Structural and Magnetic Properties of Dicopper (II) Complexes of

Albert Escuer, Gina Vlahopoulou, Spyros P. Perlepes, Mercé Font-Bardia, Teresa Calvet. Dinuclear ... Spin frustration in a Cu(ii)3 triangle frustrate...
0 downloads 0 Views 204KB Size
Inorg. Chem. 1998, 37, 3217-3229

3217

Structural and Magnetic Properties of Dicopper(II) Complexes of Polydentate Diazine Ligands Laurence K. Thompson,*,† Zhiqiang Xu,† Andre´ s E. Goeta,‡ Judith A. K. Howard,‡ Howard J. Clase,† and David O. Miller† Departments of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X7, Canada, and University of Durham, Durham DH1 3LE, U.K. ReceiVed December 3, 1997

A series of dinuclear copper(II) complexes of three polydentate diazine ligands (PAHAP, PHMAP, and PAHOX) is reported. The PAHAP and PHMAP complexes involve tetradentate ligand coordination with an N-N bridge between the metal centers. For PAHOX, one case involves oxime (N-O) bridges, while, in another, µ2-SO4 bridges are present. Free rotation of the copper magnetic planes around the N-N bond occurs for the PAHAP complexes and is influenced by secondary ligand steric effects (cis), but, for PHMAP, additional coordination fixes the complex in a trans configuration. Preliminary structures are reported for [Cu2(PAHAP)(NCS)4(DMF)2]‚2DMF (1) and [Cu2(PAHAP)(bipy)2(NO3)2](NO3)2‚4H2O (2), and full structures are reported for [Cu2(PAHAP)(aln)2(H2O)2](NO3)2‚3H2O (3), [Cu2(PAHAP)(gly)2(NO3)(H2O)](NO3)‚3H2O (4), [Cu2(PHMAP-H)(NO3)3(H2O)(MeOH)] (6), [Cu2(PAHOX-H)2](ClO4)2 (7), and [Cu(PAHOX)(SO4)]2‚2H2O (8). Complex 3 crystallized in the triclinic system, space group P1h (No. 2), with a ) 17.503(4) Å, b ) 18.378(4) Å, c ) 10.742(4) Å, R ) 93.44(3)°, β ) 93.19(3)°, γ ) 62.98(2)°, and Z ) 4. Complex 4 crystallized in the triclinic system, space group P1h, with a ) 11.506(12) Å, b ) 12.525(18) Å, c ) 10.319(4) Å, R ) 94.47(7)°, β ) 106.58(5)°, γ ) 114.55(9)°, and Z ) 2. Complex 6 crystallized in the triclinic system, space group P1h, with a ) 7.4754(1) Å, b ) 8.7430(1) Å, c ) 17.9942(2) Å, R ) 84.690(1)°, β ) 83.190(1)°, γ ) 66.885(1)°, and Z ) 2. Complex 7 crystallized in the monoclinic system, space group C2/c, with a ) 33.5849(6) Å, b ) 7.6016(1) Å, c ) 22.6654(3) Å, β ) 106.949(1)°, and Z ) 8. Complex 8 crystallized in the monoclinic system, space group P21/n, with a ) 9.866(2) Å, b ) 10.128(2) Å, c ) 15.418(1) Å, β ) 108.051(8)°, and Z ) 4. Antiferromagnetic exchange for 1, 3, 4, and 6 (-2J ) 51.1, 45.6, 1.5, and 208 cm-1, respectively) is consistent with the angle of rotation (R) of the copper magnetic planes about the N-N bond. A linear relationship is found between R and 2J for a combined series of nine related complexes over an angle range of 105°. An estimate of the inherent ferromagnetism in the system is obtained from magnetic measurements close to the calculated angle of accidental orthogonality (2J ) 27 cm-1).

