Steric and Electrostatic Contributions to the Colloidal Properties of

Dispersions of carbon black in dodecane and .... index data by the Lifshitz equations (8), but i t now appears that ..... approximated here by the zet...
1 downloads 0 Views 3MB Size
21 Steric and Electrostatic Contributions to the Colloidal Properties of Nonaqueous Dispersions 1

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

F. M. FOWKES and R. J. PUGH

Department of Chemistry, Lehigh University, Bethlehem, PA 18015

Dispersions of carbon black in dodecane and kerosene have been prepared with a basic polyisobutene succinamide, the most extensively used commercial non-aqueous dispersant. The basic anchoring groups adsorb strongly onto the acidic surface sites of the carbon black, and with 1 w% or more of dispersant (based on the carbon black) the 50 Å- long polyisobutene chains extend out into the solution to provide a steric barrier 100 Å thick between particles, as evidenced by a million-fold decrease in electrical conductivity and a twenty-fold decrease in viscosity, but with no degree whatsoever of deflocculation. Only at much higher dispersant levels is deflocculation observed. When the concentration of unadsorbed dispersant in the oil phase exceeds 0.1%, the conductivity increases as counterions form, large negative zeta-potentials develop (-140 to -300 mV), the stability ratios climb towards infinity and the dispersions become completely deflocculated. D i s p e r s i o n s o f f i n e l y d i v i d e d s o l i d s i n non-aqueous m e d i a h a v e been i m p o r t a n t f o r p a i n t s , i n k s , r e i n f o r c e d polymers and l u b r i c a t i n g o i l s , b u t w i t h the development o f l i q u i d t o n e r systems and " u l t r a - s t r u c t u r e " p r o c e s s i n g o f c e r a m i c s a s f i n e powders d i s p e r s e d i n o r g a n i c m e d i a , t h e u n d e r s t a n d i n g and o p t i m i z a t i o n o f s u c h s y s t e m s i s more i m p o r t a n t t h a n e v e r .

1

Current address: Ytkemiska Institutet Box 5607, Institute for Surface Chemistry, Stockholm, Sweden S-114 86. 0097-6156/84/0240-O331$07.00/0

© 1984 American Chemical Society

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

332

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

Theories

POLYMER ADSORFFION AND DISPERSION STABILITY o f C o l l o i d a l S t a b i l i t y i n Non-Aqueous

Media

E l e c t r o s t a t i c s i n Non-Aqueous M e d i a . A p o p u l a r m i s c o n c e p t i o n i n s t u d i e s o f non-aqueous d i s p e r s i o n s c o n c e r n s e l e c t r o s t a t i c e f f e c t s . B e c a u s e t h e s e a r e more d i f f i c u l t t o measure t h a n i n aqueous m e d i a , t h e r e h a s b e e n a g e n e r a l t e n d e n c y t o i g n o r e them c o m p l e t e l y . However, t h e few i n v e s t i g a t o r s who h a v e measured z e t a - p o t e n t i a l s o r e l e c t r o d e p o s i t i o n w i t h t h e s e s y s t e m s h a v e become c o n v i n c e d o f t h e i r i m p o r t a n c e . W i t h t h e a d v e n t o f modern c o m m e r c i a l i n s t r u m e n t a t i o n f o r z e t a - p o t e n t i a l s i n non-aqueous m e d i a i t i s t o hoped t h a t t h e s e e f f e c t s w i l l be m e a s u r e d r a t h e r t h a n i g n o r e d . T h i r t y y e a r s ago v a n d e r M i n n e and H e r m a n i e showed t h a t c a r b o n b l a c k i n b e n z e n e d e v e l o p e d a p p r e c i a b l e z e t a p o t e n t i a l s and c o l l o i d a l s t a b i l i t y i n t h e p r e s e n c e o f c a l c i u m s o a p s ( w h i c h gave p o s i t i v e z e t a - p o t e n t i a l s ) o r q u a t e r n a r y ammonium p i c r a t e s ( w h i c h gave n e g a t i v e z e t a - p o t e n t i a l s ) ; t h e i r m i x t u r e s gave l o w z e t a p o t e n t i a l s and c o l l o i d a l i n s t a b i l i t y . ( 1 , 2 ) Twenty y e a r s ago t h e s e n i o r a u t h o r and c o - w o r k e r s showed t h a t t h e mechanism o f e l e c t r o s t a t i c c h a r g i n g i n non-aqueous i s t h e r e v e r s e o f t h a t i n aqueous m e d i a . (3) I n aqueous s o l u t i o n s s u r f a c t a n t s i o n i z e and t h e n t h e s u r f a c e - a c t i v e ions adsorb onto surfaces to give e l e c t r o s t a t i c a l l y c h a r g e d s u r f a c e s . However i n o r g a n i c m e d i a b a s i c d i s p e r s a n t s a d s o r b a s n e u t r a l m o l e c u l e s o n t o a c i d i c s u r f a c e s where p r o t o n - t r a n s f e r from a c i d i c s i t e s charges the adsorbed bases positively. I f the concentration of dispersant d i s s o l v e d i n the o i l p h a s e i s s u f f i c i e n t l y h i g h t h a t d y n a m i c a d s o r p t i o n and d e s o r p t i o n o c c u r s , some p r o t o n - c a r r y i n g d i s p e r s a n t s w i l l d e s o r b i n t o s o l u t i o n , and p r o v i d e t h e c o u n t e r i o n s f o r t h e n e g a t i v e c h a r g e s l e f t on t h e s u r f a c e . F i g u r e 1 i l l u s t r a t e s t h i s mechanism, w h i c h h a s b e e n d e m o n s t r a t e d i n some d e t a i l by u s i n g c a r b o n - 1 4 t a g g e d b a s i c p o l y m e r i c d i s p e r s a n t s ( 4 , 5 ) and t r i t i u m - t a g g e d a c i d i c s i t e s on s u r f a c e s . I n F i g u r e 1 a p o l y m e r i c d i s p e r s a n t i s i n d i c a t e d , f o r t h e r a d i o t r a c e r s t u d i e s w e r e done w i t h h i g h m o l e c u l a r w e i g h t polyalkylmethacrylates having v i n y l p y r i d i n e basic s i t e s . Howe v e r t h e mechanism h a s a l s o b e e n d e m o n s t r a t e d w i t h l o w e r m o l e c u l a r w e i g h t m a t e r i a l s and e v e n w i t h m i c e l l a r m e t a l s o a p s and s u l f o nates. T h i s mechanism r e s u l t s i n n e g a t i v e l y - c h a r g e d a c i d i c p a r t i c l e s w i t h b a s i c d i s p e r s a n t s and p o s i t i v e l y - c h a r g e d b a s i c p a r t i c l e s w i t h a c i d i c d i s p e r s a n t s , a p r i n c i p l e t h a t h a s b e e n demons t r a t e d e x p e r i m e n t a l l y a g r e a t many t i m e s . ( 4 , 5 ) Steric Stabilization. S t e r i c s t a b i l i z a t i o n was a t e r m f i r s t i n t r o d u c e d by H e l l e r t o e x p l a i n how a d s o r b e d p o l y e t h y l e n e o x i d e polymers increased the s a l t c o n c e n t r a t i o n r e q u i r e d f o r f l o c c u l a t i o n o f n e g a t i v e l y c h a r g e d aqueous s u s p e n s i o n s . ( 6 ) H e l l e r ' s s y s t e m s w e r e s t a b i l i z e d by b o t h m e c h a n i s m s , a s a r e most c o m m e r c i a l d i s p e r s i o n s t o d a y , aqueous and n o n - a q u e o u s . Much o f t h e more r e c e n t l i t e r a t u r e on s t e r i c s t a b i l i z e r s h a s b e e n p r e o c c u p i e d w i t h s o l u b i l i t y requirements, f o r the s o l u b i l i t y of polymers i s a d e l i c a t e m a t t e r and v e r y s e n s i t i v e t o t e m p e r a t u r e and s o l v e n t

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

21.

