Structural Features Promoting Water Solubility in Carbohydrate

len by caustic and water. The placement of one-unit .... greater or lesser frequency, aqueous solubility is decreased (29). At moderate molecular weig...
0 downloads 0 Views 3MB Size
1 Structural Features Promoting Water Solubility in Carbohydrate Polymers J. E. Glass

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

Department of Polymers and Coatings, N o r t h D a k o t a State University, F a r g o , ND 58105

Although a large variety of carbohydrate polymers have a multitude of industrial uses, most carbohydrate polymers have limited applicability across a wide spectrum of applications. The structural features affecting water solubility in carbohydrate polymers are discussed. Methods of derivatizing the world's most abundant polymer, cellulose, are presented, and derivatization processes are compared with the complexities of synthesizing polymers by fermentation processes. On the basis of three criteria, (1) the parameters promoting solubility, (2) the known limitations of commercially available products, and (3) the solubility trends observed in a limited number of thoroughly investigated carbohydrate polymers, projections of what might be achieved with a structurally designed carbohydrate polymer, obtained from variations in the repeating unit and anomeric and positional bonding patterns, are postulated.

T H E C H E M I S T R Y O F C A R B O H Y D R A T E P O L Y M E R S is a n i n f r e q u e n t s u b ject i n college curricula. These macromolecules c a n b e a p p r o p r i a t e l y i n t r o d u c e d w i t h t h e c h e m i s t r y ( J , 2) o f the s i m p l e t h r e e - c a r b o n m o l e c u l e , g l y c e r a l d e h y d e , w h i c h is the m o n o m e l i c p r o t o t y p e f o r p o l y s a c c h a r i d e s . T h e m i d d l e c a r b o n is a s y m m e t r i c (i.e., f o u r d i f f e r e n t g r o u p s a r e b o n d e d t o the c e n t e r c a r b o n ) ; the t w o o p t i c a l i s o m e r s (dist i n g u i s h e d b y the d i r e c t i o n i n w h i c h t h e y r o t a t e p l a n e - p o l a r i z e d l i g h t ) that r e s u l t a r e i l l u s t r a t e d i n s t r u c t u r e I. I n the d e x t r o r o t a t o r y c o m p o u n d , d e s i g n a t e d b y a D p r e f i x , the h y d r o x y l g r o u p is p l a c e d to the right o f the a s y m m e t r i c c a r b o n ( C * ) w i t h the a l d e h y d e g r o u p p o s i t i o n e d a b o v e . I n t h e l e v o r o t a t o r y c o m p o u n d ( L p r e f i x ) , the h y d r o x y l f u n c t i o n is p l a c e d t o the l e f t o f the a s y m m e t r i c c a r b o n a t o m . A s a d d i t i o n a l c a r b o n s ( w i t h t h e i r h y d r o x y l f u n c t i o n s ) a r e a d d e d to this t h r e e - c a r b o n m o l e c u l e , t h e n u m b e r o f i s o m e r s increases b y 2", w h e r e n is t h e n u m b e r o f a s y m m e t r i c c a r b o n s . T h e D o r L c l a s s i f i c a t i o n c o n t i n u e s t o a p p l y to the 0(W5-2393/86/0213-0003$07.25/0 ® 1986 American Chemical Society

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

4

W A T E R - S O L U B L E POLYMERS

s e c o n d to last c a r b o n i n the s t r u c t u r a l f o r m u l a , r e g a r d l e s s o f the n u m b e r o f c a r b o n s i n the m o l e c u l e . T h e s a c c h a r i d e s a r e p o l y h y d r o x y l i c c o m p o u n d s w i t h a p e n d a n t c a r b o n y l g r o u p a n d c a n b e r e p r e s e n t e d b y the f o r m u l a ( C H 0 ) „ . P e n t o s e s (n = 5) a n d hexoses (n = 6) a r e t h e m o s t a b u n d a n t ; the s i x - c a r b o n m o l e c u l e s are the m o s t i m p o r t a n t i n d u s t r i a l class. T h e l a r g e n u m b e r o f a s y m m e t r i c c a r b o n a t o m s g i v e s rise to 16 p o s s i b l e h e x o s e i s o m e r s (half a r e o f t h e D c o n f i g u r a t i o n , C h a r t I , a n d the r e m a i n d e r a r e o f the L c o n f i g u r a t i o n ) . 2

S u g a r s exist as c y c l i c s t r u c t u r e s i n w h i c h s i x - m e m b e r e d p y r a n o s e r i n g s a r e f a v o r e d o v e r f i v e - m e m b e r e d f u r a n o s e r i n g s . O p e n - c h a i n , free sugars h a v e n o t b e e n i s o l a t e d , b u t s o m e sugars h a v e b e e n d e t e c t e d i n trace amounts in solution e q u i h b r i u m w i t h their closed, ring forms. T h e c l o s e d , r i n g - f o r m sugars a r i s e b y i n t e r n a l c o n d e n s a t i o n o f a h y d r o x y l

CHO H-C-OH

CHO HO-C-H

CHO H-C-OH HO-C-H

CHO HO-C-H HO-C-H

H-C-OH

H-C-OH

H-C-OH

H-C-OH

H-C-OH

H-6-0H

H-C-OH

H-C-OH

H-C-OH

H-C-OH

I

C H OH 2

Allose CHO H-C-OH H-C-OH HO-C-H H-^-OH

C H OH 2

Gulose

C H OH 2

Altrose CHO

C H OH 2

Glucose CHO H-C-OH

CH OH 2

Mannose CHO HO-C-H

HO-C-H I H-C-OH

HO-C-H

HO-C-H

HO-C-H

HO-C-H

HO-C-H

I

H-C-OH

I

C H OH 2

Idose

H-C-OH

I

C H OH 2

Galactose

I

H-C-OH CH OH 2

Talose

Chart I. D isomers of hexose.

