Spectroscopic Analysis of Binary Mixed-Solvent-Polyimide Precursor

Oct 26, 2015 - Systems with the Preferential Solvation Model for Determining. Solute-Centric Kamlet−Taft Solvatochromic Parameters. Alif Duereh,. â€...
0 downloads 0 Views 1MB Size
Subscriber access provided by CMU Libraries - http://library.cmich.edu

Article

Spectroscopic Analysis of Binary Mixed-Solvent- Polyimide Precursor Systems with the Preferential Solvation Model for Determining Solute-Centric Kamlet-Taft Solvatochromic Parameters Alif Duereh, Yoshiyuki Sato, Richard Lee Smith, and Hiroshi Inomata J. Phys. Chem. B, Just Accepted Manuscript • DOI: 10.1021/acs.jpcb.5b07751 • Publication Date (Web): 26 Oct 2015 Downloaded from http://pubs.acs.org on November 2, 2015

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

The Journal of Physical Chemistry B is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Spectroscopic Analysis of Binary Mixed-SolventPolyimide Precursor Systems with the Preferential Solvation Model for Determining Solute-Centric KamletTaft Solvatochromic Parameters Alif Duereh,† Yoshiyuki Sato,† Richard Lee Smith Jr†, ‡ and Hiroshi Inomata*†



Graduate School of Engineering, Research Center of Supercritical Fluid

Technology, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai 980-8579, Japan ‡

Graduate School of Environmental Studies, Research Center of Supercritical

Fluid Technology, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai 980-8579, Japan

*Corresponding Author Tel (Fax): +81-22-795-7282, e-mail: [email protected]

Keywords Cybotatic, preferential solvation model, specific interaction, UV-Vis spectroscopy

1 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Abstract Hydrogen bond donor/acceptor mixed-solvent systems for solutes that exhibit strong specific interactions are not readily characterized with methods that depend on solvatochromic parameters. In this work, the reaction of two monomers, 4,4’-oxidianiline (ODA) and pyromellitic dianhydride (PMDA), to form the common engineering plastic precursor, poly(amic acid) (PAA) are studied for the tetrahydrofuran (THF) mixed-solvent systems (THF-methanol, THF-ethanol, THF-water) with spectroscopy. Solute-centric (SC) Kamlet-Taft solvatochromic (K-T) parameters for the solvent environment around the monomer are determined using a proposed model that incorporates spectroscopicallydetermined local composition (XL) around the ODA monomer and the preferential solvation model. For the example reaction to occur under homogeneous conditions, mixed-solvent  conditions need have HBA-rich local compositions (0.300.63) and low solute-centric acidity

(    ) for obtaining homogeneous PAA precursor solutions. Regions of bulk composition that are HBD-rich (  >   ) and HBD-poor (    ), favorable solute-centric Kamlet-Taft solvatochromic ∗ and  and low  ) compared with the respective NMP values allow parameters (high 

preparation of homogeneous PAA solutions. Besides the local composition and solutecentric Kamlet-Taft solvatochromic parameters, the Hansen solubility parameter window of the monomer and polymer is important for estimating suitable compositions for preparing PAA solutions in mixed-solvent systems.

A mixed-solvent solubility parameter that is

outside of the solubility parameter window of the monomer and PAA polymer (Table 2) will probably not be suitable for forming and maintaining homogeneous PAA solutions. 4.4 Analysis of solvent effects In the preparation of engineering plastic precursors, there are a number of physical and chemical processes that occur depending on the monomer dissolution kinetics and the PAA formation kinetics in the mixed-solvent system. These physical and chemical processes are best discussed in phenomenological mechanistic steps noted in the literature24, 52,53 and in our previous work29 as shown in Figure 5. In a typical synthesis procedure, ODA monomer is dissolved in a mixed-solvent system and the solution is mixed with PMDA solid particles which initiates the reaction. The following mechanistic steps occur:

(i) Dissolution of ODA monomer occurs by specific interactions that require an HBArich local composition that has a solvent environment of high basicity ( > 0.48) and a solubility parameter window within 19-30 MPa0.5.

20 ACS Paragon Plus Environment

Page 20 of 40

Page 21 of 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

(ii) Dispersion and dissolution of the PMDA monomer occurs that requires either an HBA-rich or HBD-rich local composition, except for the case of water due to hydrophobicity. (iii) Reaction and PAA gel formation around the PMDA particle occur due to ∗ crosslinking of PAA polymer that requires a solvent environment of high polarity (  >

0.63). (iv) Solvation of PAA polymer occurs via specific interactions that require an HBArich local composition that has a solvent environment of low acidity (  < 0.63), high ∗ basicity ( > 0.60), high polarity (  > 0.63), and a solubility parameter window within

21-29 MPa0.5 to support PAA growth in solution.