F O W K E S AND PUGH

Colloid Properties of Nonaqueous

Dispersions

333

composition. T h i s preoccupation w i t h s o l u b i l i t y requirements has l e d some i n v e s t i g a t o r s t o b e l i e v e t h a t p r e c i p i t a t i o n o f s t a b i ­ l i z e r s i s t h e m a i n mechanism o f c o l l o i d a l i n s t a b i l i t y , r a t h e r t h a n the t r a d i t i o n a l d i s p e r s i o n f o r c e a t t r a c t i o n s between p a r t i c l e s . I t s h o u l d b e o b v i o u s t h a t a d i s p e r s a n t and s o l v e n t s y s t e m must b e chosen so t h a t t h e d i s p e r s a n t does n o t p r e c i p i t a t e , b u t t h i s l i m i t a t i o n h a s n o t h i n g t o do w i t h t h e mechanisms o f c o l l o d i a l stability. In studies of s t e r i c s t a b i l i z e r s too l i t t l e attentioni s g e n e r a l l y p a i d t o t h e d i s p e r s i o n f o r c e a t t r a c t i o n s between p a r ­ t i c l e s and t h e c r i t i c a l s e p a r a t i o n d i s t a n c e (H ) n e e d e d t o k e e p p a r t i c l e s from f l o c c u l a t i n g . Adsorbed s t e r i c s t a b i l i z e r s can p r o v i d e a c e r t a i n f i l m t h i c k n e s s on each p a r t i c l e b u t i f t h e sep­ a r a t i o n d i s t a n c e between c o l l i d i n g p a r t i c l e s i s l e s s than H the particles w i l l flocculate. The c a l c u l a t i o n o f H i s not d i f f i c u l t a n d measurements t o p r o v e o r d i s p r o v e s u c h c a l c u l a t i o n s are n o t d i f f i c u l t e i t h e r . For equal-sized spheres o f substance 1 w i t h r a d i u s o r i n medium 2 ^ t h e Hamaker e q u a t i o n f o r t h e d i s p e r s i o n f o r c e a t t r a c t i v e e n e r g y (ϋχ2ΐ) a t c l o s e a p p r o a c h i s ( 7 ) : Ul21

= ^ A

m

f / 1 2 Η

(D

w h e r e A121> t h e Hamaker c o n s t a n t , c a n b e r e l a t e d t o ^ t h e f o r c e c o n t r i b u t i o n t o t h e s u r f ace e n e r g i e s γ χ a n d γ :

dispersion

2

(2)

Αχ2i = 1.5 χ 10

Hamaker c o n s t a n t s c a n s o m e t i m e s b e c a l c u l a t e d f r o m r e f r a c t i v e i n d e x d a t a b y t h e L i f s h i t z e q u a t i o n s ( 8 ) , b u t i t now a p p e a r s t h a t γ v a l u e s a r e c l o s e l y r e l a t e d t o r e f r a c t i v e i n d i c e s and a r e a d i r e c t measure o f t h e L i f s h i t z a t t r a c t i o n s . I n E q u a t i o n 1 a c o r ­ r e c t i o n f a c t o r f f o r " r e t a r d a t i o n " o f d i s p e r s i o n f o r c e s i s shown w h i c h c a n b e d e t e r m i n e d f r o m F i g u r e 2, a g r a p h o f 1 / f a t v a r i o u s v a l u e s o f Η and a a s a f u n c t i o n o f λχ, t h e c h a r a c t e r i s t i c wave­ l e n g t h o f t h e most e n e r g e t i c d i s p e r s i o n f o r c e s , c a l c u l a b l e a n d t a b u l a t e d i n t h e l i t e r a t u r e (9). T a b l e I l i s t s some c h a r a c t e r i s t i c wave l e n g t h s f r o m t h e w o r k o f G r e g o r y ( 9 ) . The c a l c u l a t i o n s o f f shown i n F i g u r e 2 a r e t a k e n f r o m t h e w o r k o f C l a y f i e l d and Lumb.(lO) By u s i n g t h e s e c a l c u ­ l a t i o n s one c a n d e t e r m i n e t h e a t t r a c t i v e e n e r g y p e r p a i r o f p a r t i c l e s a t v a r i o u s s e p a r a t i o n d i s t a n c e s , a n d d e t e r m i n e f o r any p a r t i c u l a r v a l u e g f A121, ΐ > a n d r a d i u s ( a ) t h e c r i t i c a l v a l u e o f Η t h a t makes U i = - k T , w h e r e k i s t h e B o l t z m a n n c o n s t a n t a n d kT i s t h e a v e r a g e v i b r a t i o n a l e n e r g y o f ^ a p a i r o f p a r t i c l e s f l o c ­ c u l a t e d a t s e p a r a t i o n d i s t a n c e H. I f U ^ i i s g r e a t e r t h a n -kT the p a r t i c l e s w i l l n e a r l y always bounce a p a r t on c o l l i s i o n , b u t i f i t i s l e s s t h a n -kT t h e p a r t i c l e s t e n d t o f l o c c u l a t e . F i g u r e 3 i s a graph o f Η v s . p a r t i c l e radius (a) f o r carbon p a r t i c l e s i n _ o i l w h e r e t f i e Hamaker c o n s t a n t i s r e l a t i v e l y h i g h (A 2i 2.8xl0 e r g s ) , f o r polystyrene p a r t i c l e s i n water λ

1 2

=

1 3

1

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

334

POLYMER ADSORPTION AND DISPERSION STABILITY

F i g u r e 1. M e c h a n i s m o f e l e c t r o s t a t i c c h a r g i n g i n o i l o f p a r t i c l e s w i t h a c i d i c s i t e s (AH) b y a p o l y m e r i c d i s p e r s a n t w i t h b a s i c s i t e s ( B ) . Reproduced w i t h p e r m i s s i o n from Ref. ( 5 ) . C o p y r i g h t 1982, American Chemical S o c i e t y .

a

/Al

.2

Η

ι

/

/

/// /

/

4

Vf

0

.1ι

.:

\

/\

.5

F i g u r e 2. R e t a r d a t i o n c o r r e c t i o n f a c t o r ( f ) f o r d i s p e r s i o n f o r c e a t t r a c t i o n s between s p h e r i c a l p a r t i c l e s o f r a d i u s (a) a t s e p a r a t i o n d i s t a n c e ( Η ) , w i t h d i s p e r s i o n f o r c e wave­ l e n g t h X. (10) t

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

21.

FOWKES AND PUGH =

Colloid Properties of Nonaqueous Dispersions

335

llf

(Αΐ2ΐ 5·3χ10 ergs)» and f o r o i l - i n - w a t e r e m u l s i o n s w h e r e t h e Hamaker c o n s t a n t i s q u i t e l o w ( A i 21-9.3x10 e r g s ) . For the system under s t u d y i n t h i s paper ( c a r b o n i n o i l , w i t h average r a d i u s a= 0.2 \im) i t i s s e e n t h a t Η i s 260 X and t h a t t h e a d ­ s o r b e d s t e r i c b a r r i e r m o l e c u l e s mus£ provide f i l m s 130 X i n thickness a t c o l l i s i o n to prevent f l o c c u l a t i o n . Since the d i s ­ p e r s a n t u s e d i n t h i s p a p e r p r o v i d e s 50 X f i l m s and a n H a t c o l ­ l i s i o n o f 100 X i t s h o u l d be no s u r p r i s e t h a t when z e t a p o t e n t i a l s are small the p a r t i c l e s f l o c c u l a t e i n every c o l l i s i o n . 1 5

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

r

Table I .