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

1.

GLASS

Water Solubility in Carbohydrate Polymers

5

Scheme I. Equilibrium between D-glucose and a-D-glucopyranose (ring form; shown in the Haworth projection).

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

g r o u p w i t h t h e e a r b o n y l m o i e t y to f o r m a n a c e t a l g r o u p . C y c l i z a t i o n c r e ates a n a d d i t i o n a l a s y m m e t r i c c e n t e r at the r e a c t i v e c a r b o n p o s i t i o n , n o w designated the a n o m e r i c c a r b o n . T h u s , D-glucose cyclizes preferentially b y reaction of the h y d r o x y l g r o u p o n c a r b o n 5 ( n u m b e r e d sequentially d o w n the o p e n - c h a i n s t r u c t u r e f r o m the a l d e h y d e c a r b o n ) w i t h the a l d e h y d e e a r b o n y l to f o r m a s i x - m e m b e r e d r i n g (Scheme

I). T h e n e w l y created

h y d r o x y l g r o u p o n c a r b o n 1 c a n p o s i t i o n a b o v e o r b e l o w the p l a n e o f t h e r i n g . W i t h t h e p y r a n o s e r i n g d r a w n a c c o r d i n g to the H a w o r t h c o n v e n t i o n as i n S c h e m e I , t h e p e n d a n t h y d r o x y m e t h y l g r o u p o f D sugars lies a b o v e t h e r i n g p l a n e w h i l e the c o r r e s p o n d i n g g r o u p i n the L series lies b e l o w . W i t h i n either series, the i s o m e r w i t h the a n o m e r i c h y d r o x y l g r o u p b e l o w the r i n g is c a l l e d t h e a a n o m e r ; the c o r r e s p o n d i n g h y d r o x y l lies a b o v e the p l a n e i n the

anomer. T h e connection of rings through

t w o d i f f e r e n t a n o m e r i c b o n d s is a n i m p o r t a n t f e a t u r e i n c a r b o h y d r a t e polymers. W h e n l i n e a r h y d r o c a r b o n s are s t r u c t u r e d i n r i n g s , the b o n d angles b e t w e e n contiguous c a r b o n atoms i n a six-carbon ring prohibit planar projections. T h e rings b u c k l e a n d assume various conformations. S i x c a r b o n r i n g s are k n o w n to exist m o s t f r e q u e n t l y i n a c h a i r f o r m [struct u r e II (a = a x i a l a n d e = e q u a t o r i a l ) ] i n w h i c h s u b s t i t u e n t b o n d s to r i n g c a r b o n s , h y d r o g e n , o r h y d r o x y l f u n c t i o n s are a x i a l o r e q u a t o r i a l . A x i a l

a

II

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

6

W A T E R - S O L U B L E POLYMERS

b o n d s are those p a r a l l e l w i t h t h e r i n g s g e n e r a l axis o f s y m m e t r y . E q u a t o r i a l b o n d s l i e i n the a p p r o x i m a t e p l a n e o f the r i n g ( w i t h its greater c o n t i n u u m of electron density) a n d generally have different reactivities t h a n a x i a l b o n d s . O f t h e c o n f o r m a t i o n s p o s s i b l e f o r t h e p y r a n o s e r i n g , t h e o n e that m i n i m i z e s steric r e p u l s i o n s a m o n g a x i a l l y d i s p o s e d h y d r o x y l s a n d t h e h y d r o x y m e t h y l g r o u p is f a v o r e d . A c c o r d i n g l y , the c o n f o r m a t i o n d e p i c t e d i n s t r u c t u r e II is p r e f e r r e d b y b o t h

anomers

of D - g l u c o s e because it positions the b u l k y h y d r o x y m e t h y l a n d h y d r o x y l g r o u p s o n c a r b o n s 2, 3, a n d 4 i n e q u a t o r i a l p o s i t i o n s . T h e d i f f e r e n c e b e t w e e n a a n d /? l i n k a g e s is i l l u s t r a t e d b y u s i n g the g l u c o p y r a n o s y l u n i t i n t h e c o n s t r u c t i o n o f t w o d i s a c c h a r i d e s (structure

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

I l i a a n d b). If t w o g l u c o p y r a n o s y l molecules are j o i n e d through equatorial b o n d s , t h e l i n k a g e is r e f e r r e d to as p a n d t h e p r o d u c t is c e l l o b i o s e . I f g l u c o p y r a n o s y l units are joined t h r o u g h a n axial linkage o f one unit, a n a l i n k a g e is f o r m e d , a n d t h e p r o d u c t is m a l t o s e . C e l l o b i o s e is the b a s i c u n i t o f c e l l u l o s e ( s t r u c t u r e I l i a ) a n d m a l t o s e is the b a s i c u n i t o f s t a r c h (structure I l l b ) — t w o o f the w o r l d s m o s t a b u n d a n t p o l y m e r s .

