o r , whereas the o n e e v a l u a t e d a c c o r d i n g to t h e i r r e v e r s i b l e m o d e l d o e s not. F o r t h e i r r e v e r s i b l e d a t a t r e a t m e n t , t h e r e is b o t h a d i s p l a c e m e n t o f t h e r a t e c o n s t a n t s to l o w e r v a l u e s a n d a p r o n o u n c e d d o w n w a r d c u r v a t u r e i n t h e l o g (k ) v s . η p l o t . A t t e m p t s t o fit t h e s e d a t a d e r i v e d f r o m t h e bth

,

,

,

r

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

1

TIME (sec) Figure 4. Absorbance-time behavior for single potential step oxida­ tion of 4.71 m M ferrocyanide at a platinum OTE in pH 7.00 solu­ tion. Solid lines are experimental transients; solid circles are theoreti­ cal responses calculated from Equation 8. Curve Β: η = 316 mV, theoretical response calculated from Equation 5. Curve C: η = 78 mV, k = 7.92 x 10~ cm/s, k = 1.59 x 10~ cm/s; Curve D: η = 48 mV, k , = 1.44 χ 10~ cm/s, k ' = 9.34 χ 10~ cm/s; Curve Ε: η = 23 mV, k , = 2.42 x 10~ cm/s, k ' = 5.92 = 10~ cm/s; Curve F: η = -3 mV, kf, = 4.14 x 10~ cm/s, k = 3.68 x J0~ cm/s; Curve G: η = -26 mV, k = 6.66 x 10~ cm/s, k = 2.42 χ 10~ cm/s (17). 4

2

f h

b h

3

f

h

f

h

3

b

h

b

h

3

3

3

h

3

b h 3

f h

3

b h

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

4

d

0.601 (±0.180)

0.961 0.825 0.699 0.637 0.581 0.511 0.482 0.459 0.436 0.419

Irrev.

η>=

e

2.38 (±0.16)

2.20 2.20 2.23 2.70 2.52 2.56 2.31 2.39 2.35 2.34

Quasi.

- 26 mV

1.25 (±0.32)

1.91 1.63 1.39 1.31 1.21 1.12 1.07 1.01 0.940 0.927

Irrev.

3.97 (±0.22)

3.90 4.07 3.66 4.09 4.27 3.93 4.17 4.14 3.68 3.87

Quasi.

T? = -•3 mV

2.73 (±0.54)

3.83 3.32 3.03 2.87 2.67 2.51 2.43 2.28 2.21 2.16

Irrev.

3

x 10

6.01 (±0.24)

5.60 5.92 5.73 6.14 6.02 5.96 6.30 5.90 6.19 6.33

Quasi.

V = 23 mV

Kh(cmls)

5.51 (±0.68)

6.71 6.36 5.78 5.80 5.67 5.30 5.13 4.92 4.78 4.62

Irrev.

e

d

c

6

e

9.23 (±0.42)

8.76 8.26 9.27 9.27 9.41 9.53 9.21 9.42 9.53 9.62

Quasi.

V = 48 mV

10.8 (±0.8)

11.5 11.6 11.9 11.6 10.5 10.7 10.6 9.98 9.98 9.44

Irrev.

15.5 (±0.7)

14.2 14.7 15.6 16.1 15.0 15.8 16.0 16.1 16.2 15.5

Quasi.

V = 75 mV

Heterogeneous Electron Transfer Rate Constants for the Single Potential Step Oxidation of Ferrocyanide at Platinum Evaluated by Irreversible and Quasi-Reversible Models

Note: [K Fe(CN) ] = 4.71 mM in pH 7.00 phosphate buffer (0.07 M). Data taken from Ref. 17. ° According to Equation 1. V = Estep + Eref " Ε°'; E°' for Fe(CN)i-/Fe(CN)i" = 424 mV vs. N H E (18). Following onset of potential step. Equation 6. Equation 9. Source: Reproduced from Ref. 17. Copyright 1981, American Chemical Society.

Mean SD

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Time, s

c

Table I.