To form homogeneous solutions of PAA, the mixed-solvent composition must be chosen to provide favorable conditions for each phenomenological mechanistic step (Fig. 5) 4.5 Temporal variation of visible spectra Phenomenological mechanistic steps that occur when preparing homogeneous PAA solutions in binary mixed-solvent systems (Fig. 5) and in pure NMP as followed by temporal variation of the visible wavelength spectra and videos are summarized in Table 3 and in Figures S19-S21 (Section J). When pure NMP (HBA) is used as solvent (Table 3), the four phenomenological mechanistic steps for obtaining homogeneous PAA solutions are satisfied by the pure solvent system environment according to high HBA local composition, KamletTaft solvatochromic parameters, and Hansen solubility parameter. When binary mixedsolvent systems are used, there can be termination of the reaction process due to ODA monomer being insoluble in the solvent system (HBD-rich, A in Table 3, A in Fig. 5), PMDA being insoluble (B in Table 3, B in Fig. 5), excessive gelatinization (C in Table 3, C in Fig. 5) or PAA precipitation (D in Table 3, D in Fig. 5).

21 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 40

Solvent conditions that are favorable for preparing homogeneous PAA solutions at high (2 or 5 wt%) concentration are shown in Table 3. For a given solvent system, solvent compositions that allow preparation of homogeneous PAA solutions have high dissolution and reaction rates compared with other solvent compositions. The reasons for the high dissolution rates and high reaction rates can be attributed to the HBA-rich local compositions and the solvent environment that has suitably high polarity and basicity and sufficiently low acidity values.

Both local composition (HBA-rich) and solvent environment (acidity,

basicity, polarity) and play important roles for preparing homogeneous PAA solutions. 4.6 Other polymer-mixed-solvent systems Several other polymer-mixed-solvent systems can be addressed.

For the polymer

mixed-solvent systems, polyethylene(terephthalate) (PET),54 poly(lactic acid) (PLA),55 polymethylsilsesquioxane (PMSQ)56 such as those used in electrospinning, homogeneous solutions are required. Compositions for preparing those polymer solutions18 have been based on Hansen solubility parameters in which the pure solvents of the mixed-solvent are unable to form homogeneous polymer solutions. Use of the local composition model and solute-centric Kamlet-Taft solvatochromic parameters developed in this work can allow one to estimate suitable composition ranges required and may help to optimize drying characteristics. 5. Conclusions In this work, a model was proposed to determine solute-centric Kamlet-Taft solvatochromic parameters for mixed-solvent systems that have solutes with strong specific interactions. The proposed model was developed from the spectroscopically-determined local composition around the central ODA (monomer) solute molecule, the preferential solvation theory and Kamlet-Taft solvatochromic parameters of the pure solvent and the transferable mixed-solvent complex HBA-HBD molecule Kamlet-Taft solvatochromic

22 ACS Paragon Plus Environment

Page 23 of 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

parameters. The solute-centric Kamlet-Taft solvatochromic parameters were found to be effective for analyzing the reaction conditions of three binary mixed-solvent systems that consisted of tetrahydrofuran with methanol, ethanol or water. The solute-centric Kamlet-Taft solvatochromic parameters were found to be similar to those of indicator-centric values, however, indicator-centric Kamlet-Taft solvatochromic parameters greatly overestimate mixed-solvent acidity. Favorable conditions for preparing homogeneous poly(amic acid) (PAA) solutions at high concentrations(5 wt%) were analyzed by local composition and solute-centric KamletTaft solvatochromic parameters. Phenomenological mechanistic steps were followed with the temporal variation of visible spectra and show that homogeneous PAA solutions are obtained when the dissolution rates of monomers and reaction rate of PAA polymer are high which is a direct result of the binary mixed-solvent system having HBA-rich local composition along with suitably high polarity and basicity values and sufficiently low acidity values.

The proposed procedure and model for determining solute-centric Kamlet-Taft

solvatochromic parameters are applicable to other solute-mixed-solvent systems that have strong specific interactions. 6. Abbreviations and symbols Abbreviations EtOH

ethanol

HBA

hydrogen-bond acceptor solvent (component 2)

HBD

hydrogen-bond donor solvent (component 1)

H2 O

water

K-T

Kamlet-Taft solvatochromic

MeOH

methanol

ODA

4,4’-oxidianiline monomer

23 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

PAA

poly(amic acid) polymer

PMDA

pyromellitic dianhydride monomer

THF

tetrahydrofuran

Latin symbols f2/1

preferential solvation parameter, according to eq. (8)

f12/1

preferential solvation parameter, according to eq. (9)

f12/2

preferential solvation parameter, according to eq. (10)

K

weight fraction of solvent i



mole fraction of solvent i

Greek symbols

acidity Kamlet-Taft solvatochromic parameter



basicity Kamlet-Taft solvatochromic parameter

δ

Hansen solubility parameter

λ

maximum absorption wavelength of solute or indicator in units of nanometer (nm)