Classification of Polysaccharides by Natural Function: Storage, Structural, and Extracellular In general, the s i m p l e distinction of a versus 0 linkages b e t w e e n

mono-

m e r units determines the f u n c t i o n of polysaccharides i n plant cells. Storage polysaccharides p r o v i d e an energy s u p p l y for plant or a n i m a l cells. G e n e r a l l y , s t o r a g e p o l y s a c c h a r i d e s possess a n a x i a l - e q u a t o r i a l b o n d (i.e., a n a l i n k a g e ) b e t w e e n t h e 1- a n d 4 - p o s i t i o n s o f a d j a c e n t g l u c o s e units. I n p l a n t c e l l s , this e n e r g y s o u r c e is s t a r c h , e i t h e r a m y l o s e ( l i n e a r m a c r o m o l e c u l e s o f m a l t o s e units) o r a m y l o p e c t i n (a b r a n c h e d m a l t o s e m a c r o -

Illa

CH OH 2

Illb

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

1.

GLASS

Water Solubility in Carbohydrate Polymers

7

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

m o l e c u l e ) . I n a n i m a l c e l l s , the e n e r g y s o u r c e is a h i g h l y b r a n c h e d a r r a n g e m e n t o f m a l t o s e units, g l y c o g e n . S t r u c t u r a l p o l y s a c c h a r i d e s p r o v i d e the r i g i d i t y a n d e l a s t i c i t y n e e d e d to p r o t e c t c e l l s . G e n e r a l l y , s t r u c t u r a l p o l y s a c c h a r i d e s are c h a r a c t e r i z e d b y e q u a t o r i a l - e q u a t o r i a l b o n d s (i.e., j3 l i n k a g e s ) b e t w e e n g l u c o p y r a n o s y l units a n d , l i k e storage polysaccharides, their m a c r o m o l e c u l a r structure v a r i e s w i t h v a r i a t i o n i n l i f e f o r m . U n m o d i f i e d c e l l u l o s e is the p r i m a r y s t r u c t u r a l p o l y s a c c h a r i d e o f p l a n t s . T h e (J l i n k a g e p r o d u c e s a n e a r l y l i n e a r , e x t e n d e d m a c r o m o l e c u l a r c o n f o r m a t i o n (structure I V ) , w h i c h p e r m i t s c l o s e p a c k i n g o f p o l y m e r c h a i n s ; this c l o s e p a c k i n g i n t u r n encourages intermolecular h y d r o g e n b o n d i n g (and crystallinity) bet w e e n a d j a c e n t c h a i n s w i t h m i n i m u m e n t r o p y loss t o p r o d u c e the r i g i d i t y r e q u i r e d i n a s t r u c t u r a l m a t e r i a l . T h e a l i n k a g e o f storage p o l y s a c c h a r i d e s i m p a r t s a h e l i c a l c o n f o r m a t i o n to the g l u c o p y r a n o s y l c h a i n ( s t r u c t u r e V ) . T h e h e l i x i n h i b i t s e x t e n s i v e i n t e r c h a i n associations; t h e r e f o r e , t h e h e l i x is u n f i t as a s t r u c t u r a l e n t i t y b u t e x c e l l e n t as a n e n e r g y s o u r c e b e c a u s e r a p i d d e g r a d a t i o n f o r e n e r g y release is n o t h a m p e r e d b y the necessity o f first b r e a k i n g s t r o n g i n t e r m o l e c u l a r a t t r a c t i o n s .

V

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

8

W A T E R - S O L U B L E POLYMERS

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

I n the l o w e r a n i m a l f o r m s (insects, s p i d e r s , a n d c r a b s ) , the C - 2 h y d r o x y l g r o u p i n c e l l u l o s e is r e p l a c e d w i t h a n N - a c e t y l a m i n o g r o u p ( s t r u c t u r e VI) to p r o d u c e c h i t i n ( 3 - 5 ) . I n m a n y l i f e f o r m s , this p o l y m e r f u n c t i o n s as the a d h e s i v e i n a p r e d o m i n a n t l y c a l c i u m c a r b o n a t e m a t r i x . I n h i g h e r l i f e f o r m s , a m i n o a c i d s are a t t a c h e d to the C - 3 h y d r o x y l .