C h a r a c t e r i s t i c Wave L e n g t h s o f D i s p e r s i o n F o r c e A t t r a c t i o n s (9)

Substance water n-octane benzene quartz polystryene

in X 896 882 1181 793 1145

The c a l c u l a t i o n s i n F i g u r e 3 w e r e made o n t h e a s s u m p t i o n t h a t t h e Hamaker c o n s t a n t s o f t h e a d s o r b e d d i s p e r s a n t f i l m s a r e t h e same a s t h e l i q u i d m e d i a . This i s an e x c e l l e n t assumption ^ f o r p o l y m e r s , s i n c e t h i s means t h a t t h e s o l u b i l i t y p a r a m e t e r (6 ) o f t h e d i s p e r s a n t and o f t h e medium must b e a b o u t t h e same, w h i c h i s the b a s i c requirement f o r s o l u b i l i t y of polymers. I n t h e e a r l i e r l i t e r a t u r e o n s t e r i c s t a b i l i z a t i o n t h e r e was a tendency t o i g n o r e the importance o f a n c h o r i n g s i t e s f o r s t e r i c stabilizers. Without s t r o n g anchors t h e adsorbed molecules a r e e a s i l y swept a s i d e i n c o l l i s i o n s , a s h a s b e e n s o w e l l i l l u s ­ t r a t e d w i t h p o l y s t y r e n e adsorbed onto carbon b l a c k s i n hydrocar­ bon s o l u t i o n s ; i n t h e s e s y s t e m s p a r t i c l e s f l o c c u l a t e i n e v e r y collision.(11) Many i n v e s t i g a t o r s o f s t e r i c s t a b i l i z a t i o n h a v e m e a s u r e d c o l l o i d a l s t a b i l i t y w i t h o u t t a k i n g t h e e f f o r t t o f i n d out whether the s t a b i l i t y a c t u a l l y r e s u l t e d from e l e c t r o s t a t i c s t a b i l i z a t i o n . I n many p u b l i s h e d a r t i c l e s i t h a s b e e n c o n c l u d e d t h a t s t e r i c s t a b i l i z a t i o n h a d b e e n a t t a i n e d and f u r t h e r s t u d y showed t h i s was n o t t h e c a s e . One s u c h e x a m p l e i s a r e c e n t p a p e r o n " s t e r i c s t a b i l i z a t i o n b y a n a d d i t i v e o f t h e same t y p e u s e d i n t h i s w o r k . ( 1 2 ) The p u b l i s h e d p h o t o g r a p h shows t h e s i l i c a p a r t i c l e s i n o i l s t a b i l i z e d a t i n t e r p a r t i c l e separations s e v e r a l times the d i s t a n c e s p r o v i d e d b y t h e a d s o r b e d f i l m s ; no e l e c t r i c a l m e a s u r e ­ ments had b e e n made, b u t i t t h e y h a d , t h i s p a r t i c u l a r d i s p e r s a n t w o u l d h a v e p r o v i d e d a b o u t -200 mV o f z e t a - p o t e n t i a l and g i v e n excellent electrostatic repulsion. The r e a d e r s h o u l d b e w a r y o f any c l a i m s o f s t e r i c s t a b i l i z a t i o n u n l e s s t h e e l e c t r o s t a t i c c o n t r i b u t i o n has been measured. 1 1

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

336

POLYMER ADSORPTION AND DISPERSION STABILITY

Combined E l e c t r o s t a t i c a n d S t e r i c S t a b i l i z a t i o n . The c o m b i n a t i o n o f t h e two mechanisms i s i l l u s t r a t e d i n F i g u r e 4, t a k e n f r o m Shaw's t e x t b o o k , (13) w h e r e t h e r e p u l s i o n o f t h e s t e r i c b a r r i e r d u r i n g a c o l l i s i o n f a l l s o f f so r a p i d l y as t h e c o l l i d i n g p a r t i c l e s bounce a p a r t t h a t t h e d i s p e r s i o n f o r c e a t t r a c t i o n s h o l d t h e p a r ­ t i c l e s t o g e t h e r i n t h e " s e c o n d a r y minimum". T h i s i s e x a c t l y what happens i n t h e s y s t e m i n v e s t i g a t e d i n t h i s p a p e r . I n such systems t h e requirement o f t h e e l e c t r o s t a t i c c o n t r i ­ b u t i o n t o c o l l o i d a l s t a b i l i t y i s q u i t e d i f f e r e n t t h a n when no s t e r i c b a r r i e r i s present. I n t h e l a t t e r case an energy b a r r i e r o f a b o u t 30 kT i s d e s i r a b l e , w i t h a Debye l e n g t h l/κ o f n o t more t h a n 1000 X. T h i s i s a t t a i n a b l e i n non-aqueous s y s t e m s ( 5 ) , b u t n o t b y most d i s p e r s a n t s . However when t h e s t e r i c b a r r i e r i s present, the only requirement f o r the e l e c t r o s t a t i c r e p u l s i o n i s t o e l i m i n a t e t h e s e c o n d a r y minimum and t h i s i s e a s i l y a c h i e v e d w i t h z e t a - p o t e n t i a l s f a r below those r e q u i r e d t o operate e n t i r e l y by t h e e l e c t r o s t a t i c mechanism. Dispersant The d i s p e r s a n t u s e d i n t h e s e s t u d i e s i s C h e v r o n C h e m i c a l s OLOA 1200, a p o l y b u t e n e o f a b o u t 70 c a r b o n atoms a t t a c h e d t o a s u c c i n i c a c i d group w h i c h i s r e a c t e d w i t h d i e t h y l e n e t r i a m i n e t o p r o v i d e t h e b a s i c a n c h o r i n g g r o u p . F i l m b a l a n c e s t u d i e s showed t h a t t h e a d s o r b e d f i l m s h a v e a f i l m t h i c k n e s s o f 50 X. This d i s ­ p e r s a n t i s s u p p l i e d a s a 50 w% s o l u t i o n i n a m i n e r a l o i l . I t c a n be d e o i l e d b y a d s o r p t i o n f r o m t o l u e n e o n t o s i l i c a w i t h e l u t i o n b y acetone. I n t h i s p a p e r t h e w% o f d i s p e r s a n t r e f e r s t o t h e d e o i l e d material. The b a s i c i t y o f OLOA 1200 h a s b e e n e v i d e n c e d b y i t s i n t e r ­ a c t i o n w i t h t h e o i l - s o l u b l e a c i d i c i n d i c a t o r d y e , Brom P h e n o l M a g e n t a Ε (ΕΚ 6810) w h i c h i s n o r m a l l y y e l l o w b u t t u r n s b l u e a n d t h e n magenta w i t h i n c r e a s i n g b a c i c i t y . The a c i d i c f o r m h a s a n a d s o r p t i o n p e a k a t 390 nm, t h e b a s i c a t 610 nm, a n d t h e i s o b e s t i c p o i n t i s a t 460 nm. T h e s e s p e c t r a h a v e b e u s e d t o d e t e r m i n e t h e c o n c e n t r a t i o n o f OLOA 1200 i n s o l u t i o n f o r a d s o r p t i o n i s o t h e r m s . Adsorption

Isotherms on Carbon B l a c k (14)

The c a r b o n b l a c k u s e d i n a l l o f t h e s e s t u d i e s was C a b o t ' s S t e r l i n g NS ( 2 5 m / g ) , a f u r n a c e b l a c k w h i c h was e x t r a c t e d o f s o l u b l e s w i t h a c e t o n e and h e x a n e and t h e n d r i e d a t 60°C. u n d e r vacuum. C a r b o n b l a c k a d s o r b e d OLOA 1200 v e r y s t r o n g l y , e v e n t u a l l y p i c k i n g up 5% o f i t s w e i g h t i n d i s p e r s a n t . The f i r s t 2% a d s o r b e d a l m o s t i n s t a n t l y , b u t a d d i t i o n a l i n c r e m e n t s a d s o r b e d more and more s l o w l y ( s e e F i g u r e 5 ) . Such t i m e - d e p e n d e n c e i n a d s o r p t i o n o f l a r g e m o l e c u l e s i s q u i t e common ( 1 5 ) , b u t i s s e l d o m s t u d i e d . The a d s o r p t i o n i s o t h e r m s d e t e r m i n e d a f t e r 48 h o u r s o f t u m b l i n g a t 25° 2

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

FOWKES AND PUGH

Colloid Properties of Nonaqueous Dispersions

337

a, pm

F i g u r e 3. C r i t i c a l s e p a r a t i o n d i s t a n c e (H ) o f s p h e r i c a l p a r t i c l e s o f r a d i u s ( a ) t o p r e v e n t floccuîation a t 25°C. C a r b o n - i n - o i l d i s p e r s i o n s (C/0), p o l y s t y r e n e i n w a t e r l a t e x e s (PS/W), and o i l - i n - w a t e r e m u l s i o n s (0/W).