+

maximum absorption wavenumber of solute or indicator in units of kiloKaiser



polarity Kamlet-Taft solvatochromic parameter

Superscript Bulk

bulk composition

L

local composition

Subscript 1

HBD solvent molecule, solvent type 1

2

HBA solvent molecule, solvent type 2

12

Complex HBD-HBA solvent molecule pair

24 ACS Paragon Plus Environment

Page 24 of 40

Page 25 of 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

IC

indicator-centric Kamlet-Taft solvatochromic parameter

mixture

mixture property

pure

indicator-centric

Kamlet-Taft

solvatochromic

parameter

for the pure component SC

solute-centric Kamlet-Taft solvatochromic parameter

7. Acknowledgment Support from the Japanese government (MEXT) for a doctoral study scholarship (Alif Duereh) is gratefully acknowledged. 8. Supporting information Tables S1 to S8 and Figures S1 to S24 contain detailed experimental results, example of methodology for determining solute-centric Kamlet-Taft solvatochromic parameters, preferential solvation parameters, validation of 1-2 complex transferability among indicators and analyses of the poly(amic acid) precursors. This information is available free of charge via the Internet at http://pubs.acs.org/.

References 1.

Jessop, P. G.; Jessop, D. A.; Fu, D.; Phan, L., Solvatochromic Parameters for Solvents

of Interest in Green Chemistry. Green Chem. 2012, 14, 1245-1259. 2.

Jessop, P. G., Searching for Green Solvents. Green Chem. 2011, 13, 1391-1398.

3.

Kamlet, M. J.; Abboud, J. L. M.; Abraham, M. H.; Taft, R. W., Linear Solvation

Energy Relationships. 23. A Comprehensive Collection of the Solvatochromic Parameters, π*, α, and β, and Some Methods for Simplifying the Generalized Solvatochromic Equation. J. Org. Chem. 1983, 48, 2877-2887. 4.

Laurence, C.; Legros, J.; Chantzis, A.; Planchat, A.; Jacquemin, D., A Database of

Dispersion-Induction DI, Electrostatic ES, and Hydrogen Bonding α1 and β1 Solvent 25 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Parameters and Some Applications to the Multiparameter Correlation Analysis of Solvent Effects. J. Phys. Chem. B 2015, 119, 3174-3184. 5.

Panayiotou, C., Partial Solvation Parameters and Mixture Thermodynamics. J. Phys.

Chem. B 2012, 116, 7302-7321. 6.

Navarro, A. M.; García, B.; Hoyuelos, F. J.; Peñacoba, I. A.; Leal, J. M., Preferential

Solvation in Alkan-1-ol/Alkylbenzoate Binary Mixtures by Solvatochromic Probes. J. Phys. Chem. B 2011, 115, 10259-10269. 7.

Rafols, C.; Roses, M.; Bosch, E., Solute-solvent and Solvent-Solvent Interactions in

Binary Solvent Mixtures. Part 5. Preferential Solvation of Solvatochromic Indicators in Mixtures of Propan-2-ol with Hexane, Benzene, Ethanol and Methanol. J. Chem. Soc., Perkin Trans. 2 1997, 2, 243-248. 8.

Roses, M.; Rafols, C.; Ortega, J.; Bosch, E., Solute-Solvent and Solvent-Solvent

Interactions in Binary Solvent Mixtures. Part 1. A Comparison of Several Preferential Solvation Models for Describing ET(30) Polarity of Bipolar Hydrogen Bond AcceptorCosolvent Mixtures. J. Chem. Soc., Perkin Trans. 2 1995, 8, 1607-1615. 9.

Nunes, N.; Elvas-Leitão, R.; Martins, F., UV–Vis Spectroscopic Study of Preferential

Solvation and Intermolecular Interactions in Methanol/1-Propanol/Acetonitrile by Means of Solvatochromic Probes. Spectrochim. Acta, Part A 2014, 124, 470-479. 10.

Moita, M.-L. C. J.; Santos, Â. F. S.; Silva, J. F. C. C.; Lampreia, I. M. S., Polarity of

Some [NR1R2R3R4]+[Tf2N]− Ionic Liquids in Ethanol: Preferential Solvation Versus Solvent–Solvent Interactions. J. Chem. Eng. Data 2012, 57, 2702-2709. 11.

Khupse, N. D.; Kumar, A., Delineating Solute−Solvent Interactions in Binary

Mixtures of Ionic Liquids in Molecular Solvents and Preferential Solvation Approach. J. Phys. Chem. B 2010, 115, 711-718.

26 ACS Paragon Plus Environment

Page 26 of 40

Page 27 of 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

12. within

Trivedi, S.; Sarkar, A.; Pandey, S., Solvatochromic Absorbance Probe Behavior 1-Butyl-3-Methylimidazolium

Hexafluorophosphate

+

Propylene

Carbonate:

Preferential Solvation or Solvent–Solvent Interaction?. Chem. Eng. J. 2009, 147, 36-42. 13.