VI C e r t a i n m o n o s a c c h a r i d e s o c c u r m o r e f r e q u e n t l y t h a n others i n i n d u s t r i a l l y i m p o r t a n t c a r b o h y d r a t e p o l y m e r s . T h e m o n o m e r i c units are g l u c o s e , m a n n o s e , a n d g a l a c t o s e . I n the g l u c o p y r a n o s y l r i n g , the h y d r o x y l g r o u p s are e q u a t o r i a l l y p o s i t i o n e d i n the f a v o r e d c o n f o r m a t i o n . M a n n o p y r a n o s e is the C - 2 e p i m e r o f g l u c o s e (i.e., the h y d r o x y l is a x i a l n o t e q u a t o r i a l ) ; g a l a c t o p y r a n o s e is a C - 4 e p i m e r o f g l u c o p y r a n o s e . Intricate structural variations w i l l affect solubility a n d occasion solut i o n p r o p e r t i e s n o t o b s e r v e d i n the structures d i s c u s s e d p r e v i o u s l y ; these c h a r a c t e r i s t i c s are f o u n d i n p o l y s a c c h a r i d e s p r o d u c e d b y m i c r o o r g a n i s m s t h r o u g h f e r m e n t a t i o n synthesis. T h e s e e x t r a c e l l u l a r p o l y m e r s are s e c r e t e d b y m i c r o o r g a n i s m s e i t h e r as (1) a c a p s u l e l a y e r o f p o l y s a c c h a r i d e that c l i n g s to the o u t s i d e o f the c e l l w a l l o r as (2) a s l i m e c o m p o s e d o f p o l y s a c c h a r i d e that a c c u m u l a t e s n e a r the c e l l b u t e v e n t u a l l y diffuses i n t o the a q u e o u s m e d i u m . T h e s l i m e has greater c o m m e r c i a l p o t e n t i a l b e c a u s e o f the ease o f r e c o v e r y . F e r m e n t a t i o n p o l y s a c c h a r i d e s c a n b e d i v i d e d i n t o t w o classes: (1) the s i m p l e p o l y s a c c h a r i d e h o m o p o l y m e r s p r o d u c e d b y the a c t i o n o f a single e n z y m e i n the p r e s e n c e o f the m i c r o o r g a n i s m to p r o d u c e a w a t e r - s o l u b l e p o l y m e r ; a n d (2) the s t r u c t u r a l l y c o m p l e x h e t e r o p o l y s a c c h a r i d e s r e q u i r i n g the s e q u e n t i a l actions o f a g r o u p o f e n z y m e s p r o d u c e d b y the m i c r o o r g a n i s m . T h e synthesis o f c a r b o h y d r a t e p o l y m e r s b y f e r m e n t a t i o n p r o c e s s e s represents a m o r e c o m p l e x c o m m e r c i a l p r o c e s s t h a n those u s e d i n o b t a i n i n g w a t e r - s o l u b l e p o l y m e r s b y a s l u r r y p r o c e s s (e.g., i n the d e r i v a t i z a t i o n o f c e l l u l o s e o r g u a r a n d i s c u s s e d b e l o w ) b e c a u s e o f the g e n e r a t i o n o f h i g h l y v i s c o u s s o l u t i o n s . T h e v i s c o s i t y arises b o t h f r o m the c o n v e r s i o n o f m o n o m e r (e.g., g l u c o s e ) to p o l y m e r a n d f r o m a n i n c r e a s e i n the n u m b e r o f m i c r o o r g a n i s m b o d i e s . T h e i n c r e a s e i n v i s c o s i t y , p a r t i c u l a r l y the p s e u d o p l a s t i c i t y o f the s o l u t i o n s , i m p o s e s m i x i n g p r o b l e m s b e y o n d the g e n e r a l c a p a b i l i t y o f s t a n d a r d p r o d u c t i o n e q u i p m e n t to ensure the

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

1.

GLASS

9

Water Solubility in Carbohydrate Polymers

n e c e s s a r y t r a n s p o r t o f o x y g e n a n d o t h e r i n g r e d i e n t s to the m i c r o o r g a n i s m . T h e r e a d e r is r e f e r r e d to o t h e r treatises (6, 7) f o r these a n d o t h e r c o m p l e x i t i e s i n f e r m e n t a t i o n processes. T h e s o l u t i o n p r o p e r t i e s o f f e r m e n t a t i o n p o l y m e r s that f o r m h e l i c a l a g g r e g a t e s i n a q u e o u s s o l u t i o n s are u n i q u e w i t h r e s p e c t to the v i s c o s i t y r e t e n t i o n at h i g h e r t e m p e r a t u r e s a n d to m e c h a n i c a l ( d i s c u s s e d i n C h a p -

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

ter 11), t h e r m a l - o x i d a t i v e a n d a c i d - c a t a l y z e d d e g r a d a t i o n , a n d f e r m e n t a t i o n p o l y m e r s h a v e t h e r e f o r e f o u n d c o s t - e f f e c t i v e use i n m a n y areas o f application. I n the r e m a i n i n g sections of this c h a p t e r , d e r i v a t i z a t i o n t e c h n i q u e s a n d f a c t o r s a f f e c t i n g t h e p o s i t i o n o f a d d u c t s u b s t i t u t i o n i n the m o d i f i c a t i o n o f c e l l u l o s e a n d the s t r u c t u r a l features that a f f e c t w a t e r s o l u b i l i t y i n u n d e r i v a t i z e d c a r b o h y d r a t e p o l y m e r s are d i s c u s s e d .