Introduction N2 diazine bridging ligands, e.g., pyrazoles, triazoles, pyridazines, and phthalazines, bring two metal centers into close proximity and provide an intramolecular pathway for spinexchange interactions, which are exclusively antiferromagnetic in nature.1-16 The N-N group has varying degrees of double * Corresponding author. Fax: 709-737-3702. E-mail: lthomp@ morgan.ucs.mun.ca. † Memorial University. ‡ University of Durham. (1) Kamiusuki, T.; O h kawa, H.; Matsumoto, N.; Kida, S. J. Chem. Soc., Dalton Trans. 1990, 195. (2) Bayon, J. C.; Esteban, P.; Net, G.; Rasmussen, P. G.; Baker, K. N.; Hahn, C. W.; Gumz, M. M. Inorg. Chem. 1991, 30, 2572. (3) Pons, J.; Lo´pez, X.; Casabo´, J.; Teixidor, F.; Caubet, A.; Ruis, J.; Miravitlles, C. Inorg. Chim. Acta 1992, 195, 61. (4) Bencini, A.; Gatteschi, D.; Zanchini, C.; Haasnoot, J. G.; Prins, R.; Reedijk, J. Inorg. Chem. 1985, 24, 2812. (5) Koomen-van Oudenniel, W. M. E.; de Graff, R. A. G.; Haasnoot, J. G.; Prins, R.; Reedijk, J. Inorg. Chem. 1989, 28, 1128. (6) van Koningsbruggen, P. J.; Gatteschi, D.; de Graff, R. A. G.; Haasnoot, J. G.; Reedijk, J.; Zanchini, C. Inorg. Chem. 1995, 34, 5175. (7) Prins, R.; Birker, P. J. M. W. L.; Haasnoot, J. G.; Verschoor, G. C.; Reedijk, J. Inorg. Chem. 1985, 24, 4128. (8) Slangen, P. M.; van Koningsbruggen, P. J.; Haasnoot, J. G.; Jansen, J.; Gorter, S.; Reedijk, J.; Kooijman, H.; Smeets, W. J. J.; Spek, A. L. Inorg. Chim. Acta 1993, 212, 289.

bond character in these ligands, which is reflected in the extent of exchange coupling, but is rigidly fixed within the five- or six-membered diazine ring. The ligands PAHAP (picolinamide azine),17 PMHAP,18 and PHMAP (Figure 1a), which are derived from hydrazine and contain a single N-N bond, present several possible mononucleating and dinucleating coordination modes and, also, the potential for free rotation about the N-N bond. A related ligand (PAHOX, Figure 1a) involves a terminal oxime fragment, which can dominate the coordination mode of the (9) Abraham, F.; Lagrenee, M.; Sueur, S.; Mernari, B.; Bre´mard, C. J. Chem., Soc., Dalton Trans. 1991, 1443. (10) Mandal, S. K.; Thompson, L. K.; Newlands, M. J.; Lee, F. L.; LePage, Y.; Charland, J.-P.; Gabe, E. J. Inorg. Chim. Acta 1986, 122, 199. (11) Thompson, L. K.; Mandal, S. K.; Charland, J.-P.; Gabe, E. J. Can. J. Chem. 1988, 66, 348. (12) Tandon, S. S.; Thompson, L. K.; Hynes, R. C. Inorg. Chem. 1992, 31, 2210. (13) Chen, L.; Thompson, L. K.; Bridson, J. N. Inorg. Chem. 1993, 32, 2938. (14) Thompson, L. K.; Tandon, S. S.; Manuel, M. E. Inorg. Chem. 1995, 34, 2356. (15) Tandon, S. S.; Thompson, L. K.; Manuel, M. E.; Bridson, J. N. Inorg. Chem. 1994, 33, 5555. (16) van Koningsbruggen, P. J.; Haasnoot, J. G.; de Graff, R. A. G.; Reedijk, J.; Slingerland, S. Acta Crystallogr. 1992, C48, 1923. (17) Case, F. H. J. Heterocycl. Chem. 1970, 7, 1001. (18) Xu. Z.; Thompson, L. K.; Miller, D. O. Inorg. Chem. 1997, 36, 3985.