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

Electron

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

2. BANCROFT ET AL.

Transfer

Kinetic

Parameters

33

qtmV) Figure 5. Dependence of log ( k ) evaluated according to irreversible model ( · , k °; = 1.35 x 10~ cmls, (1 - a) = 0.722) and quasi-reversible model (O, k °; = 3.89 x 10~ cm/s, (1 - a) = 0.469) on overpotential (17). b(h

3

s

h

3

s

h

i r r e v e r s i b l e m o d e l to the b e h a v i o r p r e d i c t e d b y E q u a t i o n 3 l e a d to a n e r r o n e o u s l y l o w v a l u e o f 1ζ' a n d a n e r r o n e o u s l y h i g h v a l u e o f (1 - a); hence, t h e v a l u e o f a d e t e r m i n e d from these data w o u l d b e corre­ s p o n d i n g l y l o w e r than the correct one. Consideration o f the apparent n o n l i n e a r d e p e n d e n c e o f l o g k o n η c o u l d also l e a d to the c o n c l u s i o n that the transfer coefficient is p o t e n t i a l d e p e n d e n t . Λ

bth

E x a m i n a t i o n o f F i g u r e 2 r e v e a l s that at s m a l l v a l u e s o f the k i n e t i c argument k f / D , a l l w o r k i n g curves coalesce to the same v a l u e o f n o r m a l i z e d a b s o r b a n c e . A t l a r g e r v a l u e s o f k t /D ' , analysis o f quasi-reversible data a c c o r d i n g to the irreversible m o d e l leads to er1 / 2

fth

1 / 2

0

ll2

fth

1

2

0

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

34

BO ILOGC IAL REDOX COMPONENTS

rors i n t h e c a l c u l a t e d v a l u e o f k . T h i s e r r o r i n c r e a s e s w i t h i n c r e a s i n g v a l u e s o f k t /D a n d less r o b u s t ( m o r e a n o d i c ) o v e r p o t e n t i a l s for t h e s y s t e m as r e p r e s e n t e d b y E q u a t i o n 1. T a b l e I I p r o v i d e s i n s i g h t i n t o t h e m a g n i t u d e o f t h e e r r o r s i n t h e k i n e t i c p a r a m e t e r (k t /D ) arising from analysis o f quasi-reversible data a c c o r d i n g to the irrever­ sible m o d e l . S u m m a r i z e d here are those m a x i m u m values o f k t /D w h i c h , i f d e t e r m i n e d u s i n g t h e w o r k i n g c u r v e for t h e i r r e v e r ­ s i b l e m o d e l rather t h a n t h e a p p r o p r i a t e w o r k i n g c u r v e for t h e q u a s i reversible m o d e l , result i n the specified relative error i n the corre­ s p o n d i n g rate c o n s t a n t . A s n i n c r e a s e s , t h e s e k t /D values b e c o m e p r o p o r t i o n a t e l y less s t r i n g e n t f o r η < 0 , b u t p r o p o r t i o n a t e l y m o r e s t r i n g e n t for η > 0 . fth

1,2

112

fth

0

ll2

fth

112

0

fth

V2

112

0

ll2

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

f l

fth

112

0

W h e n e v e r n o r m a l i z e d parameters are u t i l i z e d i n k i n e t i c analysis, attention m u s t b e g i v e n to t h e u n c e r t a i n t y i n t h e c a l c u l a t e d rate c o n ­ stant r e l a t i v e to t h e u n c e r t a i n t y i n t h e m e a s u r e d parameter. T h e n o n ­ l i n e a r dependences o f the n o r m a l i z e d absorbance o n l o g ( Λ / , ί / Ο ) s h o w n i n F i g u r e s 1 a n d 2 l e a d to t h e c o n c l u s i o n t h a t for a g i v e n o v e r p o ­ tential, the time d o m a i n o f the chronoabsorptometric experiment s h o u l d b e c h o s e n s u c h t h a t t h e n o r m a l i z e d a b s o r b a n c e v a l u e s u s e d for k i n e t i c analysis fall o n t h e r i s i n g p o r t i o n o f the w o r k i n g c u r v e w h e r e d(A )/d(log (k , t /D0 )) is greatest. A l t h o u g h h i g h l y d e s i r a b l e , i t is not always e x p e r i m e n t a l l y c o n v e n i e n t to c o n d u c t experiments i n this m a n n e r . D a t a m a y h a v e t o b e a c q u i r e d t h a t afford n o r m a l i z e d a b s o r 1 / 2

Λ

ll2

N

f

1 / 2

0

112

h

l 12

l

12

Table II. Threshold Values of k t /D That Result in Specified Relative Error in kf if Back Reaction is Neglected fth

0

th

(k , i k

r)(mV) RE" = 1% 40 20 10 0 -10 -20 -40 -60 -80 -100 -120 -140

0.0576 0.0866 0.115 0.152 0.206 0.298 0.633 1.36 2.88 6.02 12.3 24.9

h

i e

1 *-Ό /max x 10

RE = 2%

RE = 5%

RE = 10%

RE = 20°/

0.0793 0.134 0.188 0.278 0.391 0.585 1.26 2.68 5.62 11.5 23.2 47.2

0.152 0.321 0.470 0.689 1.01 1.48 3.14 6.56 13.4 27.1 55.1 111

0.308 0.664 0.966 1.43 2.09 3.04 6.36 13.0 26.4 53.7 111 235

0.678 1.46 2.14 3.11 4.52 6.54 13.4 27.2 55.5 115 242 520

a

Relative error in kf,n. Source: Reproduced from Ref. 17. Copyright 1981, American Chemical Society.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Electron