Solubilization through Derivatization A s n o t e d p r e v i o u s l y , c e l l u l o s e is i n s o l u b l e i n a q u e o u s s o l u t i o n s b e c a u s e o f i n t r a - a n d i n t e r m o l e c u l a r h y d r o g e n b o n d i n g . D i s r u p t i o n o f the p o l a r b o n d i n g sequences can b e achieved through esterification or etherificat i o n (of the a n h y d r i d e s ) to c e l l u l o s e . N o n u n i f o r m a d d i t i o n o c c u r s u n t i l the b a c k b o n e is h i g h l y s u b s t i t u t e d . T o a c h i e v e w a t e r s o l u b i l i t y , the f u l l y s u b s t i t u t e d c e l l u l o s e ester m u s t b e p a r t i a l l y h y d r o l y z e d . T h e c o m m e r c i a l l y i m p o r t a n t esters are u s e d i n p l a s t i c s a n d o t h e r a p p l i c a t i o n s , n o t as w a t e r soluble polymers. W a t e r - s o l u b l e c e l l u l o s e ethers are c o m m e r c i a l l y i m p o r t a n t . T h e i r p r o d u c t i o n i n v o l v e s the b a s e - c a t a l y z e d a d d i t i o n of o n e o r a c o m b i n a t i o n o f t w o of the f o l l o w i n g f o u r a d d u c t s : m e t h y l c h l o r i d e ( C H 3 C I ) , the s o d i u m salt o f a - c h l o r o a c e t i c a c i d ( a - C l C H C 0 ~ N a ) , e t h y l e n e o x i d e , a n d p r o p y l e n e o x i d e . A s i n the c o m m e r c i a l l y i m p o r t a n t esters, m i x e d ether a d d u c t s are p r o d u c e d to m e e t s p e c i f i c a p p l i c a t i o n r e q u i r e m e n t s . 2

+

2

T w o o f the a d d u c t s , C H C 1 a n d o > C l C H C 0 ~ N a , are a d d e d u n d e r m o l e e q u i v a l e n t c a u s t i c c o n d i t i o n s to p r o d u c e m e t h y l c e l l u l o s e a n d (carb o x y m e t h y l ) c e l l u l o s e ( C M C ) . T h e d e g r e e of s u b s t i t u t i o n ( D S ; see C h a p ter 4 f o r N M R analysis) r e q u i r e d to a c h i e v e w a t e r s o l u b i l i t y is l o w e r w i t h the a n i o n i c g r o u p i n g (1.3 versus 0.6). T h e d e g r e e o f s u b s t i t u t i o n a c h i e v e d i n the c a u s t i c - c a t a l y z e d a d d i t i o n o f e t h y l e n e o r p r o p y l e n e o x i d e is d i f f i c u l t to d e t e r m i n e e x p e r i m e n t a l l y b e c a u s e the g e n e r a t i o n o f n e w r e a c t i o n sites w i t h the a d d i t i o n o f e a c h a d d u c t . T h e m o l a r s u b s t i t u 3

2

2

+

tion ( M S ) of adduct per glucopyranose group can be quantified experim e n t a l l y (8) a n d the a m o u n t o f s u b s t i t u t i o n i n o x i d e d e r i v a t i v e s is r e p o r t e d as a n M S v a l u e . T h e r e l a t i v e r e a c t i v i t i e s (8) of three of these a d d u c t s w i t h the three carbon-containing h y d r o x y l positions ( C - 2 , C - 3 , a n d C-6) available o n e a c h r e p e a t i n g u n i t u n d e r h i g h c a u s t i c c o n d i t i o n s are as f o l l o w s [substitu e n t , r e l a t i v e r e a c t i v i t y {krk$:k%:k , w h e r e k is the r e l a t i v e r e a c t i v i t y o f x

x

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

10

W A T E R - S O L U B L E POLYMERS

p o s i t i o n s g e n e r a t e d b y the a d d i t i o n o f e t h y l e n e o x i d e t o a n y o f the p y r a n o s e h y d r o x y l s ) ] : m e t h y l c h l o r i d e , 5:1:2; s o d i u m c h l o r o a c e t a t e , 2.0:1.0:2.5; a n d e t h y l e n e o x i d e , 5:1:8:12. T h e a d d i t i o n of C H C 1 a n d a - C l C H C 0 2 ~ N a requires equivalent amounts of caustic, generating 1 m o l of N a C l per m o l of adduct reacted. T h e a d d i t i o n o f e t h y l e n e o r p r o p y l e n e o x i d e is c a t a l y t i c a n d e x o t h e r m i c . T h i s c h a r a c t e r i s t i c w i t h the e x p l o s i v e p o t e n t i a l o f o x i d e s , a n d the g e n e r a t i o n o f a n e w , m o r e r e a c t i v e a n i o n w i t h e a c h o x i d e a d d e d (the n e w , m o r e reactive anion promotes chaining a n d nonuniformity of substitut i o n ) , has r e s u l t e d i n t h e use o f a s l u r r y p r o c e s s f o r the a d d i t i o n o f o x i d e units to c e l l u l o s e p r o d u c t s . F o r a c h i e v e m e n t o f u n i f o r m s u b s t i t u t i o n i n o x i d e d e r i v a t i z a t i o n s , a m o d e r a t e c o n c e n t r a t i o n o f c a u s t i c is r e q u i r e d . T h e m o d e r a t e c a u s t i c c o n c e n t r a t i o n (e.g., a n a l k a l i - t o - c e l l u l o s e r a t i o o f 0.37 o r 6.8 M ) c o m p l e m e n t e d b y the p r e s e n c e o f a s u i t a b l e w a t e r c o n c e n t r a t i o n ( d i s c u s s e d later) d i s r u p t s the h y d r o g e n b o n d i n g p r e s e n t i n c e l l u l o s e a n d p r o m o t e s the a v a i l a b i l i t y o f a l l h y d r o x y l f u n c t i o n s f o r s u b s t i t u t i o n . T h e s i m i l a r i t y i n r e a c t i v i t y ratios b e t w e e n h i g h m o l e c u l a r w e i g h t ( h y d r o x y e t h y l ) c e l l u l o s e p r e p a r e d v i a the s l u r r y p r o c e s s (9) a n d that observed f r o m l o w molecular weight, water-soluble, regenerated cellulose (JO) s u p p o r t s this h y p o t h e s i s .

