Stereoselective preparation of a rigid trimethylenemethane complex

Forschungsgemeinschaft, Bonn/Bad Godesberg, by Fonds der Chemischen Industrie, Frankfurt/Main, and by De- gussa AG is gratefully acknowledged...
0 downloads 0 Views 846KB Size
Organometallics 1991, 10, 1642-1644

1642

tion of 2 under an atmosphere of carbon monoxide at 150 "C for 2.6 h. The decomposition products have been isolated and identified by 'H NMR, IR, GC, and GC-MS analyses.

Acknowledgment. Support of this work by Deutsche F o r s c h u n g s g e m e i , Bonn/Bad Godesberg,by Fonds der Chemischen Industrie, Frankfurt/Main, and by Degussa AG is gratefully acknowledged.

Stereoselective Preparation of a Rigid Trimethylenemethane Complex by Reaction of Aiiene with an Iridium Methyiidene Derivative. X-ray Crystal Structure of fac - I r[ q4-C(CH,),] [N(SIMe,CH,PPh,),] Michael D. Fryzuk,*it Kiran Joshi, and Steven J. Rettigs Department of Chemisby, Universi@ of British Columble, 2036 Main M i l , Vancouver, BC, Canada V6T 1Zl

Received August 7, 1990

Summary: The trimethylenemethane complex fac-Ir[q4C(CH,)3] [N(SiMe,CH,PPh,),] was prepared from the reaction of the methyiidene derivative Ir-CH2[N(SIMe,CH,PPh,),] with aliene. Trimethylenemethane,a structural isomer of butadiene, exists only fleetingly at ambient conditions.' However, this reactive organic fragment can be stabilized by coordination to a metal complex. Indeed, such complexes have been known since 1966,2and interest has continued culminating with the use of certain palladium allyl complexes as synthetic precursors to trimethylenemethane units in cyclopentanoid natural product synthe~is.~ Preparation of the parent trimethylenemethane ligand has for the most part used preformed C4fragments' relying on halide displacement: trimethylsilyl acetate/chloride elimination! ring opening of methylenecyclopropane' or C-H activaunit. In this tion/elimination* to generate the T'-C(CH~)~ paper, we report the synthesis and X-ray crystal structure of a trimethylenemethane-iridium complex which involves carbon-carbon bond formationB between an iridiummethylidene derivative and allene. A surprising and unique aspect of this reaction is that the trimethylenemethane unit forms in a completely stereoselectivefashion. ~

~~

~

8

C18 C14

C17

C15

~~~~

'E.W. R. Steacie Fellow (1990-1992).

* Experimental Officer: UBC Crystallographic Service.

(1) Baseman, R. J.; Pratt, D. W.; Chow, M.; Dowd, P. J. Am. Chem. SOC.1976,98,6726. (2) Emerson, G. F.; Ehrlich, K. Giering,W. P.;Lauterber, P. C. J. Am. Chem. SOC.1966,88,3172. (3) Trcmt, B. M. Angew. Chem., Int. Ed. Engl. 1986,25,1. (4) Mnrr, 0.;Racket&B.W.In Chemistry of the Metal-Carbon Bond; Hartlay, F. R., Patai, S., Ed.; Wdey New York, 1982; Vol. 1, p 388. (5) Ward, J. 5.; Pettit, R. J. Chem. Soc., Chem. Commun. 1970,1419. (6) Jones, M. D.; Kemmitt, D. W.; Platt, A. W. G. J . Chem. SOC., Dalton Trans. 1986, 1411. (7) (a) Pinhas, A. R.; Samuelson,A. G.; Risember, R.; Arnold, E. V.; Clardy, J.; Carpenter, B. K. J. Am. Chem. SOC.1981, 103, 1668, and referencee therein. (b) Barnes, S. G.; Green, M. J . Chem. SOC.,Chem. Commun. 1980, 267. (8) Mayer, J. M.; Curtis, C. J.; Bercaw, J. E. J. Am. Chem. SOC.1983, 105,2651. (9) Fischer carbenes are also reported to generate trimethylenemethane type complexea by reaction with substituted allenes, Bee: (a) Aumann, R.; Trent", B. Chem. Ber. 1989,122,1977. (b) Aumann, R.; Jurgen, U. Angew. Chem., Int. Ed. Engl. 1987,26, 357. Binuclear complexes also can induce C-C bond formation between allene and a bridging methylene: Fildea, M. J.; Knox, S. A. R.; Orpen, A. G.;Turner, M. L.; Y a h , M. I. J. Chem. Soc., Chem. Commun. 1989,1680.

0276-7333/91/2310-1642$02.50/0

16

Figure 1. Molecular structure and numbering scheme for facIr[v4-C(CH&][N(SiMe&H2PPh2)2] (2). Selected bond distances (A) and bond angles (deg) are as follows: 11-P(l), 2.296 (1); k P ( 2 ) , 2.295 (1); k N ( l ) , 2.198 (4); Ir-C(31), 2.055 (5); IrC(32), 2.189 (5); H ( 3 3 ) , 2.222 (5);H ( 3 4 ) ,2.202 (5);C(31)4(32), 1.426 (7);C(31)4(33),1.437 (7), C(31)4(34),1.441 (7); P(l)-IpP(2), 106.49 (5); P ( l ) - I p N ( l ) , 87.0 (1); P(1)-1&(31), 123.1 (1); P(2)-kN(l), 83.0 (1); P(2)-H(31), 120.7 (1);N(l)-W(31), 126.2 (2); Ir-C(31)-C(32), 75.5 (3); Ir-C(31)-C(33), 76.8 (3); 1r-C(31)-C(34), 75.8 (3); C ( 3 2 ) 4 ( 3 1 ) 4 ( 3 3 ) , 115.2 (5); C(32)-C(31)-C(34), 114.7 (5); C(33)