2. BANCROFT ET AL.

Transfer

Kinetic

35

Parameters

b a n c e v a l u e s , w h i c h f a l l e i t h e r n e a r t h e foot o f t h e w o r k i n g c u r v e o r near the u p p e r plateau. F o r a g i v e n uncertainty i n t h e e x p e r i m e n t a l l y d e r i v e d n o r m a l i z e d absorbance, the c o r r e s p o n d i n g error i n the calcu­ lated

kinetic

ll2

d(A )/d(log(k N

parameter

fth

t /D

112 0

))

is greater

i n these

regions

where

is l e s s . F i g u r e 6 s h o w s t h e r e l a t i v e e r r o r i n

t h e c a l c u l a t e d h e t e r o g e n e o u s r a t e c o n s t a n t kf r e s u l t i n g f r o m a n u n c e r ­ th

tainty o f ±0.001 i n t h e e x p e r i m e n t a l l y d e r i v e d n o r m a l i z e d absorbance as a f u n c t i o n o f n o r m a l i z e d a b s o r b a n c e . A s w o u l d b e e x p e c t e d , t h o s e w o r k i n g c u r v e s for t h e q u a s i - r e v e r s i b l e m o d e l t h a t c o r r e s p o n d t o m o r e

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

p o s i t i v e o v e r p o t e n t i a l s g i v e rise t o greater errors i n the c a l c u l a t e d rate

0« 0.0

I

I

0.2

I

1

0.4

NORMALIZED

I

I

I

I

0.6

0.8

I

» J

1.0

ABSORBANCE

Figure 6. Dependence of relative error in k ,h arising from an uncertainty of ±0.001 in the normalized absorbance on normalized absorbance. Numerical values are those for n 7? shown in Figure 2 (17). f

a

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

36

BO ILOGC IAL REDOX COMPONENTS

c o n s t a n t for a s p e c i f i e d u n c e r t a i n t y i n t h e m e a s u r e d n o r m a l i z e d a b s o r ­ bance. I f n

a

= 2 , t h e n t h e r e l a t i v e e r r o r c u r v e for η = -10

c a l to t h a t c a l c u l a t e d for τη = - 2 0 m V i n t h e n

m V is i d e n t i ­

= 1 case. I n l i k e m a n n e r ,

a

t h e c u r v e c o r r e s p o n d i n g to η = - 2 0 m V for n = 2 is t h e s a m e as t h a t a

for η = - 4 0 m V w h e n n

a

= 1. T h e s a m e r e l a t i o n s h i p h o l d s for p o s i t i v e

o v e r p o t e n t i a l s as w e l l .