S0020-1669(97)01519-X CCC: $15.00 © 1998 American Chemical Society Published on Web 05/30/1998

3218 Inorganic Chemistry, Vol. 37, No. 13, 1998

Figure 1. Diazine ligands and general bonding model.

ligand and generate NO-bridged dimers. In a recent paper, both PAHAP and PMHAP have been shown to coordinate to two copper(II) centers as N4 donors, with a variety of geometrical arrangements which depend on coligands and reaction conditions (Figure 1b).18 The complexes [Cu2(PAHAP)X4]‚H2O (X ) Cl, Br) have pseudo-cis structures with dihedral angles between the copper planes of 2.0σ(Inet). The intensities of three representative reflections, which were measured after every 150 reflections, remained constant throughout the data collection, indicating crystal and electronic stability (no decay correction was applied). Azimuthal scans of several reflections indicated no need for an absorption correction. The data were corrected for Lorentz and polarization effects. The cell parameters were obtained from the least-squares refinement of the setting angles of 20 carefully centered reflections with 2θ in the range 34.31-40.51°. The structure was solved by direct methods.35,36 All atoms except hydrogens were refined anisotropically. Hydrogen atoms were optimized by positional refinement, with isotropic thermal parameters set 20% greater than those of their bonded partners at the time of their inclusion. However, they were fixed for the final round of refinement. The final cycle of full-matrix least-squares refinement was based on 1986 observed reflections (I > 2.00σ(I)) and 209 variable parameters and converged with unweighted and weighted agreement factors of ∑||Fo| - |Fc||/∑|Fo| ) 0.035 and Rw ) [(∑w(|Fo| - |Fc|)2/∑wFo2)]1/2 (31) Siemens. SMART Data Collection Software, Ver. 4.050; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1996. (32) Siemens. SAINT Data Reduction Software, Version 4.050; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1996. (33) (a) Sheldrick, G. M. SHELXTL 5.04/VMS, An integrated system for solVing, refining and displaying crystal structures from diffraction data; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1995. (b) Sheldrick, G. M. SHELX-97, A software package for the solution and refinement of X-ray data; University of Go¨ttingen: Go¨ttingen, Germany, 1997. (34) Sheldrick, G. M. SADABS, Empirical Absorption Correction Program; University of Go¨ttingen: Go¨ttingen, Germany, 1996. (35) Gilmore, C. J. J. Appl. Crystallogr. 1984, 17, 42. (36) Beurskens, P. T. DIRDIF; Technical Report 1984/1, Crystallography Laboratory, Toernooiveld, 6525 Ed Nijmegen, The Netherlands, 1984.

3220 Inorganic Chemistry, Vol. 37, No. 13, 1998

Thompson et al.

Table 1. Summary of Crystallographic Data for [Cu2(PAHAP)(aln)2(H2O)2](NO3)2‚3H2O (3), [Cu2(PAHAP)(gly)2(NO3)(H2O)](NO3)‚3H2O (4) [Cu2(PHMAP-H)(NO3)3(H2O)(MeOH)] (6), [Cu2(PAHOX-H)2](ClO4)2 (7), and [Cu(PAHOX)(SO4)]2‚2H2O (8) emp formula formula wt space group a (Å) b (Å) c (Å) R (deg) β (deg) γ (deg) V (Å3) Fcalcd (g cm-3) Z µ λ (Å) T (K) R1 (R)c wR2 (Rw)c

3a

4a

6b

7b

8a

C18H40Cu2N10O15 763.66 P1h 17.503 (4) 18.378 (4) 10.742 (4) 93.44 (3) 93.19 (3) 62.98 (2) 3071 (2) 1.652 4 1.469 mm-1 0.710 69 299 (2) 0.060 (R) 0.048 (Rw)

C16H24Cu2N10O12 675.53 P1h 11.506 (12) 12.525 (18) 10.319 (4) 94.47 (7) 106.58 (5) 114.55 (9) 1263 (2) 1.776 2 1.765 mm-1 0.710 69 299 (2) 0.0538 0.1257

C14H18Cu2N8O11 601.44 P1h 7.4754 (1) 8.7340 (1) 17.9942 (2) 84.690 (1) 83.190 (1) 66.885 (1) 1071.54 (2) 1.864 2 2.062 mm-1 0.710 73 150 (2) 0.0483 0.1038

C20H24Cl2Cu2N10O10 762.47 C2/c 33.5849 (6) 7.6016 (1) 22.6654 (3) 90 106.949 (1) 90 5535.1 (1) 1.830 8 1.804 mm-1 0.710 73 150 (2) 0.0465 0.0753

C10H15CuN5O6S6 396.86 P21/n (No. 14) 9.866 (2) 10.128 (2) 15.418 (1) 90 108.051 (8) 90 1464.7 (3) 1.800 4 16.68 cm-1 0.710 69 299 (1) 0.035 (R) 0.033 (Rw)

a Rigaku data. b Siemens Smart data. c R ) ∑|F | - |F |/∑|F |, wR ) [∑[w(|F |2 - |F |2)2]/∑[w(|F |2)2]]1/2. R ) ∑|F | - |F |/∑|F |, R ) 1 o c o 2 o c o o c o w [(∑w(|Fo| - |Fc|)2/∑wFo2)]1/2.