(Μ L

Μ,+ν +Λ* λ

\

\ 1 — \

0

\

v

.

+

^

interpartielc separation

/ ./

_

Η

/

Λ

ν,



^

ν,-ν,

t / Ι / I / ι F i g u r e 4. P o t e n t i a l e n e r g y d i aιg r a m s f o r a p a i r o f p a r t i c l e s w i t h : o n t h e l e f t , a s t e r i c b a r r i e r (V ) a n d d i s p e r s i o n f o r c e a t t r a c t i o n (V ) ; and o n t h e r i g h f , w i t h e l e c t r o s t a t i c r e p u l s i o n (V ) added. R e p r o d u c e d w i t h p e r m i s s i o n f r o m Ref. ( 1 3 ) . C o p y r i g h t 1980, B u t t e r w o r t h s .

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

POLYMER ADSORPTION AND DISPERSION STABILITY

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

21.

FOWKES AND PUGH

Colloid

339

Properties of Nonaqueous Dispersions

and a t 50° ( s e e F i g u r e 6 ) a r e p r o b a b l y n o t e q u i l i b r i u m v a l u e s , a s s u g g e s t e d b y t h e g r e a t e r a d s o r p t i o n a t 50°C. The a r e a p e r m o l e c u l e w i t h 5 w% o f d i s p e r s a n t a d s o r b e d o n t o t h e c a r b o n b l a c k i s ioo£ . 2

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

C a l o r i m e t r i c Heats o f A d s o r p t i o n on Carbon

Black(14)

Heats o f a d s o r p t i o n were determined w i t h a M i c r o s c a l Flow M i c r o c a l o r i m e t e r , u s i n g f l o w r a t e s o f one m l . p e r h o u r u n d e r a g r a v i t i o n a l h e a d , a n d 70 t o 80 mg o f S t e r l i n g NS i n t h e b e d . The r e s u l t s o f a t y p i c a l r u n a r e shown i n F i g u r e 7 » w h i c h i l l u s t r a t e s t h e r a p i d i t y o f a d s o r b i n g 2.25% OLOA 1 2 0 0 . The a r e a u n d e r t h i s p e a k c o r r e s p o n d s t o t h e g e n e r a t i o n o f 6.8 m i l l i c a l o r i e s o f h e a t , a AH o f -4.7 k c a l / m o l e . The r e s u l t s o f s e v e r a l s u c h e x p e r i ments a r e summarized i n T a b l e I I . a d g

T a b l e I I . H e a t s o f A d s o r p t i o n o f OLOA 1200 o n C a r b o n B l a c k By F l o w M i c r o c a l o r i m e t r y (40°C.)

a)

A l i q u o t s o f d i s p e r s a n t i n j e c t e d a t 2-3 h o u r

P a r t s OLOA 1 2 0 0 / 100 p a r t s o f i n j e c t e d (no bed change)

Approximate* Surface area per molecule (X)

1.5 1.5 1.5

0.75 1.5 2.25

Amount o f heat absorbed (millicalories)

Heat o f adsorption* (Kcal/mole)

2

330 167 110

b) F r e s h l y p r e p a r e d aliquot injected.

intervals.

-6.7 -5.5 -4.7

beds o f c a r b o n b l a c k prepared

660 330 220

-3.6 -6.7 -6.8

-7.0 -5.7 -4.9 before

each

-7.5 -7.0 -4.7

* A s s u m i n g a n a v e r a g e m o l e c u l a r w e i g h t o f 1200 f o r t h e d i s p e r s a n t and a s u r f a c e a r e a o f 25 m /gm f o r t h e c a r b o n b l a c k . I n p a r t (a) o f Table I I i s i s seen that t h e f i r s t t h i r d o f a m o n o l a y e r t o a d s o r b t e n d s t o o c c u p y t h e more s t r o n g l y a c i d s i t e s , f o r each s u c c e s s i v e increment i s l e s s s t r o n g l y adsorbed. I n p a r t (b) t h e decrease i n average heats o f a d s o r p t i o n w i t h i n c r e a s i n g coverage i s q u i t e c o n s i s t e n t w i t h t h e above. 2

E l e c t r i c a l C o n d u c t i v i t y o f Carbon B l a c k D i s p e r s i o n s i n Dodecane(16) S t e r l i n g NS i s a f a i r l y c o n d u c t i v e

c a r b o n b l a c k and d i s p e r s i o n s o f

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

340

POLYMER ADSORPTION AND DISPERSION STABILITY

EQUILIBRIUM CONCENTRATION, | / l F i g u r e 6. Amount o f OLOA-1200 a d s o r b e d o n c a r b o n b l a c k f r o m o d o r l e s s k e r o s e n e i n 48 h o u r s . R e p r o d u c e d w i t h p e r m i s s i o n from R e f . (14) C o p y r i g h t 1983, E l s e v i e r S c i e n c e P u b l i s h e r s .

1

i

i

I

I

I

S

10

15

20

26

1

tint* (minutes)

F i g u r e 7. E x o t h e r m f o r a d s o r p t i o n o f OLOA-1200 f r o m o d o r l e s s kerosene onto carbon b l a c k by f l o w m i c r o c a l o r i m e t r y . Reproduced w i t h p e r m i s s i o n from Ref ( 1 4 ) . C o p y r i g h t 1983, E l s e v i e r Science P u b l i s h e r s .

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

21.