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

Asymmetric Double Potential Step Chronoabsorptometry: Irreversible and Quasi-Reversible Systems A l t h o u g h the analysis o f s i n g l e p o t e n t i a l step chronoabsorptometr i c d a t a a c c o r d i n g to a q u a s i - r e v e r s i b l e m o d e l t a k e s t h e b a c k r e a c t i o n into account, it does not p r o v i d e a n i n d e p e n d e n t m e a s u r e o f k and (1 - a) ( E q u a t i o n s 1 - 3 ) . A s n o t e d , t h e k i n e t i c p a r a m e t e r s c h a r a c t e r i s ­ t i c o f the b a c k r e a c t i o n r e p r e s e n t e d i n E q u a t i o n 1 c o u l d b e ascer­ t a i n e d b y c a r r y i n g out s i n g l e potential step chronoabsorptometric ex­ p e r i m e n t s starting w i t h the r e d u c e d form o f the system. A n e x a m p l e o f t h i s t e c h n i q u e w a s j u s t p r e s e n t e d for f e r r o c y a n i d e . W i t h B R M s , h o w ­ e v e r , the r e d u c e d forms o f m a n y s a m p l e s react w i t h o x y g e n or are a v a i l a b l e o n l y i n their o x i d i z e d forms. I n p r i n c i p l e , the s a m p l e c o u l d b e c o n v e r t e d to its r e d u c e d f o r m b y c o n t r o l l e d p o t e n t i a l e l e c t r o l y s i s p r i o r to the e x e c u t i o n o f p o t e n t i a l step c h r o n o a b s o r p t o m e t r i c e x p e r i ­ m e n t s , b u t t h i s c o n v e r s i o n is o f t e n e x p e r i m e n t a l l y u n d e s i r a b l e for several reasons. F i r s t , the o x i d i z e d form o f the c o u p l e m a y not e x h i b i t a n a c c e s s i b l e o p t i c a l a b s o r p t i o n w i t h w h i c h its f o r m a t i o n c a n b e m o n i ­ t o r e d d u r i n g o x i d a t i v e p o t e n t i a l s t e p s . I f a decrease i n t h e o p t i c a l a b s o r b a n c e o f t h e p r e c u r s o r h a s to b e m o n i t o r e d , t h e s m a l l d e c r e a s e i n a b s o r b a n c e c o r r e s p o n d i n g to d i s a p p e a r a n c e o f t h e p r e c u r s o r w i l l r e s u l t i n a p o o r signal-to-noise ratio. S e c o n d , inefficient s t i r r i n g i n s m a l l v o l ­ u m e c e l l s c a n c a u s e e x h a u s t i v e p r i o r e l e c t r o l y s i s to r e q u i r e a n u n d u l y l o n g t i m e . T h i r d , exhaustive electrolysis dictates that a n isolated aux­ iliary electrode be e m p l o y e d . This experimental arrangement may be i n c o n v e n i e n t , a n d the products o f the a u x i l i a r y e l e c t r o d e reaction m a y c o m p r o m i s e t h e i n t e g r i t y o f t h e s a m p l e . A l s o , t h e effects o f l o n g - t e r m electrolysis on the b e h a v i o r o f surface-modified electrodes c o m m o n l y e m p l o y e d i n h e t e r o g e n e o u s k i n e t i c characterizations o f B R M s are not yet k n o w n . T h u s , an e x p e r i m e n t a l p r o t o c o l that p r o v i d e s i n d e p e n d e n t k i n e t i c i n f o r m a t i o n r e g a r d i n g the b a c k r e a c t i o n w h e n the p r e c u r s o r is a l r e a d y i n t h a t r e d o x f o r m is h i g h l y d e s i r a b l e . bth

O n e e x p e r i m e n t a l a p p r o a c h t h a t satisfies t h e s e r e q u i r e m e n t s i n ­ volves the use o f a s y m m e t r i c d o u b l e potential step perturbation o f the O T E . I n i t i a l l y , t h e p o t e n t i a l is s t e p p e d to a v a l u e t h a t c a u s e s t h e for­ w a r d r e a c t i o n i n E q u a t i o n 1 to p r o c e e d at a d i f i u s i o n - c o n t r o l l e d r a t e . A f t e r s o m e t i m e , r , t h e p o t e n t i a l is s t e p p e d b a c k to a less e x t r e m e

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

BANCROFT ET AL.

2.

37

Electron Transfer Kinetic Parameters

v a l u e , w h i c h causes a portion o f the r e d u c e d form o f the c o u p l e pro­ d u c e d d u r i n g the initial step to b e converted back to the o x i d i z e d form. I f at τ t h e e l e c t r o d e p o t e n t i a l is s t e p p e d b a c k t o sufficiently p o s i t i v e values s u c h that t h e b a c k reaction proceeds at a diffusion112

c o n t r o l l e d r a t e , t h e n A (\,t > r ) is a l i n e a r f u n c t i o n o f [t R

- (t -

112

τ) ]

(16). A t p r e s e n t , n o t r a c t a b l e a n a l y t i c a l s o l u t i o n e x i s t s w h i c h d e s c r i b e s the t e m p o r a l d e p e n d e n c e

o f A (k,t > r ) f o r b a c k s t e p p o t e n t i a l s R

less

t h a n t h a t r e q u i r e d for t h e d i f f u s i o n - c o n t r o l l e d r e o x i d a t i o n o f R (14,19, 20). C o n s e q u e n t l y , t h e h e t e r o g e n e o u s r a t e c o n s t a n t for t h e b a c k r e a c ­ t i o n (k

bJl

i n E q u a t i o n 1) i s d e t e r m i n e d f o r t h e e x p e r i m e n t a l

u n d e r s t u d y b y d i g i t a l s i m u l a t i o n o f A (k,t) a n d a d j u s t m e n t Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

R

simulation k

bth

o f the

v a l u e u n t i l satisfactory a g r e e m e n t b e t w e e n s i m u l a t i o n

a n d e x p e r i m e n t is o b t a i n e d . A s k

bth

tween

system

simulation a n d experiment,

is v a r i e d t o a t t a i n a g r e e m e n t b e ­ k

fth

necessarily m u s t vary also.