Table 2. Final Atomic Positional Parameters and B(eq) for Significant Atoms in [Cu2(PAHAP)(aln)2(H2O)2](NO3)2‚3H2O (3) atom

x

y

z

B (eq)a

atom

x

y

z

B (eq)a

Cu(1) Cu(2) Cu(3) Cu(4) O(1) O(2) O(3) O(4) O(5) O(6) O(7) O(8) O(9) O(10) O(11) O(12) O(13) O(14) O(15) O(16) O(17) O(18) O(19) O(20) O(21) O(22) O(23) O(24) O(25) O(26) O(27) O(28) O(29) O(30) O(31) O(32) N(1) N(2) N(3) N(4) N(5) N(6) N(7) N(8) N(9) N(10) N(11)

0.15346(4) 0.39555(4) 0.59930(4) 0.84156(4) 0.0310(2) -0.0688(2) 0.4636(2) 0.4577(2) 0.1393(2) 0.3294(2) 0.5340(2) 0.5468(2) 0.9626(2) 1.0550(2) 0.6639(3) 0.8597(2) 0.8409(3) 0.8626(3) 0.7418(2) 0.2544(3) 0.1540(3) 0.1345(3) 0.6846(3) 0.6678(4) 0.6114(4) 0.1893(6) 0.3009(3) 0.2932(3) 0.4105(4) 0.9303(3) 0.7531(3) 0.5883(2) 0.4308(4) 0.0958(3) 0.1784(2) 0.8122(3) 0.1423(2) 0.3707(2) 0.2760(2) 0.3472(2) 0.3639(2) 0.4745(2) 0.1606(2) 0.3213(2) 0.5195(2) 0.6281(2) 0.6476(2)

0.28979(4) 0.06327(4) 0.43538(4) 0.21037(4) 0.3437(2) 0.3718(2) -0.0499(2) -0.1447(2) 0.1765(2) 0.0150(2) 0.5522(2) 0.6572(2) 0.1566(2) 0.1294(2) 0.4686(3) 0.3246(2) 0.0662(2) -0.0428(2) 0.0652(2) 0.4331(3) 0.4362(3) 0.5362(3) 0.3202(3) 0.2174(3) 0.3116(3) 0.2152(7) 0.2280(3) 0.1795(3) 0.2408(5) 0.3123(3) 0.3455(3) 0.1600(2) 0.3446(4) 0.1822(3) 0.0865(2) 0.4262(3) 0.3425(2) 0.2408(2) 0.2452(2) 0.1818(2) 0.2816(2) 0.0611(2) 0.2584(2) 0.0700(2) 0.4316(2) 0.2121(2) 0.3157(2)

0.64009(5) 0.62115(5) 0.89280(5) 0.87676(5) 0.6643(3) 0.8005(3) 0.5609(3) 0.4295(3) 0.5318(3) 0.7530(3) 0.9348(3) 1.0252(3) 0.8399(3) 0.6922(3) 0.7173(4) 0.9709(3) 0.7877(4) 0.8823(4) 0.8928(4) 0.6484(4) 0.7413(5) 0.6313(5) 0.5072(5) 0.4721(4) 0.3488(4) 0.1169(8) 0.0504(4) 0.2199(4) 0.1884(5) 0.2173(4) 0.2501(5) 0.2726(3) 0.2695(6) 0.2746(4) 0.8733(3) 0.6080(4) 0.4788(3) 0.4543(3) 0.6023(3) 0.6624(3) 0.7894(3) 0.7636(3) 0.8180(3) 0.4723(3) 0.7586(3) 0.7565(3) 0.8655(3)