FOWKES AND PUGH

Colloid Properties of Nonaqueous Dispersions

341

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

1

10 w% i n d o d e c a n e h a v e a c o n d u c t i v i t y o f a b o u t 5x10 **ohm ^m , measured w i t h p l a t i n u m e l e c t r o d e s i n a s t i r r e d conductance c e l l , using a Keithley electrometer. This c o n d u c t i v i t y r e s u l t s from c h a i n s o f p a r t i c l e - t o - p a r t i c l e c o n t a c t s w h i c h a r e b r o k e n and r e ­ made d u r i n g s t i r r i n g , w i t h e l e c t r o n - t u n n e l l i n g c u r r e n t s b e t w e e n c l o s e l y adjacent conductive carbon p a r t i c l e s (17). With i n c r e m e n t a l a d d i t i o n s o f OLOA-1200 t o t h e s e d i s p e r s i o n s t h e a d ­ s o r b e d l a y e r s i n c r e a s e t h e t h i c k n e s s o f t h e i n s u l a t i n g gap be­ tween c a r b o n p a r t i c l e s , and s i n c e t u n n e l l i n g c u r r e n t s d e c r e a s e e x p o n e n t i a l l y w i t h s e p a r a t i o n d i s t a n c e (17), the conductance i s s e e n i n F i g u r e 8 t o d e c r e a s e e x p o n e n t i a l l y w i t h OLOA-1200 c o n t e n t up t o 1 w% and t h e n t o d e c r e a s e more s l o w l y up t o 2 w% w h e r e t h e c o n d u c t a n c e i s a b o u t one m i l l i o n t h o f what i s was w i t h no OLOA1200. The minimum c o n d u c t i v i t y o b s e r v e d i n t h i s s y s t e m i s i n ­ d i c a t i v e o f t h e 100 X s e p a r a t i o n b e t w e e n p a r t i c l e s e x p e c t e d w i t h OLOA-1200, f o r e l e c t r o n - t u n n e l l i n g c u r r e n t s become n e g l i g i b l y s m a l l a c r o s s i n s u l a t i n g gaps o f 100 A t h i c k n e s s . In F i g u r e 8 the conductance i s seen to i n c r e a s e w i t h d i s p e r ­ s a n t c o n t e n t a f t e r r e a c h i n g a minimum. T h i s i s b e c a u s e t h e c o n t e n t o f d i s p e r s a n t l e f t i n s o l u t i o n becomes s i g n i f i c a n t i n t h e r e g i o n a b o v e t h e minimum. F o r e x a m p l e , t h e c o n d u c t a n c e m e a s u r e d a f t e r 45 m i n u t e s r i s e s a f t e r a minimum a t 2.5% OLOA-1200; t h i s c a n compared w i t h F i g u r e 5 w h i c h shows t h a t 2% i s a d s o r b e d i n a b o u t 10 m i n u t e s and 2.5% i s a d s o r b e d i n a b o u t an h o u r . On t h e o t h e r h a n d , t h e 1 2 - h o u r c o n d u c t a n c e r e a c h e d a minimum a t a b o u t 4% i n F i g u r e 8 and F i g u r e 5 shows t h a t a b o u t 4% i s a d s o r b e d i n 12 h o u r s . Thus t h e r i s e o f c o n d u c t a n c e a f t e r t h e minimum i s a good m e a s u r e o f t h e p r e s e n c e o f s i g n i f i c a n t c o n c e n t r a t i o n s o f d i s p e r s a n t i n s o l u t i o n , which i s a requirement f o r the develop­ ment o f e l e c t r o s t a t i c c h a r g i n g , i l l u s t r a t e d i n F i g u r e 1. The i n c r e a s e i n o v e r a l l d i s p e r s a n t l e v e l s r e q u i r e d t o p r o v i d e an excess i n s o l u t i o n i n c r e a s e s w i t h time because of the slow k i ­ n e t i c s of a d s o r p t i o n i n the approach to s a t u r a t e d s u r f a c e con­ c e n t r a t i o n s , as d i s c u s s e d e a r l i e r . The i n c r e a s i n g c o n d u c t i v i t y o f the d i s p e r s i o n , once e x c e s s d i s p e r s a n t i s l e f t i n s o l u t i o n , i s p r o b a b l y due m o s t l y t o t h e i n c r e a s i n g c o n c e n t r a t i o n o f p r o t o n c a r r y i n g OLOA-1200 m o l e c u l e s , t h e p o s i t i v e c o u n t e r - i o n s i l l u s ­ t r a t e d i n F i g u r e 1. S o l u t i o n s o f OLOA-1200 i n d o d e c a n e h a v e some c o n d u c t a n c e , h o w e v e r , and i t i s f a i r l y l i n e a r w i t h c o n c e n t r a t i o n , so n o t a l l o f t h e i n c r e a s i n g c o n d u c t a n c e c a n be a t t r i b u t e d t o counterions. Z e t a - P o t e n t i a l s of Carbon B l a c k D i s p e r s i o n s i n Hydrocarbons w i t h OLOA-1200 D i s p e r s a n t (14-16)" I n i t i a l s t u d i e s w e r e made w i t h t h e Rank B r o s , e l e c t r o p h o r e s i s u n i t , u s i n g the d i l u t e supernatant suspension over a d i s p e r s i o n o f 3.33g o f c a r b o n b l a c k p e r l i t e r o f d o d e c a n e e q u i l i b r a t e d f o r 24 h o u r s w i t h t h e added OLOA-1200. The e l e c t r o p h o r e t i c m o b i l i t y (μ) o f 1-3 ym c l u m p s o f p a r t i c l e s was o b s e r v e d a t a f i e l d o f 100 v o l t s p e r c e n t i m e t e r . The z e t a - p o t e n t i a l s (ζ) w e r e c a l c u l a t e d

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

342

POLYMER ADSORPTION AND DISPERSION STABILITY

M I S QUA 1200 DISPOSAMT/100 PARTS C t t M l

MOI

F i g u r e 8. C o n d u c t i v i t y o f s t i r r e d 1 0 % s u s p e n s i o n s o f c a r b o n b l a c k i n d o d e c a n e w i t h OLOA-1200 d i s p e r s a n t . Triangles- 5 m i n u t e s a f t e r d i s p e r s a n t a d d e d ; c i r c l e s - 45 m i n u t e s a f t e r a d d i t i o n ; a n d s q u a r e s - 12 h o u r s a f t e r a d d i t i o n . R e p r o d u c e d w i t h p e r m i s s i o n from Ref. ( 1 6 ) . C o p y r i g h t 1983, E l s e v i e r Science P u b l i s h e r s .

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

21.

FOWKES AND PUGH

Colloid Properties of Nonaqueous

Dispersions

343

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

f r o m t h e H u c k e l e q u a t i o n (18) f o r s y s t e m s i n w h i c h t h e Debye l e n g t h exceeds t h e p a r t i c l e r a d i u s :

in is of in the

w h i c h η i s t h e v i s c o s i t y , ε i s t h e d i e l e c t r i c c o n s t a n t and ε t h e p e r m i t t i v i t y o f f r e e s p a c e . F i g u r e 9 shows t h e m a g n i t u d e the n e g a t i v e z e t a - p o t e n t i a l s i n t h i s system, w i t h p o t e n t i a l s e x c e s s o f 100 mV when, t h e d i s p e r s a n t l e v e l e x c e e d e d 2 w% o f carbon black. L a t e r s t u d i e s , u s i n g t h e P e n Kern 3000, employed s o n i c a t e d a n d w e l l - d i s p e r s e d carbon b l a c k i n kerosene systems i n which a l l o f the p a r t i c l e s w e r e s u b - m i c r o n i n s i z e . T h i s i n s t r u m e n t u s e s a D o p p l e r - s h i f t t y p e o f measurement a n d a n a l y s e s t h e m o t i o n o f many p a r t i c l e s s i m u l t a n e o u s l y by a F o u r i e r t r a n s f o r m o f the m u l t i p l e s e n s i n g s . F i g u r e 10 shows a t y p i c a l h i s t o g r a m o f t h e d i s t r i b u t i o n o f t h e e l e c t r o p h o r e t i c m o b i l i t i e s o f c a r b o n b l a c k s i n 0.2% s o l u t i o n s o f OLOA-1200 i n k e r o s e n e ; i n t h i s c a s e t h e a v e r a g e mobility was -1.0x10 a n d t h e a v e r a g e z e t a p o t e n t i a l was -153mV. Table I I I l i s t s t h e average z e t a - p o t e n t i a l s o b t a i n e d w i t h d i s p e r ­ s i o n s o f 10 mg o f c a r b o n b l a c k s o n i c a t e d i n 100 m l . o f k e r o s e n e w i t h 0,0.2,0.5, a n d 0.8% OLOA-1200 i n s o l u t i o n . 9

T a b l e I I I . Average Z e t a - P o t e n t i a l s o f Carbon B l a c k i n Kerosene D i s p e r s i o n s D e t e r m i n e d b y P e n Kern 3000 %OLOA-1200 0 0 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.8 0.8 0.8 0.8

Time C o n s t a n t , s e c . 60 60 10 10 60 10 62 255 600 10 10 60 60

ζ-Potenital, mV +0.1 +0.5 -156-, -124 ( -144 -153) -181K -144/ -137/ -177 -247/ -319. -136 j -218 -201 1 -213 J

The t i m e c o n s t a n t i n t h e a b o v e t a b l e i s t h e t i m e a f t e r t h e f i e l d i s a p p l i e d and b e f o r e the m o b i l i t i e s a r e measured. T h i s time i s n e e d e d t o e s t a b l i s h t h e f i e l d a n d i s a n RC t i m e c o n s t a n t o f t e n s e c o n d s when t h e c o n d u c t i v i t y i s 10 ohm m . The a b o v e s o l ­ u t i o n s had c o n d u c t i v i t i e s s l i g h t l y g r e a t e r than t h i s v a l u e . 9

1

1

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

344

POLYMER ADSORPTION AND DISPERSION STABILITY

0

1

2

3

4

5

6

7

PARTS OLOA 1200 DISPERSANT/100 PARTS CARBON BLACK

F i g u r e 9. Z e t a - p o t e n t i a l o f c a r b o n b l a c k d i s p e r s e d i n d o d e c a n e w i t h OLOA-1200 d i s p e r s a n t (23°C.). Sampled f r o m d i s p e r s i o n s o f 3.33 g o f c a r b o n b l a c k p e r l i t e r o f dodecane. R e p r o d u c e d w i t h p e r m i s s i o n f r o m R e f . ( 1 4 ) . Copyr i g h t 1983, E l s e v i e r S c i e n c e P u b l i s h e r s .

F i g u r e 10. D i s t r i b u t i o n o f z e t a - p o t e n t i a l s o f carbon b l a c k i n k e r o s e n e w i t h 0.1% OLOA-1200. A v e r a g e z e t a - p o t e n t i a l was -HOmV.

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

21.