García, B.; Aparicio, S.; Alcalde, R.; Ruiz, R.; Dávila, M. J.; Leal, J. M.,

Characterization of Lactam-Containing Binary Solvents by Solvatochromic Indicators. J. Phys. Chem. B 2004, 108, 3024-3029. 14.

Mancini, P. M.; Adam, C.; Pérez, A. d. C.; Vottero, L. R., Solvatochromism in Binary

Solvent Mixtures. Response Models to the Chemical Properties of Reference Probes. J. Phys. Org. Chem. 2000, 13, 221-231. 15.

Mancini, P. M. E.; Terenzani, A.; Adam, C.; Pérez, A.; Vottero, L. R.,

Characterization of Solvent Mixtures. Part 8 — Preferential Solvation of Chemical Probes in Binary Solvent Systems of a Polar Aprotic Hydrogen-Bond Acceptor Solvent with Acetonitrile or Nitromethane. Solvent Effects on Aromatic Nucleophilic Substitution Reactions. J. Phys. Org. Chem. 1999, 12, 207-220. 16.

Jo Cheong, W.; Hyun Chun, S.; Yeal Lee, G., Determination of Solvent Basicity

Scale, β, of Mixed Solvents for Three Chromatographic Solvent Systems: 2Propanol/Hexane, Ethyl Acetate/Hexane, and Methanol/Water. J. Liq. Chromatogr. Relat. Technol. 1996, 19, 277-291. 17.

Cheong, W. J.; Carr, P. W., Kamlet-Taft .π.* Polarizability/Dipolarity of Mixtures of

Water with Various Organic Solvents. Anal. Chem. 1988, 60, 820-826. 18.

Reichardt, C.; Welton, T., Solvents and Solvent Effects in Organic Chemistry. Fourth

ed.; Wiley-VCH: Germany, 2010. 19.

Marcus, Y., The Properties of Solvents. John Wiley & Sons: England, U.K., 1998

27 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

20.

Ford, J. W.; Janakat, M. E.; Lu, J.; Liotta, C. L.; Eckert, C. A., Local Polarity in CO2-

Expanded Acetonitrile: a Nucleophilic Substitution Reaction and Solvatochromic Probes. J. Org. Chem. 2008, 73, 3364-3368. 21.

Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S., Advanced

Polyimide Materials: Syntheses, Physical Properties and Applications. Prog. Polym. Sci. 2012, 37, 907-974. 22.

Sroog, C. E., Polyimides. Prog. Polym. Sci. 1991, 16, 561-694.

23.

Ghosh, A.; Sen, S. K.; Banerjee, S.; Voit, B., Solubility Improvements in Aromatic

Polyimides by Macromolecular Engineering. RSC Adv. 2012, 2, 5900-5926. 24.

Volksen, W. Condensation Polyimides: Synthesis, Solution Behavior, and Imidization

Characteristics. in High Performance Polymers; Hergenrother, P., Ed.; Springer: Berlin, 1994; 117, 111−164. 25.

Giesa, R.; Schmidt, H. W. Soluble Polyimides. In Encyclopedia of Materials: Science

and Technology, Second ed.; Elsevier: Oxford, 2001. 26.

Fukukawa, K.-i.; Shibasaki, Y.; Ueda, M., Efficient Catalyst for Low Temperature

Solid-Phase Imidization of Poly(amic acid). Chem. Lett. 2004, 33, 1156-1157. 27.

Prat, D.; Hayler, J.; Wells, A., A Survey of Solvent Selection Guides. Green Chem.

2014, 16, 4546-4551. 28.

Henderson, R. K.; Concepción J.-G., C.; Constable, D. J. C.; Alston, S. R.; Inglis, G.

G. A.; Fisher, G.; Sherwood, J.; Binks, S. P.; Curzons, A. D., Expanding GSK's Solvent Selection Guide – Embedding Sustainability into Solvent Selection Starting at Medicinal Chemistry. Green Chem. 2011, 13 , 854-862. 29.

Duereh, A.; Sato, Y.; Smith, R. L.; Inomata, H., Replacement of Hazardous

Chemicals Used in Engineering Plastics with Safe and Renewable Hydrogen-Bond Donor and Acceptor Solvent-Pair Mixtures. ACS Sustainable Chem. Eng. 2015, 3, 1881-1889.

28 ACS Paragon Plus Environment

Page 28 of 40

Page 29 of 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

30.

Echigo, Y.; Iwaya, Y.; Tomioka, I.; Yamada, H., Solvent Effects in Thermal Curing

of Poly(4,4'-oxybis(phenylenepyromellitamic acid)). Macromolecules 1995, 28, 4861-4865. 31.