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

3

2

+

V a r i a t i o n i n e t h y l e n e o x i d e r e a c t i v i t y w i t h the three p y r a n o s e h y d r o x y l s w i t h c a u s t i c c o n c e n t r a t i o n w a s also d e m o n s t r a t e d i n the l a t t e r studies. T h e w a t e r s o l u b i l i t y e n s u r e d the a v a i l a b i l i t y o f a l l h y d r o x y l g r o u p s , w h i c h is n o t t r u e i n s o m e c o m m e r c i a l d e r i v a t i z a t i o n processes. T h e r e l a t i v e r e a c t i v i t i e s as a f u n c t i o n o f s o d i u m h y d r o x i d e c o n c e n t r a t i o n o b s e r v e d i n this s t u d y a r e as f o l l o w s [ s o d i u m h y d r o x i d e c o n c e n t r a t i o n ( M ) , r e a c t i v i t y r a t i o (k :k3:k :k )]: 0.75 M , 3.0:1.0:3.0:1.5; 2.50 M , 4.0:1.0:5.5:4.0; a n d 4.50 M , 4.7:1.0:8.5:12.0. A t the m o d e r a t e l y h i g h c a u s t i c c o n c e n t r a t i o n (4.50 M ) , a d e c i d e d p r e f e r e n c e f o r the a d d i t i o n o f e t h y l e n e o x i d e to the p r i m a r y h y d r o x y l p o s i t i o n (i.e., C - 6 a n d the o x y a n i o n s g e n e r a t e d o n o x i d e a d d i t i o n ) is o b s e r v e d ; as the c a u s t i c l e v e l is d e c r e a s e d , l i t t l e s e l e c t i v i t y i n a d d i t i o n o c c u r s . A c o m b i n a t i o n o f t w o m e c h a n i s m s w a s o f f e r e d f o r this v a r i a n c e : (1) a d e c r e a s e i n r e a c t i v i t y o f the C - 6 h y d r o x y l w i t h d e c r e a s i n g b a s e ( 2 0 , 2 2 ) d u e t o a s h e a t h o f w a t e r a r o u n d the p r i m a r y h y d r o x y l a n d (2) a decrease i n reactivity w i t h increasing caustic of the secondary h y d r o x y l s d u e t o a d d u c t f o r m a t i o n b e t w e e n the b a s e a n d the v i c i n a l d i o l s o f the 2a n d 3 - c a r b o n p o s i t i o n s (20, 2 2 ) . A d d i t i o n a l c o m p l e x i t i e s d u e to a n e i g h b o r i n g g r o u p e f f e c t s h a v e also b e e n i n d i c a t e d (23). A t h i r d m e c h a n i s m h a s b e e n r e c e n t l y (14) s u g g e s t e d f o r this v a r i a n c e . A d e c r e a s i n g c o n t r i b u t i o n o f i n t r a m o l e c u l a r h y d r o g e n b o n d i n g o f the C - 3 h y d r o x y l to the C - 2 o x y a n i o n is p r o p o s e d w i t h i n c r e a s i n g c a u s t i c . T h i s results i n h i g h a c i d i t y o f the C - 2 h y d r o x y l at l o w c a u s t i c a n d a l o w a c i d i t y at h i g h c a u s t i c . 2

6

x

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

1.