F O W K E S AND

Colloid Properties of Nonaqueous

H

PUG

Dispersions

345

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

The z e t a - p o t e n t i a l s of Table I I I are greater than those i n Figure 9 because the concentration of OLOA-1200 i n s o l u t i o n was appreciably higher. The r e s u l t s are q u i t e c o n s i s t e n t at the same concentration i n s o l u t i o n . These f i n d i n g s show that the z e t a - p o t e n t i a l i n organic media i s not a f u n c t i o n of how much dispersant i s adsorbed, but how much d i s p e r s a n t i s l e f t i n s o l u t i o n . This i s i n c o n t r a s t to the s t e r i c b a r r i e r s , which depend on how much i s adsorbed and not on how much i s l e f t i n solution. The E l e c t r o s t a t i c Energy B a r r i e r s The energy of e l e c t r o s t a t i c r e p u l s i o n (per p a i r of p a r t i c l e s ) which r e s u l t s from z e t a - p a r t i c l e s i s estimated from the Deryagin equation (19): U?21 = 2πε ε



1ΔΙ

2

In ( l + e " "

KH)

(4)

T O O

where l/κ i s the Debye length and ψ i s the surface p o t e n t i a l , approximated here by the z e t a - p o t e n ? i a l . This equation a p p l i e s e q u a l l y w e l l to aqueous or non-aqueous media. The Debye length l/κ tends to be much longer than i n aqueous media, but not always ( 5 ) . For t h i s system we used the equation of Klinkenberg and van der Minne:(20) l/κ = /ε ε D/2o r ο

(5)

where D i s the d i f f u s i o n constant f o r the charge-carrying species and σ i s the c o n d u c t i v i t y . The value of D can be c l o s e l y es­ timated from the S t o k e s - E i n s t e i n equation f o r spheres D

ο

= kT/o-rrrn

(6)

corrected with an appropriate value of f / f D = D χ ο

f/f

f o r rods : (7)

ο

For OLOA-1200 we assume a molecular weight of 1200, a d e n s i t y of 0.9, and_one e l e c t r o n i c charge per molecule (5), and f / f =1.2; D=2.7xl0 . The c o n d u c t i v i t y of a 0.2% s o l u t i o n of OLoX-1200 i n kerosene i s 1x10 ohm ^m , so the Debye length i s 0.5 um(500oX). This Debye length i s about the same as i n the i r i d e s c e n t aqueous polystyrene l a t e x e s which have had serum replacement with d i s ­ t i l l e d water. In these i r i d e s c e n t latexes the extensive Debye lengths give e l e c t r o s t a t i c r e p u l s i o n s that provide a d i s t a n c e between the centers of hexagonally packed p a r t i c l e s matching v i s i b l e l i g h t wavelengths so that Bragg r e f l e c t i o n s occur. These i r i d e s c e n t latexes are s t a b i l i z e d by the e l e c t r o s t a t i c r e p u l ­ s i o n at Debye lengths of the same order as occur i n the OLOA s o l u t i o n s i n kerosene. 1 0

8

1

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

346

POLYMER ADSORPTION AND DISPERSION STABILITY I

n

d Figure 11 the sum of the d i s p e r s i o n f o r c e a t t r a c t i o n ( U l ) °f equation (1) and of the e l e c t r o s t a t i c r e p u l s i o n ( U ^ l ) of equation (4) are p l o t t e d as a f u n c t i o n of the s e p a r a t i o n d i s t a n c e H between carbon b l a c k p a r t i c l e s with r a d i u s 200 nm, the average diameter of our carbon b l a c k as determined by e l e c t r o n microscopy of a thoroughly d e f l o c c u l a t e d sample,and using a λ of 100 nm. Two curves are shown, one f o r s o l u t i o n s with 0.2 % OLOA-1200 (1/K=500 nm, ζ=-144 mV) and another f o r s o l u t i o n s w i t h 0.8% OLOA-1200 (1/κ=250 nm, ζ=-218 mV). The maximum s l o p e , a measure of the f o r c e between p a r t i c l e s , i s 0.23 kT/nm and 0.9 kT/nm r e s p e c t i v e l y . During the approach of p a r t i c l e s i n a c o l l i s i o n , the energy l o s s per 100 nm i n climbing the above slopes would be 23 kT and 90 kT, s u f f i c i e n t to slow and stop the approach i n almost a l l c o l l i s i o n s . The dashed l i n e j u s t above the peak of e l e c t r o s t a t i c r e p u l s i o n represents the 5 nm s t e r i c b a r r i e r of adsorbed OLOA-1200 which tends to extend the b a r r i e r much h i g h e r . 1 2

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

χ

F l o c c u l a t i o n Rates and S t a b i l i t y Ratios

(16)

D i s p e r s i o n s of 3.33 g of carbon b l a c k per l i t e r of dodecane (matching the compositions used i n determing z e t a - p o t e n t i a l s i n Figure 9) and d i s p e r s i o n s of 0.33 g. per l i t e r were i n v e s t i g a t e d f o r f l o c c u l a t i o n r a t e s by t u r b i d i t y measurements immediately a f t e r s o n i c a t i o n . From the slope of a b s o r p t i v i t y v s . time the f l o c c u l a t i o n h a l f - t i m e was determined. The h a l f - t i m e s determined with no d i s p e r s a n t were used as the r a p i d f l o c c u l a t i o n h a l f - t i m e (t ) used as the b a s i s f o r determining the s t a b i l i t y r a t i o (W). In Table IV t i s 6 minutes f o r the d i s p e r s i o n s c o n t a i n i n g 3.33 g / l i t e r and 40 minutes with 0.33 g / l i t e r . Upon adding d i s ­ persant the f l o c c u l a t i o n time increased and the r a t i o of the longer f l o c c u l a t i o n time to t i s the s t a b i l i t y r a t i o . As the OLOA-1200 c o n t e n t o f these d i s p e r s i o n s increased i t should be remembered that the s t e r i c b a r r i e r i s well-developed a t 1% and optimum at about 2% OLOA-1200, as evidenced by the con­ d u c t i v i t y and v i s c o s i t y measurements of Figures 8 and 13. However i n Table IV we see no i n c r e a s e i n W at 1%, and only a small i n c r e a s e at 2% of d i s p e r s a n t . The value of W increases r a p i d l y at about the same c o n c e n t r a t i o n that the c o n d u c t i v i t y i n c r e a s e s , the counterion c o n c e n t r a t i o n increases and the z e t a p o t e n t i a l i n c r e a s e s . At OLOA-1200 l e v e l s of 3.5% and higher the s t a b i l i t y r a t i o exceeds 5x1ο *, with h a l f - t i m e s i n excess of seven months ; these s t a b i l i t y r a t i o s developed when z e t a - p o t e n t i a l s were -120 mV or more. These f i n d i n g s show that the s t e r i c b a r r i e r provided by the 50 X adsorbed f i l m s was inadequate to d e f l o c c u l a t e the d i s p e r s i o n at a l l , even though i t provided a m i l l i o n times more e l e c t r i c a l r e s i s t a n c e and reduced the v i s c o s i t y very a p p r e c i a b l y . On the other hand, the e l e c t r o s t a t i c b a r r i e r was very e f f e c t i v e i n d e f l o c c u l a t i n g the system, but i t took more d i s p e r s a n t than r

1

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

F O W K E S A N D PUGH

Colloid Properties of Nonaqueous

Dispersions

F i g u r e 1 1 . P o t e n t i a l e n e r g y d i a g r a m f o r two s p h e r i c a l c a r bon b l a c k p a r t i c l e s o f r a d i u s 0.2 ym w i t h Debye l e n g t h s a n d z e t a p o t e n t i a l s d e t e r m i n e d f o r 0.2% and 0.8% s o l u t i o n s o f OLOA-1200 i n o d o r l e s s k e r o s e n e .

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

347

POLYMER ADSORPTION AND DISPERSION STABILITY

348

Table IV.