2.76(1) 2.56(1) 2.72(1) 2.96(1) 3.46(8) 6.2(1) 2.79(7) 3.32(8) 3.29(9) 4.62(9) 2.82(7) 4.32(8) 3.55(8) 5.7(1) 8.5(1) 3.51(9) 6.0(1) 6.9(1) 6.8(1) 7.8(1) 9.9(2) 8.8(2) 11.2(2) 11.6(2) 11.2(2) 9.4(3) 10.1(2) 8.3(1) 7.8(2) 8.8(1) 2.9(1) 6.28(9) 5.2(2) 8.8(1) 6.3(1) 8.0(1) 2.41(8) 3.08(9) 2.28(7) 2.44(8) 3.59(9) 2.38(8) 3.39(9) 2.72(8) 2.56(8) 3.20(9) 2.26(7)

N(12) N(13) N(14) N(15) N(16) N(17) N(18) N(19) N(20) N(21) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(28) C(29) C(30) C(31) C(32) C(33) C(34) C(35) C(36)

0.7202(2) 0.6321(2) 0.8593(2) 0.6821(2) 0.8273(2) 0.8155(3) 0.1805(3) 0.6531(4) 0.2619(6) 0.3518(6) 0.0691(3) 0.0674(3) 0.1427(3) 0.2193(3) 0.2164(3) 0.2931(3) 0.3845(3) 0.4571(3) 0.5050(3) 0.5714(3) 0.5876(3) 0.5373(3) 0.0076(3) 0.0783(4) 0.0720(5) 0.4253(3) 0.3369(3) 0.2685(3) 0.4586(3) 0.4095(3) 0.4246(3) 0.4888(3) 0.5350(3) 0.6076(3) 0.7074(3) 0.7863(3) 0.7867(3) 0.8654(4) 0.9403(3) 0.9347(3) 0.5770(3) 0.6671(3) 0.7316(3) 0.9810(3) 0.9053(4) 0.9088(5)

0.2557(2) 0.2554(3) 0.1558(2) 0.4393(2) 0.2470(2) 0.0299(3) 0.4717(4) 0.2836(4) 0.2102(6) 0.2079(7) 0.3964(3) 0.4370(3) 0.4237(3) 0.3678(3) 0.3281(3) 0.2670(3) 0.2049(3) 0.1353(3) 0.1449(3) 0.0746(3) -0.0004(3) -0.0048(3) 0.3444(3) 0.3099(4) 0.3619(7) -0.0742(3) -0.0144(3) -0.0326(3) 0.4950(3) 0.4866(3) 0.4095(3) 0.3428(3) 0.3554(3) 0.2900(3) 0.2317(3) 0.1712(3) 0.1320(3) 0.0753(3) 0.0602(3) 0.1017(3) 0.5826(3) 0.5254(3) 0.5429(4) 0.1592(3) 0.1941(4) 0.1732(9)

0.9250(3) 1.0804(3) 1.0383(3) 1.0209(3) 0.7041(3) 0.8527(5) 0.6749(6) 0.4427(6) 0.1211(8) 0.1593(8) 0.4256(4) 0.3206(4) 0.2708(4) 0.3268(4) 0.4307(4) 0.4990(4) 0.7539(4) 0.8161(4) 0.9170(4) 0.9661(4) 0.9144(4) 0.8138(4) 0.7743(5) 0.8742(6) 0.9687(8) 0.4767(4) 0.4296(5) 0.4589(6) 0.7021(4) 0.6016(5) 0.5588(5) 0.6167(4) 0.7149(4) 0.7823(4) 1.0303(4) 1.0961(4) 1.2010(4) 1.2486(4) 1.1918(5) 1.0862(4) 0.9979(4) 1.0440(5) 0.9905(7) 0.7297(5) 0.6360(5) 0.5292(7)

2.16(7) 4.2(1) 2.72(8) 2.89(9) 3.63(9) 4.7(1) 6.2(1) 7.3(2) 8.4(3) 8.6(3) 3.4(1) 3.6(1) 3.7(1) 3.1(1) 2.3(1) 2.19(9) 2.39(9) 2.46(9) 3.1(1) 3.3(1) 3.2(1) 2.9(1) 4.0(1) 6.7(2) 19.9(4) 2.50(9) 3.7(1) 6.9(2) 3.6(1) 4.5(1) 4.6(1) 3.5(1) 2.50(9) 2.32(9) 2.5(1) 2.7(1) 3.8(1) 4.2(1) 4.3(1) 3.5(1) 2.7(1) 4.0(1) 7.7(2) 3.7(1) 6.5(1) 31.6(5)

a

3 3 B(eq) ) (8π2/3)∑i)1 Σj)1 Uijaiajb ai‚a bj.