GLASS

Water Solubility in Carbohydrate Polymers

11

T h e c a u s t i c s e n s i t i v i t y o f e t h y l e n e o x i d e p l a c e m e n t n o t e d i n the a b o v e g l u c o p y r a n o s e o l i g o m e r s t u d y has b e e n u s e d i n c o n t r o l l i n g the placement of ethylene oxide i n derivatizing high molecular weight cellulose v i a a s l u r r y p r o c e s s (9) (the d i s p e r s a n t is g e n e r a l l y a n a l c o h o l o r k e t o n e ) . T h e s l u r r y p r o c e s s is u s e d to m a i n t a i n v i s c o s i t y c o n t r o l . I n the c a t a l y z e d e t h o x y l a t i o n o f c e l l u l o s e , 6.8 M N a O H is e m p l o y e d . A w a t e r c o n c e n t r a t i o n b e t w e e n 9 a n d 13 w t % c o n t a i n i n g 6.8 M c a u s t i c is e f f e c t i v e i n disrupting crystallinity and intra- and intermolecular hydrogen bonding t o f a c i l i t a t e t h e a v a i l a b i l i t y o f a l l h y d r o x y l g r o u p s . I f this c o m b i n a t i o n is u s e d i n t h e s l u r r y a d d i t i o n o f e t h y l e n e o x i d e to c e l l u l o s e a n d the a d d u c t is a d d e d to a n M S o f 1.0, the c a u s t i c c o n c e n t r a t i o n c a n t h e n b e d e c r e a s e d to 0.1 M a n d t h e e t h o x y l a t i o n c o n t i n u e d to a c h i e v e a w a t e r - s o l u b l e ( h y d r o x y ethyl)cellulose. D i r e c t ethoxylation of cellulose i n a slurry process using a 0.1 M c a u s t i c c o n c e n t r a t i o n t h r o u g h o u t results i n n o n u n i f o r m a d d i t i o n a n d a water-insoluble (hydroxyethyl)cellulose even if h i g h l y substituted. Part i a l n e u t r a l i z a t i o n at a n i n t e r m e d i a t e M S o f a s t a n d a r d 6.8 M s l u r r y f a c i l i tates the a v a i l a b i l i t y o f a l l g l u c o p y r a n o s e h y d r o x y l s i f the i n t e r m e d i a t e m o l a r s u b s t i t u t i o n p r o d u c t is n o t d r i e d . C o n t i n u e d e t h o x y l a t i o n u n d e r l o w e r c a u s t i c c o n c e n t r a t i o n s f a c i l i t a t e s e q u a l s u b s t i t u t i o n a m o n g the t h r e e a v a i l a b l e p o s i t i o n s . T h i s a p p r o a c h p e r m i t s greater s u b s t i t u t i o n at the C - 2 p o s i t i o n , a n d t h e r e b y , greater s t a b i l i t y to e n z y m a t i c d e g r a d a t i o n (9,15,16). T h e i m p o r t a n c e o f the a m o u n t o f w a t e r a d d e d to the s l u r r y is e v i d e n t i n the s u b s t i t u t i o n p a t t e r n s (9) r e f l e c t e d i n the p e r c e n t a g e o f u n s u b s t i t u t e d v i n c i n a l d i o l a n d o f u n s u b s t i t u t e d a n h y d r o g l u c o s e units as a f u n c t i o n o f t h e m o l a r s u b s t i t u t i o n o f e t h y l e n e o x i d e . T h e r e is a d r a m a t i c d i f f e r e n c e i n the u n s u b s t i t u t i o n p a t t e r n s b e t w e e n 4 a n d 7 to 10 w t % w a t e r l e v e l s o r b e t w e e n the 7 to 10 a n d 13 w t % c o n c e n t r a t i o n s ( F i g u r e 1). T h e f o r m e r t r a n s i t i o n reflects the a m o u n t o f w a t e r r e q u i r e d (17) to c o m p l e m e n t c a u s t i c i n a f f e c t i n g the a v a i l a b i l i t y o f a l l o f the g l u c o p y r a n o s y l h y d r o x y l s ; t h e l a t t e r t r a n s i t i o n is b e l i e v e d to b e r e l a t e d t o a c h a n g e i n t h e r e a c t i v i t y ratios b y a l o w e r c a u s t i c c o n c e n t r a t i o n i n the c e l l u l o s e - w a t e r m a t r i x o f the d i s p e r s e d s l u r r y at the h i g h e r w a t e r l e v e l . T h e i m p o r t a n c e o f w a t e r i n c h a n g i n g the d i s t r i b u t i o n p a t t e r n o f o x y e t h y l e n e p l a c e m e n t suggests that the r e l a t i v e p l a c e m e n t o f CH3CI a n d a - C l C H 2 C 0 2 ~ N a substituents w o u l d f o l l o w s i m i l a r s e l e c t i v i t y f o r t h e C - 6 h y d r o x y l s i f these a d d u c t s w e r e a d d e d at a c a u s t i c l e v e l . T h i s s e l e c t i v i t y has b e e n o b s e r v e d (14). +

W h e n a n a n i o n is a d d e d to p r o p y l e n e o x i d e , o n l y 2 - 4 2 o f the o x y a n i o n g e n e r a t e d is p r i m a r y ; the p r e d o m i n a n t species is s e c o n d a r y ( S c h e m e I I ) . D u e to steric a n d i n d u c t i v e e f f e c t s , the s e c o n d a r y o x y a n i o n s h o u l d b e less r e a c t i v e ; m o r e u n i f o r m s u b s t i t u t i o n i n c e l l u l o s e d e r i v a t i z a t i o n results. T h i s u n i f o r m s u b s t i t u t i o n is r e f l e c t e d i n the r e a c t i v i t y p r o f i l e ( F i g u r e 2). T h e results a r e i n p a r t r e f l e c t i v e o f the greater s e l e c t i v i t y i n

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

12

W A T E R - S O L U B L E POLYMERS

1

I

40h

11

20h

I

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

£101

2h

0~0

l'.O 2.0

1UU 80 60

'

3.0 4.0 MS

5.0

6.0 B

0.0

1.0

2.0

3.0 4.0 MS

5.0

6.0

0.0

1.0 2.0

3.0 4.0 MS

5.0

6.0

1

40

-

lOl 20

\

1

§10 * 8

-

6

SB i

\

4-

2

0.0 C

1.0

i 2.0

i i 3.0 4.0 MS

i , i 5.0 6.0 D

Figure 1. Reaction profile (percent unsubstituted diol, closed symbols; percent unsubstituted glucopyranose units, open symbols; as a function of molar substitution) for (hydroxyethyl)cellulose in slurries containing (A) 4, (B)7,(C) 10, and (D)13wt% water. The alkali-to-cellulose ratio was 0.37.

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

1.