T h e r a t i o o f t h e s e t w o rate c o n s t a n t s i s fixed b y t h e o v e r p o t e n t i a l and

n: a

hJkfA

= e x p { n F ( E - E% )/RT\ a

(13)

m

T h e v i a b i l i t y o f this m e t h o d o f d e t e r m i n i n g t h e h e t e r o g e n e o u s k i n e t i c parameters for the back reaction i n quasi-reversible systems has b e e n established u s i n g t h e f e r r i c y a n i d e - f e r r o c y a n i d e c o u p l e at p l a t i n u m O T E s i n p H 7 . 0 0 s o l u t i o n . R e c a l l i n g t h a t t h i s r e d o x c o u p l e is i n i t i a l l y i n t h e r e d u c e d f o r m , d e t e r m i n a t i o n o f t h e k v a l u e s f o r t h i s test s y s t e m i s t a n t a m o u n t t o d e t e r m i n a t i o n o f t h e k v a l u e s w e r e t h i s system initially i n the o x i d i z e d form i n the context o f the foregoing d i s c u s s i o n a n d E q u a t i o n 1. fth

bth

T h e s e q u e n c e o f p o t e n t i a l steps e m p l o y e d i n these e x p e r i m e n t s is s h o w n i n F i g u r e 7. I n i t i a l l y , t h e p o t e n t i a l o f t h e O T E i s s t e p p e d f r o m A to Β w h e r e t h e oxidation o f ferrocyanide proceeds at a diffusionc o n t r o l l e d r a t e . A f t e r a 5-s i n t e r v a l , t h e p o t e n t i a l is s t e p p e d b a c k t o t h e v a l u e s i n d i c a t e d b y C t h r o u g h Η f o r a series o f e x p e r i m e n t s . T h e resulting time-dependent absorbance o f ferricyanide observed d u r i n g t h i s series o f p o t e n t i a l s t e p s e q u e n c e s i s s h o w n i n F i g u r e 8. O v e r l a i d o n t h e s e t r a n s i e n t s a r e t h e best-fit s i m u l a t e d v a l u e s o f t h e a b s o r b a n c e . T h e values o f k u s e d i n these simulations are s u m m a r i z e d i n T a b l e I I I . T h e d e p e n d e n c e o f l o g (k ) o n o v e r p o t e n t i a l f o r t h e r e d u c t i o n o f fth

fth

ferricyanide is s h o w n i n F i g u r e 9, together w i t h t h e d e p e n d e n c e o f \og(k ) o n o v e r p o t e n t i a l for t h e o x i d a t i o n o f f e r r o c y a n i d e . T h e s e k values are those d e t e r m i n e d from the single potential step chronoab­ s o r p t o m e t r i c m e a s u r e m e n t s d e s c r i b e d e a r l i e r . T h e v a l u e o f kg'^ d e t e r ­ m i n e d from k values (single potential step measurements), 3.89 ( ± 0 . 0 9 ) x 1 0 " c m / s , is i n e x c e l l e n t a g r e e m e n t w i t h that d e t e r m i n e d from k values (asymmetric d o u b l e potential step measurements), bth

bth

bfh

3

fih

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

38

BO ILOGC IAL REDOX COMPONENTS

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

τ

1

1

600

1

r

1

400

200

0

Ε (mV vs NHE) Figure 7. Cyclic voltammetry of 4.71 m M K4Fe(CN) showing asym­ metric double potential step sequence. Initial potential and reverse diffusion step limit A = 66 mV, forward diffusion step limit Β = 740 mV, kinetic reverse step limits: C = 463 mV, D = 428 mV, Ε = 403 mV, F = 377 mV, G = 353 mV, and H = 326 mV. Experimental conditions for cyclic voltammetry are given in Figure 3. 6

Table III.

Heterogeneous Electron Transfer Rate Constants for the Asymmetric Double Potential Step Reduction of Ferricyanide at Platinum a