Dicopper(II) Complexes of Diazine Ligands

Inorganic Chemistry, Vol. 37, No. 13, 1998 3221

Table 3. Final Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2 × 103) for Significant Atoms in [Cu2(PAHAP)(gly)2(NO3)(H2O)](NO3)‚3H2O (4)

Table 4. Final Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2 × 103) for Significant Atoms in [Cu2(PHMAP-H)(NO3)3(H2O)(MeOH)] (6)

atom

x

y

z

U(eq)a

atom

x

y

z

U(eq)a

Cu(1) Cu(2) N(1) N(2) N(3) N(4) N(5) N(6) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) O(1) O(2) N(7) C(13) C(14) O(3) O(4) N(8) C(15) C(16) N(20) O(21) O(22) O(23) N(30) O(31) O(32) O(33) O(50) N(40) O(41) O(42) O(43) O(60) O(70)

10085(1) 9189(1) 12085(5) 10640(5) 12511(5) 9575(6) 9788(5) 8115(5) 12752(7) 14121(8) 14858(8) 14210(7) 12815(6) 11942(6) 9265(6) 8267(6) 7523(7) 6609(8) 6458(7) 7224(7) 9719(5) 8113(5) 8091(5) 7496(7) 8497(7) 8741(5) 8766(4) 10244(5) 9785(8) 9047(6) 3758(8) 2813(7) 4931(7) 3441(9) 10000 9746(13) 10220(16) 9067(14) 7244(7) 5000 4360(10) 5880(5) 5310(3) 15170(3) 6850(3)

738(1) 3392(1) 1360(5) 2477(4) 4392(5) 3120(5) 3028(5) 3883(5) 700(7) 1185(7) 2398(8) 3120(7) 2568(6) 3202(5) 3256(6) 3717(5) 3958(7) 4372(7) 4532(7) 4280(6) -875(4) -2776(4) 54(5) -1269(6) -1704(6) 4041(4) 3960(4) 2895(5) 2943(6) 3704(6) 3252(6) 2277(6) 3484(9) 4064(6) 0 446(10) -177(14) 375(11) 1483(6) 0 -30(12) 750(3) 990(2) -1074(16) -110(2)

6716(1) 8741(1) 7446(5) 7250(5) 7964(5) 4896(5) 7212(5) 7257(5) 7663(7) 8318(9) 8726(8) 8488(7) 7867(6) 7675(5) 6017(6) 6012(6) 4869(6) 5000(7) 6265(7) 7362(6) 5946(4) 5307(5) 6205(6) 5944(8) 5704(6) 10222(4) 12365(4) 10220(5) 11425(6) 11349(6) 1325(6) 1094(8) 1786(7) 972(7) 10000 9022(10) 8966(13) 9920(2) 8144(7) 5000 5770(4) 4600(7) 5610(4) 8047(18) 9420(3)

30(1) 26(1) 30(1) 25(1) 34(1) 39(1) 26(1) 28(1) 42(2) 51(2) 49(2) 37(2) 27(1) 25(1) 28(1) 27(1) 40(2) 46(2) 44(2) 33(2) 36(1) 41(1) 43(2) 41(2) 31(2) 35(1) 37(1) 32(1) 38(2) 27(1) 50(2) 91(2) 113(3) 93(2) 63(3) 50(3) 74(4) 101(6) 89(2) 128(13) 280(4) 190(3) 114(10) 204(10) 128(10)

Cu(1) Cu(2) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13) C(14) N(1) N(2) N(3) N(4) N(5) N(7) N(8) O(1) O(2) O(6) O(7) O(8) O(9) O(10) O(11) O(31) N(61) O(41) O(51) O(32) N(62) O(42) O(52)