Echigo, Y.; Iwaya, Y.; Tomioka, I.; Furukawa, M.; Okamoto, S., A Novel

Polymerization Process of Poly(4,4'-oxydiphenylenepyromellitamic acid). Macromolecules 1995, 28, 3000-3001. 32.

Hansen, C. M. Hansen Solubility Parameters: a User’s Handbook; CRC Press: Boca

Raton, FL, 2007. 33.

Bosch, E.; Rived, F.; Roses, M., Solute-Solvent and Solvent-Solvent Interactions in

Binary Solvent Mixtures. Part 4. Preferential Solvation of Solvatochromic Indicators in Mixtures of 2-Methylpropan-2-ol with Hexane, Benzene, Propan-2-ol, Ethanol and Methanol. J. Chem. Soc., Perkin Trans. 2 1996, 10, 2177-2184. 34.

Almandoz, M. C.; Sancho, M. I.; Blanco, S. E., Spectroscopic and DFT Study of

Solvent Effects on the Electronic Absorption Spectra of Sulfamethoxazole in Neat and Binary Solvent Mixtures. Spectrochim. Acta, Part A 2014, 118, 112-119. 35.

Fayed, T.; Etaiw, S. E. H., Preferential Solvation of Solvatochromic Benzothiazolinic

Merocyanines in Mixed Binary Solvents. Spectrochim. Acta, Part A 1998, 54, 1909-1918. 36.

Chatterjee, P.; Laha, A. K.; Bagchi, S., Preferential Solvation in Mixed Binary

Solvents: Ultraviolet-Visible Spectroscopy of n-Alkylpyridinium Lodides in Mixed Solvents Containing Cyclic Ethers. J. Chem. Soc., Faraday Trans. 1992, 88, 1675-1678. 37.

Moita, M. L.; Teodoro, R. A.; Pinheiro, L. M., Preferential Solvation and

Solvatochromic Behaviour of Quinoline in Binary Alkan-1-ol/N,N-dimethylformamide Solvent Mixtures. J. Mol. Liq. 2007, 136, 15-21. 38.

Santo, M.; Cattana, R.; Silber, J. J., Hydrogen Bonding and Dipolar Interactions

between Quinolines and Organic Solvents. Nuclear Magnetic Resonance and Ultraviolet– Visible Spectroscopic Studies. Spectrochim. Acta, Part A 2001, 57, 1541-1553.

29 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

39.

Tan, N. Y.; Li, R.; Brauer, P.; D'Agostino, C.; Gladden, L. F.; Zeitler, J. A., Probing

Hydrogen-Bonding in Binary Liquid Mixtures with Terahertz Time-Domain Spectroscopy: a Comparison of Debye and Absorption Analysis. Phys. Chem. Chem. Phys. 2015, 17, 59996008. 40.

Purkayastha, D. D.; Madhurima, V., Interactions in Water–THF Binary Mixture by

Contact Angle, FTIR and Dielectric Studies. J. Mol. Liq. 2013, 187, 54-57. 41.

Mizuno, K.; Masuda, Y.; Yamamura, T.; Kitamura, J.; Ogata, H.; Bako, I.; Tamai, Y.;

Yagasaki, T., Roles of the Ether Oxygen in Hydration of Tetrahydrofuran Studied by IR, NMR, and DFT Calculation Methods. J. Phys. Chem. B 2009, 113, 906-915. 42.

Stangret, J.; Kamieńska-Piotrowicz, E.; Szymańska-Cybulska, J., Analysis of Spectral

Data by Complementary Methods: Inspection of the Molecular Complex in N,NDimethylformamide–Methanol Mixtures. Spectrochim. Acta, Part A 2005, 61, 3043-3050. 43.

Lam, S.; Shi, Y. J.; Mosey, N. J.; Woo, T. K.; Lipson, R. H., Mechanism for the

Formation of Gas-Phase Protonated Alcohol-Ether Adducts by VUV Laser Ionization and Density-Functional Calculations. J. Chem. Phys. 2004, 121, 10006-100014. 44.

Marcus, Y., Use of Chemical Probes for the Characterization of Solvent Mixtures.

Part 1. Completely Non-Aqueous Mixtures. J. Chem. Soc., Perkin Trans. 2 1994, 5, 10151021. 45.

Marcus, Y., The Use of Chemical Probes for the Characterization of Solvent

Mixtures. Part 2. Aqueous mixtures. J. Chem. Soc., Perkin Trans. 2 1994, 8, 1751-1758. 46.

Marcus, Y., The Properties of Organic Liquids that are Relevant to Their Use as

Solvating Solvents. Chem. Soc. Rev. 1993, 22, 409-416. 47.

Kamlet, M. J.; Abboud, J. L.; Taft, R. W., The Solvatochromic Comparison Method.