V (mV) 39 4 -21 -47 -71 -98

W$(cm/s) x 1.79 3.73 6.71 11.5 17.5 30.9

3

10

(±0.06) (±0.21) (±0.48) (±1.2) (±0.8) (±1.8)

d

Note: Oxidative (initial) potential step to η = 326 mV for τ = 5.00 s; [K Fe(CN) ] = 4.71 mM in pH 7.00 phosphate buffer (0.07 M). Reductive (reverse) potential steps; η = É p + Ε ref data acquired for 5.00 s following step reversal. According to Equation 1. From digital simulation data fits; values shown are means of four determinations. Parentheses contain one standard deviation. 4

a

e

_

ste

b

c

d

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Electron

2. BANCROFT ET AL.

Transfer

Kinetic

39

Parameters

3

4 . 1 1 ( ± 0 . 1 7 ) x 1 0 " c m / s . Q u i t e g o o d a g r e e m e n t is a l s o f o u n d b e t w e e n the v a l u e s o f a , 0.534 ( ± 0 . 0 2 2 ) , d e r i v e d from a s y m m e t r i c d o u b l e step m e a s u r e m e n t s a n d (1 - a ) , 0 . 4 6 9 ( ± 0 . 0 1 1 ) , d e t e r m i n e d f r o m t h e s i n g l e step e x p e r i m e n t s . S i m u l a t i o n studies h a v e s h o w n that the a s y m m e t r i c d o u b l e potential step a b s o r b a n c e - t i m e responses are m o r e sensitive to c h a n g e s i n a t h a n t o c h a n g e s i n 1ζ' w h e n b a c k s t e p p o t e n t i a l s i n t h e

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

Λ

0 — « 0 1

1

ι 4

1

2

ι

ι 6

ι

ι 8

ι

1

L

10

TIME (sec) Figure 8. Absorbance-time behavior for asymmetric double potential step oxidation of 4.71 m M ferrocyanide and subsequent reduction of ferricyanide at a platinum OTE in pH 7.00 solution. Solid lines are experimental transients; solid circles are best fit values from digital simulation. Forward step: η = 326 mV, k = 5.66 x 10~ cm/s, k = 1.25 cm/s. For reverse steps, Curve C: n = 39 mV, k = 1.79 x 1Ô~ cm/s, k = 8.17 χ 10~ cm/s; Curve Ό:η=4 mV, k = 3.73 x 10~ cm/s, k , = 4.36 x 10~ cm/s; Curve Ε: η = -21 mV, k [ = 6.71 x 10~ cm/s, kb. = 2.96 x 10~ cm/s; Curve F: η = -47 mV, k ', = 1.15 x 10~ cm/s, k , = 1.85 χ 10~ cm/s; Curve G: η = -71 mV, k , = 1.75 x 10~ cm/s, k = 1.10 χ 10~ cm/s; Curve Η: η = -98 mV, k = 3.09 x 10- cm/s, k = 6.81 x 10' cm/s; Curve Α: η = - 3 5 8 m V , k , = 2.63 cm/s, k = 5.75 x 10~ cm/s. 6

fjh

b h

f h

3

3

3

bh

fh

3

b

3

h

{

h

3

2

h

f

h

3

b

h

f

2

h

3

h f h

2

f h

4

b > h

f

h

6

b j h

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

40

BO ILOGC IAL REDOX COMPONENTS

f|(mV) Figure 9. Dependence of log ( k ) from asymmetric double potential step chronoabsorptometric measurements ( O , k ° / =4.11 x 10~ cm/s, a = 0.534) and log ( k ) / r o r a single potential step chronoabsorpto­ metric measurements [Φ, k ° ' = 3.89 x 10~ cm/s, (1 - a) = 0.469] on overpotential for ferrocyanide system at a platinum OTE. Coefficients of correlation; k , data, R = 0.9993; k , data, R = 0.9986. f>h

3

h

b > h

3

h

f

h

b

h

v i c i n i t y o f the E ° ' are e m p l o y e d , a n d are m o r e sensitive to changes i n ΙζΆ t h a n t o c h a n g e s i n a w h e n b a c k s t e p p o t e n t i a l s w e l l - r e m o v e d f r o m the E ° ' are used.

Derivative Cyclic Voltabsorptometry L i n e a r potential sweep perturbation o f an O T E i n conjunction w i t h o p t i c a l m o n i t o r i n g o f the e l e c t r o d e reaction p r o d u c t gives rise (21) t o a n e x p e r i m e n t a l t o o l t h a t offers u n i q u e a d v a n t a g e s f o r t h e c h a r a c t e r i z a t i o n o f h e t e r o g e n e o u s e l e c t r o n transfer reactions. I n this t e c h n i q u e , t h e a b s o r b a n c e (A ) o f t h e e l e c t r o d e r e a c t i o n p r o d u c t ( R , E q u a t i o n 1), w h i c h i s t h e o p t i c a l a n a l o g o f t h e t o t a l c h a r g e p a s s e d , i s differentiated w i t h respect to the l i n e a r l y v a r y i n g electrode potential. T h i s d e r i v a t i v e o p t i c a l s i g n a l (dA /dE) i s d i s p l a y e d as a f u n c t i o n o f s w e e p p o t e n t i a l as s h o w n i n F i g u r e 1 0 . T h e r e s u l t i n g dA /dE v s . Ε w a v e f o r m is m o r p h o l o g i c a l l y i d e n t i c a l to t h e c y c l i c v o l t a m m e t r i c r e ­ sponse of the redox c o u p l e . For reversible systems, the peak a m p l i t u d e o f the d e r i v a t i v e o p t i c a l response is g i v e n b y R