-3829(1) -8609(1) -4854(7) -5849(7) -7308(6) -7732(6) -6710(5) -7128(5) -5993(6) -6895(5) -9259(6) -8712(6) -7241(6) -6334(6) -10933(6) -6506(10) -5277(5) -8364(6) -6067(5) -6620(4) -8325(5) -7666(5) -12189(5) -2089(4) -4736(6) -9083(4) -7870(5) -6192(5) -11802(4) -10908(5) -13760(5) -1821(16) -585(9) -787(7) 756(7) -1466(66) 99(29) -184(25) 1647(23)

11927(1) 16626(1) 12130(5) 12926(5) 14494(5) 15230(5) 14360(5) 14981(4) 13547(5) 14436(5) 16865(5) 16243(5) 14688(5) 13748(5) 18502(5) 10259(8) 12831(4) 16410(5) 13799(4) 14386(4) 15984(4) 19406(4) 15995(4) 12010(4) 10135(5) 19105(3) 20859(4) 18205(4) 17301(3) 14643(4) 16083(4) 9959(11) 10356(6) 11837(6) 9198(5) 10247(43) 10695(22) 12144(22) 9589(17)

3222(1) 2061(1) 4894(2) 5537(2) 5474(2) 4765(2) 4146(2) 3356(2) 1563(2) 880(2) 384(2) -332(2) -429(2) 186(2) 518(2) 3001(4) 4206(2) 3143(2) 2854(2) 2151(2) 978(2) 1503(2) 2400(2) 2293(2) 2808(2) 1903(1) 1348(2) 1288(2) 2268(2) 2184(2) 2722(2) 3677(6) 3986(3) 3973(3) 4282(2) 3673(25) 3750(10) 3692(10) 3906(8)

28(1) 26(1) 32(1) 34(1) 32(1) 26(1) 22(1) 20(1) 24(1) 20(1) 24(1) 28(1) 29(1) 25(1) 32(1) 67(2) 26(1) 28(1) 23(1) 20(1) 23(1) 27(1) 26(1) 28(1) 51(1) 26(1) 43(1) 45(1) 26(1) 43(1) 42(1) 36(2) 32(1) 39(1) 43(1) 36(2) 32(1) 39(1) 43(1)

aU(eq) is defined as one-third the trace of the orthogonalized U ij tensor.

) 0.033. The maximum and minimum peaks on the final difference Fourier map correspond to 0.39 and -0.45 electrons Å-3 respectively. Neutral atom scattering factors37 and anomalous dispersion terms38,39 were taken from the usual sources. All calculations were performed with the TEXSAN40 crystallographic software package using a VAX 3100 work station. Crystal data collection and structure refinement for 3 were carried out in a similar manner. The data for 4 were collected as for 3, a ψ-scan absorption correction being applied. The structure was solved by direct methods and refined on F2 using the SHELX-97 package running on DOS 6.22.33b Abbreviated crystal data are given in Table 1, and significant atomic positional parameters are given in Tables 2 (3), 3 (4) and 6 (8). A full listing of experimental and crystal data (Table S1), full listings of atomic positional parameters (Tables (37) Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, U.K., 1974; Vol. IV, Table 2.2A. (38) Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1974, 17, 781. (39) Cromer, D. T. International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, U.K., 1974; Vol. IV, Table 2.3.1. (40) Texsan-Texray Structure Analysis Package; Molecular Structure Corp.: The Woodlands, TX, 1985.

a U(eq) is defined as one-third of the trace of the orthogonalized U ij tensor.

S2, S3, and S6, respectively), anisotropic thermal parameters (Tables S7, S8, and S11, respectively), and full listings of bond distances and angles (Tables S12, S13, and S16, respectively) are included as Supporting Information.

Results and Discussion Structures. [Cu2(PAHAP)(NCS)4(DMF)2]‚2.16H2O (1). The preliminary structural representation of 1 is illustrated in Figure 2. The dinuclear complex has a twisted structure, with the two copper(II) square pyramids bridged by the N-N diazine unit. Two isothiocyanates are bound in positions cis to the copper basal planes, with two PAHAP nitrogens occupying the other basal sites. The NH2 groups on PAHAP remain uncoordinated. Equatorial Cu-N distances are quite short (