S t a b i l i t y o f C a r b o n B l a c k i n Dodecane

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

(A) C o n c e n t r a t i o n 3.33 g l " P a r t s OLOA 1200 p e r 100 p a r t s carbon b l a c k 0

Flocculation sedimentation time 6 min 6 min 7 min 9 min 1 .5 h 5 h 24 h >7 months >7 months >7 months >7 months >7 months

k 1 1% 2 2% 3 3k 4 hh 5 6

(B) C o n c e n t r a t i o n 0.33 g l P a r t s OLOA 1200 p e r 100 p a r t s carbon b l a c k 0 k 1 Ik 2 2k 3 3k 4 4% 5

1

W (stability

1 1 1.16 1.5 15 50 2.4xl0 5 xlO >5 xlO*

ratio )

2

>5 >5 >5

4

4

h

xl0 xl0 xl0

k k

1

Flocculation sedimentation time 40 m i n 40 50 m i n 90 m i n 3 h 24 h 2 .5 d a y s 10 d a y s >6 months >6 months >6 months

W (stability

1 1 1.25 2.25 4.5 36 90 3.6xl0 >6 x l O >6 xlO >6 x l O

ratio )

2

3

3

3

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

21.

FOWKES AND PUGH

Colloid Properties of Nonaqueous

Dispersions

349

needed f o r the s t e r i c b a r r i e r to provide the excess i n s o l u t i o n needed to promote counterion formation. The e l e c t r o s t a t i c b a r r i e r i s seen i n F i g u r e 11 to be very s e n s i t i v e to the c o n c e n t r a t i o n of OLOA-1200 l e f t i n s o l u t i o n , with a slope p r o p o r t i o n a l to that c o n c e n t r a t i o n . Concentrations of OLOA-1200 i n s o l u t i o n probably need to exceed 0.1% f o r r e a l l y e f f e c t i v e e l e c t r o s t a t i c d e f l o c c u l a t i o n . Figure 12 compares the s t a b i l i t y r a t i o to the conduct i v i t y (at 12 hours) to i l l u s t r a t e that the s t e r i c b a r r i e r forms i n the 1-2% range of d i s p e r s a n t , but that i n t h i s range so much i s adsorbed that none i s l e f t over to provide counterions i n s o l u t i o n s . At about 4% d i s p e r s a n t the c o n d u c t i v i t y r i s e s as counterions develop,the Debye length decreases and the z e t a p o t e n t i a l climbs to provide a r a p i d i n c r e a s e i n the s t a b i l i t y ratio W. V i s c o s i t y of D i s p e r s i o n s of Carbon Black i n Hydrocarbons

(16)

V i s c o s i t i e s of concentrated suspensions of carbon b l a c k i n a white mineral o i l (Fisher " p a r a f f i n " o i l of 125/135 Saybolt v i s c o s i t y ) were measured with a B r o o k f i e l d viscometer as a f u n c t i o n of OLOA-1200 content. F i g u r e 13 shows the v i s c o s i t i e s of d i s persions with 30 w%, 35 w% and 70 w% carbon b l a c k . In a l l cases the v i s c o s i t y f e l l r a p i d l y as the OLOA-1200 content increased from 0 to 1%, then f e l l more g r a d u a l l y and l e v e l l e d o f f as the OLOA-1200 content approached 2%. In many respects the r e d u c t i o n i n v i s c o s i t y with i n c r e a s i n g OLOA-1200 content p a r a l l e l s the c o n d u c t i v i t y measurements; both phenomena are sensing the b u i l d up of the s t e r i c b a r r i e r , and t h i s s t e r i c b a r r i e r weakens, s o f t e n s , and l u b r i c a t e s the i n t e r p a r t i c l e c o n t a c t s . As evidenced i n foregoing s e c t i o n s , the p a r t i c l e s are s t i l l f l o c c u l a t e d but can be e a s i l y s t i r r e d and separated mechanically. The onset of e l e c t r o s t a t i c r e p u l s i o n at OLOA-1200 contents i n excess of 2.5% did not a f f e c t v i s c o s i t i e s . Sedimentation Volumes of Carbon Black D i s p e r s i o n s i n Kerosene

(14)

In the foregoing s t a b i l i t y measurements the 1-20 ym agglomerates of carbon b l a c k (as received) were broken down to 0.1-1 ym part i c l e s f o r f l o c c u l a t i o n s t u d i e s , but f o r sedimentation s t u d i e s the agglomerates were l e f t i n t a c t and these sedimented r a p i d l y under g r a v i t a t i o n a l f o r c e s . The sediment volume tends to be a measure of p a r t i c l e - p a r t i c l e i n t e r a c t i o n e n e r g i e s . I f these f o r c e s are strong, c o l l i d i n g p a r t i c l e s may s t i c k together t i g h t l y on f i r s t contact and form a very loose voluminous sediment. I f added d i s p e r s a n t reduces the i n t e r a c t i o n energy s u f f i c i e n t l y , p a r t i c l e s may s l i d e past one another under g r a v i t a t i o n a l f o r c e s and form a t i g h t l y - p a c k e d sediment. In the sedimentation s t u d i e s the d i s p e r s i o n s were tumbled i n a r o l l i n g m i l l f o r 25, 50, 75, or 150 hours, allowed to sediment over night and the volumes read. As can be seen i n Figure14 the

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

350

POLYMER ADSORPTION AND DISPERSION STABILITY

PARTS OLOA 1200 DISPERSANT/100 PARTS CARBON BLACK

F i g u r e 12. Comparison o f t h e d i s p e r s a n t c o n c e n t r a t i o n and dependence o f t h e s t a b i l i t y r a t i o W t h e c o n d u c t i v i t y o f c a r b o n b l a c k d i s p e r s i o n s i n dodecane. Reproduced w i t h p e r m i s s i o n from Ref. ( 1 6 ) . Copyright 1983, E l s e v i e r Science Publishers.

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

21.

Colloid Properties of Nonaqueous

FOWKES AND PUGH

Dispersions

351

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

3O0Or

Ql

, I S OLOA 1200

0

, 2

ί3

F i g u r e 1 3 . E f f e c t o f OLOA-1200 c o n c e n t r a t i o n ( p a r t s o f OLOA-1200 p e r 100 p a r t s c a r b o n b l a c k ) o n t h e B r o o k f i e l d v i s c o s i t y ( a t 30 r.p.m.) o f d i s p e r s i o n o f c a r b o n b l a c k i n p a r a f f i n o i l . S q u a r e s - 30 W% c a r b o n b l a c k ; t r i a n g l e s 35 W%; and c i r c l e s 70 W% c a r b o n b l a c k .

AGITATION TtME(fcMfS)

• ι •

, IS

, 1.1

, tl

, M

, 2.S

, 3.1

, 3J

, 4.0

PARTS O L O A 1211/ 111 PARTS CARBON BLACK

F i g u r e 14» S e d i m e n t a t i o n v o l u m e o f 10 W% d i s p e r s i o n s o f c a r b o n b l a c k i n o d o r l e s s k e r o s e n e a s a f u n c t i o n o f OLOA1200 c o n t e n t a n d a g i t a t i o n t i m e . S e d i m e n t a t i o n t i m e was 24 h o u r s . R e p r o d u c e d w i t h p e r m i s s i o n f r o m R e f . ( 1 4 ) . C o p y r i g h t 1983, E l s e v i e r S c i e n c e P u b l i s h e r s .