R

R

1

(dA /dE) R

where β = -0.0881 m V ~

p

1 / 2

2

= β n ' € ( λ ) Όψ C° ν-™ Λ

0

(14)

, C° is i n m o l e s p e r l i t e r , a n d t h e s w e e p rate, 0

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Electron

2. BANCROFT ET AL.

Transfer

Kinetic

41

Parameters

v, is i n m i l l i v o l t s p e r s e c o n d . E q u a t i o n 14, a n o p t i c a l a n a l o g o f t h e R a n d l e s - S e v c i k e q u a t i o n , e x h i b i t s t w o s t r i k i n g features.

F i r s t , the

a m p l i t u d e o f the d e r i v a t i v e v o l t a b s o r p t o m e t r i c p e a k , u n l i k e the m o n i ­ tored signals i n other transient spectroelectrochemical methods,

de­

p e n d s o n the η - v a l u e o f the s y s t e m . S e c o n d , the d e r i v a t i v e v o l t a b ­ s o r p t o m e t r i c s i g n a l is inversely d e p e n d e n t o n t h e r a t e o f p o t e n t i a l s w e e p . H e n c e d e r i v a t i v e c y c l i c v o l t a b s o r p t o m e t r y ( D C V A ) is a t e c h ­ n i q u e t h a t is a n a l o g o u s t o , a n d at t h e s a m e t i m e a c o m p l e m e n t of,

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

A

Β

C

D

300

150

0

-150

-300

E ( m V vs Ε ' ) β

Figure 10. Simulated current (A), charge (B), absorbance (C), and d A / d E (D) responses for reversible monoelectronic reduction of O . Scan rate = 25 m V / s , area = 0.25 cm , € = 5.0 x 10 M cm ,D = D = 6.0 χ 10- cm /s, C° = 1.0 mM. H

2

3

R

6

R

1

_ i

0

2

0

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

42

BO ILOGC IAL REDOX COMPONENTS

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

c y c l i c v o l t a m m e t r y . T h e advantages d e r i v e d from the use o f o p t i c a l m o n i t o r i n g o f e l e c t r o d e reactions, together w i t h the inverse d e p e n ­ dence o f the d e r i v a t i v e o p t i c a l signal on s w e e p rate, strongly suggest t h e a p p l i c a t i o n o f D C V A to t h e c h a r a c t e r i z a t i o n o f h e t e r o g e n e o u s e l e c ­ t r o n t r a n s f e r r e a c t i o n s o f B R M s . H e n c e , w h e n t h e rates o f h e t e r o g e ­ n e o u s e l e c t r o n transfer o f i r r e v e r s i b l e a n d q u a s i - r e v e r s i b l e s y s t e m s d i c ­ tate t h a t s l o w rates o f p o t e n t i a l s w e e p b e e m p l o y e d for t h e i r k i n e t i c characterizations, the D C V A t e c h n i q u e becomes p a r t i c u l a r l y advan­ t a g e o u s r e l a t i v e to its p u r e l y e l e c t r o c h e m i c a l c o u n t e r p a r t ( c y c l i c v o l t ­ a m m e t r y ) , w h o s e sensitivity decreases w i t h d e c r e a s i n g s w e e p rate. T h e o x i d a t i o n o f f e r r o c y a n i d e at p l a t i n u m O T E s is a c o n v e n i e n t s y s t e m w i t h w h i c h the a p p l i c a t i o n o f the D C V A t e c h n i q u e to q u a s i reversible systems can b e demonstrated. M o r e o v e r , the k i n e t i c results o b t a i n e d b y this e x p e r i m e n t a l m e t h o d c a n b e d i r e c t l y c o m p a r e d w i t h those d e t e r m i n e d b y single potential step a n d a s y m m e t r i c d o u b l e po­ t e n t i a l s t e p t e c h n i q u e s . F i g u r e 11 s h o w s t h e D C V A r e s p o n s e s for t h i s s y s t e m at s w e e p rates o f 2 3 . 3 , 4 7 . 5 , a n d 9 5 m V / s . O v e r l a i d o n t h e s e ρ

1

U

1

800

1

1

1

1

600

1

» 400

1

1



ι 200

1

ι

Π

»I 0

E(mV vs NHE) Figure 11. Derivative cyclic voltabsorptograms for 4.71 mM K Fe(CN) at a platinum OTE in pH 7.00 solution. Solid lines are experimental responses, solid circles are digitally simulated responses. Values of k ° / and a employed in the simulation are given in Table IV. 4

6

h

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

BANCROFT ET AL.