6. the π* Scale of Solvent Polarities. J. Am. Chem. Soc. 1977, 99, 6027-6038.

30 ACS Paragon Plus Environment

Page 30 of 40

Page 31 of 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

48.

SRM 2034 Certificate, NIST Special Publication 260-102: Standard Reference

Materials: Holmium Oxide Solution Wave-length Standard from 240 to 640 nm; National Institute of Standards and Technology: Gaithersburg, MD, 1986. 49.

Kamlet, M. J.; Taft, R. W., The Solvatochromic Comparison Method. 1. the Beta-

Scale of Solvent Hydrogen-Bond Acceptor (HBA) Basicities. J. Am. Chem. Soc. 1976, 98, 377-383. 50.

Taft, R. W.; Kamlet, M. J., The Solvatochromic Comparison Method. 2. The Alpha-

Scale of Solvent Hydrogen-Bond Donor (HBD) Acidities. J. Am. Chem. Soc. 1976, 98, 28862894. 51.

Marcus, Y. Solvent Mixtures: Properties and Selective Solvation; Marcel Dekker:

New York, 2002. 52.

Eichstadt, A. E.; Ward, T. C.; Bagwell, M. D.; Farr, I. V.; Dunson, D. L.; McGrath, J.

E., Synthesis and Characterization of Amorphous Partially Aliphatic Polyimide Copolymers Based on Bisphenol-A Dianhydride. Macromolecules 2002, 35, 7561-7568. 53.

Dunson, D. L. Synthesis and Characterization of Thermosetting Polyimide Oligomers

for Microelectronics Packaging, Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2000. 54.

Mahalingam, S.; Raimi-Abraham, B. T.; Craig, D. Q. M.; Edirisinghe, M., Solubility–

Spinnability Map and Model for the Preparation of Fibres of Polyethylene (Terephthalate) Using Gyration and Pressure. Chem. Eng. J. 2015, 280, 344-353. 55.

Casasola, R.; Thomas, N. L.; Trybala, A.; Georgiadou, S., Electrospun Poly Lactic

Acid (PLA) Fibres: Effect of Different Solvent Systems on Fibre Morphology and Diameter. Polymer 2014, 55, 4728-4737. 56.

Luo, C. J.; Nangrejo, M.; Edirisinghe, M., A Novel Method of Selecting Solvents for

Polymer Electrospinning. Polymer 2010, 51, 1654-1662.

31 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 32 of 40

Table 1. Fitting parameters ( f2/1, f12/1and + ) from the preferential solvation model (eq. 11) for mixed-solvent systems of hydrogen bond (HBA) acceptor solvent of tetrahydrofuran (THF, component 2), with hydrogen bond (HBD) donor solvents as methanol (MeOH), ethanol (EtOH), and water (H2O) for the 4,4’-oxidianiline (ODA) monomer as central solute molecule at 25 ºC. The + and + parameters are maximum absorption wavenumber of pure solvent components 1 and 2, respectively, in the unit of kiloKaiser (1kK=10,000/λmax (nm) =1000 cm-1) Solvent System (HBD (1)-HBA (2)) MeOH-THF EtOH -THF H2O-THF a



%ARD = ∑ N L

4OP QRST QRST

+ (kK) 40.40 40.25 40.98

f2/1 (-) 5.60 3.30 7.20

+ (kK) 39.43 39.43 39.43

f12/1 (-) 4.51 6.33 4.27

+ (kK) 40.40 39.66 39.55

%ARDa

R2 b

0.013 0.029 0.074

0.999 0.995 0.993

N, where +UV# is maximum absorption wavenumber (kK) calculated

from eq. (11) and +G is the experimental maximum absorption wavenumber (kK). b 2

R =Coefficient of determination.

c

N=number of experimental data.

32 ACS Paragon Plus Environment

Nc 11 11 12

Page 33 of 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Table 2. Experimental results for preparation of homogeneous (○) and heterogeneous (×) poly (amic acid) (PAA) solutions of 5 wt % synthesized from 4, 4’-oxidianiline (ODA) and pyromellitic dianhydride (PMDA) monomersa in weight (W) and mole (X) fractions for tetrahydrofuran (THF, component 2) with methanol (MeOH), ethanol (EtOH), water (H2O) at 25 ºC. Solute-centric Kamlet-Taft solvatochromic parameters were calculated with eqs. (1)(3).

Local compositions around the ODA monomer were calculated from eqs. (4)-(6).