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

352

POLYMER ADSORPTION AND

DISPERSION STABILITY

sediment volumes i n c r e a s e d q u i t e a p p r e c i a b l y w i t h i n c r e a s e d time o f a g i t a t i o n , p o s s i b l y b e c a u s e t h e a g g l o m e r a t e s became l e s s d e n s e . The most i m p o r t a n t f i n d i n g s a r e t h a t t h e s e d i m e n t v o l u m e s dec r e a s e d w i t h i n c r e a s e d d i s p e r s a n t l e v e l s , as i s a l s o e v i d e n c e d i n t h e p h o t o g r a p h s o f F i g u r e 15 H e r e i t i s s u r p r i s i n g t o see t h a t t h e d e n s e s t s e d i m e n t was f o u n d f o r t h e d i s p e r s i o n w i t h no d i s p e r s a n t , and t h e l e a s t d e n s e w i t h 0.2% o f OLOA-1200, w h i c h a l l o w s o n l y a v e r y s m a l l f r a c t i o n o f an a d s o r b e d m o n o l a y e r . The v e r y v o l u m i n o u s s e d i m e n t s o b t a i n e d a t l o w d i s p e r s a n t l e v e l s w e r e most e a s i l y s t i r r e d , w h i l e the dense sediments o b t a i n e d a t h i g h d i s p e r s a n t l e v e l s w e r e h a r d and d i f f i c u l t t o s t i r . Some f u r t h e r l i g h t may be s h e d on c a r b o n f l o e s t r u c t u r e by t h e e l e c t r o n m i c r o g r a p h s o f F i g u r e 16 s h o w i n g an a p p r e c i a b l e decrease i n f l o e s i z e w i t h increase i n dispersant content ( f o r t h e s u s p e n s i o n s t u m b l e d f o r 150 h o u r s ) . One m i g h t c o n c l u d e t h a t t h e OLOA-1200 was an e f f i c i e n t " g r i n d i n g a i d " Conclusions 1. OLOA-1200, a p o l y b u t e n e s u c c i n a m i d e w i t h a b a s i c a n c h o r i n g g r o u p and a 50 X e x t e n d e d p o l y b u t e n e c h a i n , p r o v i d e d b o t h s t e r i c and e l e c t r o s t a t i c s t a b i l i z a t i o n t o d i s p e r s i o n s ôf c a r b o n b l a c k i n hydrocarbon media. 2. The s t e r i c b a r r i e r d e v e l o p e d upon a d s o r p t i o n o f 1-2% o f t h e d i s p e r s a n t was e v i d e n c e d by a m i l l i o n - f o l d d e c r e a s e i n c o n d u c t i v i t y , a twenty-fold decrease i n v i s c o s i t y , a two-fold i n c r e a s e i n s e d i m e n t v o l u m e , b u t no d e f l o c c u l a t i o n o f any d e g r e e . 3. The e l e c t r o s t a t i c b a r r i e r d e v e l o p e d o n l y a f t e r enough d i s persant adsorbed t h a t a c o n c e n t r a t i o n of d i s s o l v e d d i s p e r s a n t of a b o u t 0.1% o r more r e m a i n e d i n t h e o i l p h a s e , w h e r e c o u n t e r i o n s d e v e l o p e d as e v i d e n c e d by i n c r e a s e d c o n d u c t i v i t y , t h e d e v e l o p m e n t of l a r g e negative z e t a p o t e n t i a l s , s t e e p l y r i s i n g s t a b i l i t y r a t i o s , and c o m p l e t e d e f l o c c u l a t i o n . Acknowledgments The a u t h o r s w i s h t o e x p r e s s t h e i r a p p r e c i a t i o n and t h a n k s t o Dr. V i t t o r i o de N o r a and t h e Diamond Shamrock C o r p o r a t i o n f o r t h e e s t a b l i s h m e n t o f t h e V i t t o r i o de Nora-Diamond Shamrock P o s t D o c t o r a l F e l l o w s h i p s a t Lehigh U n i v e r s i t y , funds from which supported t h i s research p r o j e c t . The Pen Kem 3000 measurements w e r e made by C h r i s t i n a B l o m , a summer s t u d e n t f r o m S t o c k h o l m . The 70% c a r b o n b l a c k v i s c o s i t i e s w e r e m e a s u r e d by D o u g l a s S e i f e r t , a L e h i g h g r a d u a t e s t u d e n t , and s e v e r a l c o n t r i b u t i o n s t o t h e e l e c t r o s t a t i c s t u d i e s w e r e made by Dr. T r i s n o M a k g a w i n a t a , t h e c u r r e n t de Nora-Diamond Shamrock Fellow.

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

F O W K E S AND P U G H

Colloid

Properties of Nonaqueous

Dispersions

353

F i g u r e 15. Photograph o f s e d i m e n t a t i o n o f carbon b l a c k (10 W%) i n o d o r l e s s k e r o s e n e as a f u n c t i o n o f OLOA-1200 content. A g i t a t e d 150 h o u r s , s e d i m e n t e d 24 h o u r s . OLOA1200 c o n t e n t s : ( a ) - 0 , ( b ) - 0 . 2 , ( c ) - 0 . 4 , ( d ) - 0 . 6 , ( e ) - 0 . 8 , ( f ) - 1 . 0 , ( g ) - 1 . 2 , ( h ) - 1 . 4 , ( i ) - 2 . 0 , ( j ) - 2 . 8 , and (k)-4.0 p a r t s OLOA-1200 p e r 100 p a r t s c a r b o n b l a c k . Reproduced w i t h p e r m i s s i o n from R e f . (14) E l s e v i e r S c i e n c e P u b l i s h e r s .

F i g u r e 16. E l e c t r o n m i c r o g r a p h s s h o w i n g f l o e s t r u c t u r e o f c a r b o n b l a c k d i s p e r s e d i n o d o r l e s s k e r o s e n e a f t e r 150 h o u r s of a g i t a t i o n . P a r t s OLOA-1200 p e r 100 p a r t s o f c a r b o n b l a c k : (a)-0, (b)-0.4, (c)-2.0, (d)-4.0. These a r e from samples ( a ) , ( c ) , ( i ) and ( k ) o f F i g u r e 15. Reproduced w i t h p e r m i s s i o n from R e f . ( 1 4 ) . C o p y r i g h t 1983, E l s e v i e r S c i e n c e Publishers.

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

POLYMER ADSORPTION AND DISPERSION STABILITY

Downloaded by UNIV OF GUELPH LIBRARY on September 8, 2012 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch021

354

Literature Cited 1. van der Minne, J. L.; Hermanie, P. H. J. J. Colloid Sci. 1952, 7, 600. 2. van der Minne, J. L.; Hermanie, P. H. J. J. Colloid Sci. 1953, 8, 38. 3. Fowkes, F. M.; Disc. Faraday Soc. 1966, 42, 246. 4. Tamaribuchi, K.; Smith, M. L., J. Colloid Interface Sci. 1966, 22, 404. 5. Fowkes, F. M.; Jinnai, H.; Mostafa, Μ Α.; Anderson, F. W.; Moore, R. J . , in "Colloids and Surfaces in Reprographic Technology"; Hair, M.; Croucher, M. D., Eds.; ACS SYMPOSIUM SERIES No. 200, American Chemical Society: Washington, D. C., 1982, p 307. 6. Heller, W.; Pugh, T. J. Poly. Sci. 1960, 47, 203-219. 7. Hamaker, H. C., Physica 1937, 4, 1068. 8. Parsegian, V. Α., in "Physical Chemistry: Enriching Topics from Colloid and Surface Science", van Olphen & Mysels, Eds.; Theorex, La Jolla, CA., 1975, p 27. 9. Gregory, J., Adv. Colloid Interface Sci. 1970, 2, 396. 10. Clayfield, E. J . ; Lumb, E. C.; Mackey, P. Η., J. Colloid Interface Sci. 1971, 37, 382. 11. Achorn, P. Ph.D. Thesis, Lehigh University, Bethlehem, PA., 1970. 12. de Hek, H.; Vrij, Α., J. Colloid Interface Sci. 1981, 79, 289. 13. Shaw, D. J. "Introduction to Colloid and Surface Chemistry", Butterworths, London, 1966, p 211. 14. Pugh, R. J.; Fowkes, F. M. submitted to Colloids and Surfaces 1983. 15. Fowkes, F. M. J. Phys. Chem. 1962, 66, 385. 16. Pugh, R. J . ; Matsunaga, T.; Fowkes, F. M. "Colloids and Surfaces", in press, 1983. 17. Sichel, E. K.; Gittleman, G. I.; Sheng, P. in "Carbon-BlackPolymer Composites. The Physics of Electrically Conducting Composites", Sichel, Ε. Κ., Ed., Dekker, 1982, p 51-77. 18. Huckel, E. Phys. Z. 1924, 25, p 204. 19. Deryagin, Β. V.; Landau, L. D. Acta Physicochim URSS, 1941 14, 633. 20. Klinkenburg, Α.; van der Minne, J. L. "Electrostatics in the Petroleum Industry", Elsevier, 1958, p 40. RECEIVED October 19, 1983

In Polymer Adsorption and Dispersion Stability; Goddard, E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.