2.

Electron Transfer Kinetic Parameters

43

derivative voltabsorptomograms are s i m u l a t e d responses generated using the parameters listed i n T a b l e IV. T h eagreement b e t w e e n s i m u ­ l a t i o n a n d e x p e r i m e n t s h o w n i n F i g u r e 11 i s q u i t e g o o d . A l s o , t h e v a l u e s o f k*^ a n d a t h a t a r e c h a r a c t e r i s t i c o f t h e D C V A r e s p o n s e s o f this s y s t e m are i n e x c e l l e n t agreement w i t h those d e t e r m i n e d b y single potential step a n d a s y m m e t r i c d o u b l e potential step techniques (cf., T a b l e s I , I I I , a n d I V ) .

Applications to Biological Molecules

Downloaded by YORK UNIV on November 11, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch002

T h e single potential step chronoabsorptometric t e c h n i q u e has re­ c e n t l y b e e n e m p l o y e d to d e t e r m i n e t h e h e t e r o g e n e o u s e l e c t r o n t r a n s f e r k i n e t i c parameters o f three different b i o l o g i c a l m o l e c u l e s : m y o g l o b i n (8, JO), horse heart c y t o c h r o m e c (JO), a n d s o l u b l e s p i n a c h f e r r e d o x i n ( 9 ) . T h e s a l i e n t features

o f these investigations are s u m m a r i z e d i n

T a b l e V . I n e v e r y case, the c h r o n o a b s o r p t o m e t r i c data w e r e a n a l y z e d a c c o r d i n g to the i r r e v e r s i b l e m o d e l d e s c r i b e d p r e v i o u s l y . T h e error associated w i t h t h e u s e o f this m o d e l for t h e k i n e t i c analyses o f these systems is most p r o n o u n c e d at l o w overpotentials, l o n g times o f o b s e r v a t i o n , a n d l a r g e v a l u e s o ffc^.F o r t h e s y s t e m s

shown i n

T a b l e V , t h e u s e o f t h e i r r e v e r s i b l e m o d e l i n t r o d u c e d less t h a n 1% error i n t h e e v a l u a t e d rate constants for m y o g l o b i n a n d c y t o c h r o m e c (cf., T a b l e I I ) . F o r t h e f e r r e d o x i n s y s t e m , t h e m a x i m u m e r r o r i n k

arising from

fth

u s e o f t h e i r r e v e r s i b l e m o d e l for k i n e t i c a n a l y s i s

is a p p r o x i m a t e l y 2 0 % a t o b s e r v a t i o n t i m e s o f 6 0 s f o r η = - 1 6 m V a n d d e c r e a s e s t o a p p r o x i m a t e l y 6 % a t 6 0 s f o r η = —101 m V . B e ­ cause the values o f k

f§h

those reported (9),

at l o w o v e r p o t e n t i a l s a r e a c t u a l l y l a r g e r t h a n

is s o m e w h a t l a r g e r t h a n t h e r e p o r t e d v a l u e a n d

a is c o r r e s p o n d i n g l y s m a l l e r . T a b l e IV. H e t e r o g e n e o u s E l e c t r o n T r a n s f e r K i n e t i c P a r a m e t e r s f o r F e r r o c y a n i d e S y s t e m at P l a t i n u m O T E E v a l u a t e d b y Derivative C y c l i c Voltabsorptometry 3

v(mVls)

a

b

KS(cmls) x 10

a

4.3 4.0 4.2 4.2 ( ± 0 . 2 )

0.53 0.52 0.56 0.54 ( ± 0 . 0 2 )

23.3 47.5 95.0 Mean

c

AE (mV) v

94 102 125 c

Note: [K Fe(CN) ] = 4.71 mM in pH 7.00 phosphate buffer (Titrisol, Merck) con­ taining 0.10 M NaCl. "From digital simulation of DCVA responses shown in Figure 11. Simulation parameters are: [K Fe(CN) ] =4.71 mM, D = 6.50 x 10" cm /s (22), D = 7.65 x 10" cm7s (22), € (420 nm) = 1020 M - cm" (21), E°' = 424 mV vs. N H E (18), ν = 23.3, 47.5, and 95.0 mV/s. 4

6

6

4

e

6

R

1

2

0

1

O

=

Ερ