Hansen solubility parameters (δ) of mixed-solvents were estimated from volume fraction average of the pure solvent values. Solute-centric δ 0.5 (MPa ) K-T parameters Phase ∗          1.0 1.00 0 1.00 0 0 0.58 0.62 THF × 19.5 0.9 0.80 0.01 0.82 0.17 0.14 0.61 0.63 × 20.6 0.8 0.64 0.04 0.66 0.30 0.27 0.63 0.64 ○ 21.7 0.7 0.51 0.09 0.51 0.40 0.40 0.65 0.65 ○ 22.8 0.6 0.40 0.15 0.38 0.46 0.52 0.67 0.66 ○ 23.8 0.5 0.31 0.24 0.27 0.49 0.63 0.69 0.67 ○ 24.8 0.4 0.23 0.35 0.17 0.47 0.73 0.70 0.67 × 25.8 0.3 0.16 0.49 0.10 0.42 0.83 0.70 0.68 × 26.8 0 0 1.00 0 0 1.06 0.69 0.68 MeOH × 29.6 0.9 0.85 0.00 0.87 0.12 0.10 0.59 0.62 EtOH-THF × 20.3 0.8 0.72 0.03 0.56 0.42 0.20 0.60 0.63 ○ 21.0 0.7 0.60 0.06 0.41 0.53 0.31 0.62 0.64 ○ 21.8 0.6 0.49 0.10 0.30 0.60 0.41 0.64 0.65 ○ 22.5 0.5 0.39 0.16 0.21 0.63 0.52 0.66 0.65 ○ 23.2 0.4 0.30 0.23 0.14 0.63 0.62 0.68 0.65 × 23.9 0.3 0.21 0.34 0.08 0.58 0.71 0.70 0.64 × 24.6 0.90 0.78 0.61 0 0 1.00 0 0 EtOH × 26.5 0.98 0.93 0 0.94 0.06 0.03 0.58 0.62 19.9 H2O-THF × 0.95 0.83 0.01 0.85 0.14 0.08 0.59 0.63 20.7 ○ 0.9 0.69 0.03 0.72 0.26 0.17 0.60 0.65 22.0 ○ 0.8 0.50 0.09 0.50 0.41 0.32 0.61 0.70 24.6 ○ 0.7 0.37 0.18 0.35 0.47 0.46 0.61 0.74 27.2 ○ 0.6 0.27 0.29 0.22 0.49 0.60 0.60 0.80 30.1 × 0.5 0.20 0.40 0.14 0.46 0.71 0.59 0.85 32.7 × 0 0 1.00 0 0 1.17 0.47 1.09 47.8 H2 O × a 0.5 0.5 0.5 0.5 δwindow=21-29 MPa ; δODA=21 MPa ; δPMDA=24.5 MPa ; δ PAA=22.1 MPa [29]. Solvent system (HBD-HBA)

K W0XY

 W0XY

Local composition

33 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Page 34 of 40

Table 3. Solvent systems and phenomenological mechanistic steps as followed by visible spectra (410 nm) when preparing homogeneous poly(amic acid) (PAA) precursors for engineering plastics with binary mixed-solvents of tetrahydrofuran (THF, component 2) with methanol (MeOH), ethanol (EtOH), water (H2O) at 25 ºC according to Hansen solubility parameters (δ), solute-centric Kamlet-Taft solvatochromic (K-T) ∗ parameters (  ,  ,  ), and local composition. Green-shaded rows indicate favorable conditions for preparing homogeneous 5 wt% PAA solutions. Solvent system  W0XY Local composition (HBD-HBA)     THF 1.0 0 1 0.01 0.82 0.80 0.09 0.51 0.51 0.35 0.17 0.23c 1 0 MeOH 0 0 1 THF 1.0 0.00 0.87 0.85 0.06 0.41 0.60 0.23 0.14 0.30 1 0 EtOH 0 0 1 THF 1.0 0 0.94 0.93 0.69 0.03 0.72 0.20 0.40 0.14 1 0 H2O 0 NMP 1 0 1

δ Solute-centric K-T parameters (MPa0.5) ∗    0 0.58 0.62 19.5 0.14 0.61 0.63 21.7 0.27 0.63 0.64 22.8 0.73 0.70 0.67 25.8 1.06 0.69 0.68 29.6 0 0.58 0.62 19.5 0.10 0.59 0.62 20.3 0.31 0.62 0.64 21.8 0.62 0.68 0.65 24.6 0.90 0.78 0.61 26.5 19.5 0 0.58 0.62 0.03 0.58 0.62 19.9 0.17 0.60 0.65 22.0 0.71 0.59 0.85 32.7 1.17 0.47 1.09 47.8 0 0.72 0.95 22.9

Phenomenological mechanistic stepsa and barriers (A, B, C, D)b ---C (low δ and  ) ∗ ---D (low  ) ----Homogeneous ----Homogeneous -A (non-specific interactions) ---C (low δ and  ) ∗ ---D (low Z[ ) ----Homogeneous ---D (high Z[ and HBA-poor) -A (non-specific interactions) ---C (low δ and  ) ∗ ---D (low  ) ----Homogeneous --- D (high  and HBA-poor) -A and B (non-specific interactions) ----Homogeneous

Note: a=ODA dissolution; =PMDA dispersion and dissolution; =Surface reaction, PAA gel formation; =PAA solvation and growth b A=ODA insolubility; B=PMDA insolubility; C=Excessive gelatinization; D=PAA precipitation. c Only confirmed at 2 wt% PAA. 34

ACS Paragon Plus Environment

Page 35 of 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

a)

Specific Interaction

HBA-HBD Complex molecule

HBD molecule

Cybotactic Region

b)

Specific Interaction

HBA-HBD Complex molecule

HBA molecule

Cybotactic Region

Figure 1.

Cybotatic regions of (a) solvatochromic indicator (indicator-centric) and (b)

monomer (solute-centric) in a solvent mixture showing specific interactions (dashed-lines) of hydrogen-bond donor (HBD) molecules (solvent type 1), hydrogen-bond acceptor (HBA) molecules (solvent type 1), and HBA-HBD complex molecules (solvent type 1-solvent type 2). The solvatochromic indicator (a) is 2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinio) phenolate or Reichardt's dye and the monomer (b) is 4, 4’-oxidianiline (ODA). 35 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Solute-centric steps

Choose solvent system

Page 36 of 40

Indicator-centric steps

Monomer as central solute molecule

Indicator as central solute molecule

Measure λmax shift for full range of compositions (λmax = f (XBulk))

Measure λmax shift for full range of compositions (π*, β, α = f (XBulk))

Apply preferential solvation model to fit f2/1, f12/1, and + parameters from spectral data

Apply preferential solvation model to ∗ fit ,  , and parameters

Calculate local compositions  (  ,   ,  ) around solute

Optionally calculate local compositions around indicator (not used)

Local composition around solute  ) (  ,   , 

Solute-centric K-T parameters ∗ ∗ ∗  ∗  =    +    + 

Complex molecule K-T parameters ∗ ,  , ) (

  =    +    +     =    +    + 

Figure 2. Procedure for determining solute-centric Kamlet-Taft solvatochromic parameters with the model, eqs. (1)-(3) for an arbitrary mixed-solvent system.

36 ACS Paragon Plus Environment

Page 37 of 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

 Figure 3. Local mole fractions,   (HBD solvent),   (HBA solvent), and  (complex

molecule HBD-HBA solvent) around central solute molecule, 4, 4’-oxidianiline (ODA) for solvent systems, (a) methanol, (b) ethanol, and (c) water with tetrahydrofuran (THF) at 25 ºC. Local composition that has   higher than   is HBA rich. Homogeneous poly(amic acid) (PAA) regions (green-shaded area) are defined by polymerization experiments (Table 2). 37 ACS Paragon Plus Environment

The Journal of Physical Chemistry

\]^

a)

_]^

b)

c)

`∗]^

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 4. Solute-centric Kamlet-Taft solvatochromic parameters of the methanoltetrahydrofuran (solid-black lines), ethanol-tetrahydrofuran (dotted dashed-red lines) and water-tetrahydrofuran (dashed-blue lines) mixtures at 25 ºC: (a) solute-centric acidity (  ); ∗ (b) solute-centric basicity ( ); and (c) solute-centric polarity (  ).

38 ACS Paragon Plus Environment

Page 38 of 40

Page 39 of 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Barriers

Mechanistic steps Local composition

The Journal of Physical Chemistry

A. ODA insolubility

 ODA dissolution

B. PMDA insolubility

C. Excessive gelatinization

 Surface reaction,

 PMDA dispersion and dissolution

D. PAA Precipitation

 PAA solvation and growth

PAA gel formation - HBA-rich

- Acidity (  < 0.80)

Solvent - Basicity ( > 0.48) environment ∗

- Polarity (  > 0.47)

- HBA-rich

- HBA-rich or HBD-rich

-  < 1.0

-  < 0.80

-  > 0.30 -

∗ 

-  > 0.48

> 0.50

-

∗ 

> 0.63

- HBA-rich

-  < 0.63 -  > 0.60

∗ -  > 0.63

Figure 5. Mixed-solvent conditions for preparing homogeneous poly(amic acid) (PAA) precursors considering by local composition and solute-

∗ centric Kamlet-Taft solvatochromic parameters (  ,  ,  ) according to the phenomenological mechanistic steps. Solvent mixtures should

have a Hansen solubility parameters (δ) of 21-29 MPa0.5 to obtain homogeneous PAA solutions at 25 ºC. 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

For Table of Contents Use only: Spectroscopic Analysis of Binary Mixed-Solvent-Polyimide Precursor Systems with the Preferential Solvation Model for Determining SoluteCentric Kamlet-Taft Solvatochromic Parameters Alif Duereh,† Yoshiyuki Sato,† Richard Lee Smith Jr†, ‡ and Hiroshi Inomata*†

40 ACS Paragon Plus Environment

Page 40 of 40