GLASS

13

Water Solubility in Carbohydrate Polymers 0" F

>

|

96-98

RO-CH -CH-CH 2

RO

+ CH -CH—CH 3

%

3

2

CH 1

>

Q

I R0-CH-CH Cf J

2-4 %

2

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

Scheme II. S#2 reaction intermediate of propylene oxide.

o x y a n i o n r e a c t i v i t y o f p r o p y l e n e o x i d e r e l a t i v e to that o f e t h y l e n e o x i d e . T h i s d i f f e r e n c e is i l l u s t r a t e d i n t h e s e l e c t i v e r e a c t i o n (14) o f p r o p y l e n e o x i d e w i t h the o x y e t h y l e n e e n d g r o u p s o f a n i n t e r m e d i a t e m o l a r s u b s t i t u t i o n ( h y d r o x y e t h y l ) c e l l u l o s e ( M S = 1.0). B o t h a m y l o s e a n d g u a r a n a r e d e r i v a t i z e d to l o w m o l a r s u b s t i t u t i o n l e v e l s . H i g h d e g r e e s o f s u b s t i t u t i o n e x c e p t i n l i m i t e d a p p l i c a t i o n areas are n o t n e c e s s a r y ; t h e p r e c u r s o r s are w a t e r s o l u b l e , a n d l o w levels o f s u b s t i t u t i o n w i l l i m p r o v e their t e m p e r a t u r e s o l u b i l i t y o r f a c i l i t a t e a d d i t i o n a l p u r i f i c a t i o n o f the p r e c u r s o r s . T w o p r i m a r y p o l y m e r classes that

J

L

MS Figure 2. Reaction profile (percent unsubstituted diol, closed symbols; percent unsubstituted glucopyranose units, open symbols; as a function of molar substitution) for (hydroxypropyl)cellulose in slurries containing 13 wt % water. The alkali to cellulose ratio was 0.37.

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

14

WATER-SOLUBLE POLYMERS

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

a r e d e r i v a t i z e d f o r s u c h p u r p o s e s a r e s t a r c h a n d the g a l a c t o m a n n a n s . D i r e c t derivatization of such p o l y m e r s i n their h i g h m o l e c u l a r weight f o r m w o u l d result i n s i g n i f i c a n t v i s c o s i t y d u e to t h e i r s o l u b i l i t y . I n g u a r g u m ( g u a r a n , d i s c u s s e d i n a l a t e r section) d e r i v a t i z a t i o n s , b o r a t e ions (at a 1 0 0 - p p m c o n c e n t r a t i o n ) c o m p l e x w i t h the 2,3-cis d i o l s (i.e., a x i a l - e q u a t o r i a l s t e r e o c h e m i s t r y ) o n b o t h the m a n n o - a n d g a l a c t o p y r a n o s e units p r e s e n t i n g u a r a n to m i n i m i z e s o l u b i l i t y . T h i s r e a c t i v i t y o f the v i c i n a l d i o l s t r u c t u r e , p a r t i c u l a r l y w i t h b o r a t e s a n d titanates, represents a s i t u a t i o n w h e r e a m o l e c u l e ' s s t e r e o c h e m i s t r y is c l o s e l y r e l a t e d w i t h its u t i l i z a t i o n . T h i s r e l a t i o n is u s e d i n a p p l i c a t i o n s w h e r e v i s c o u s gels u n d e r h i g h t e m p e r a t u r e a n d p r e s s u r e c o n d i t i o n s are r e q u i r e d , f o r e x a m p l e , i n f r a c t u r i n g o f p e t r o l e u m a n d gas w e l l s f o r i n c r e a s e d p r o d u c t i v i t y . T h i s a p p l i c a t i o n is d i s c u s s e d i n C h a p t e r 13.

Structural Features That Affect Water Solubility in Underivatized Carbohydrate Polymers F o u r s t r u c t u r a l features polymers.

i m p a r t a q u e o u s s o l u b i l i t y to

carbohydrate

T h e first is b r a n c h i n g . B r a n c h e s o n the m a c r o m o l e c u l a r c h a i n w i l l d i s r u p t i n t e r m o l e c u l a r associations a n d t h e r e b y p r o m o t e s o l v a t i o n . T h e s e c o n d is i o n i z i n g g r o u p s . I o n i z i n g g r o u p s s u c h as c a r b o x y l a t e , s u l f o n a t e , o r sulfate a n i o n s are r e a d i l y s o l v a t e d b y w a t e r , a n d s u c h g r o u p s i n h i b i t i n t e r m o l e c u l a r associations t h r o u g h e l e c t r o s t a t i c repulsions. T h e t h i r d is i n t e r u n i t p o s i t i o n a l b o n d i n g . T h e m o s t a b u n d a n t p o l y s a c c h a r i d e s a r e f o r m e d b y c o n d e n s a t i o n t h r o u g h the 1- a n d 4 - c a r b o n units ( d e s i g n a t e d 1 - 4 ) . T h i s b o n d i n g p r o v i d e s a h i g h l y s y m m e t r i c a l s t r u c t u r e a n d f a c i l i t a t e s i n t e r m o l e c u l a r a s s o c i a t i o n b e t w e e n units o f d i f f e r e n t c h a i n s (i.e., i f the c o n n e c t i n g b o n d is a / J l i n k a g e ) . B o n d i n g t h r o u g h the 1- a n d 3 - c a r b o n u n i t s (1—3) i m p a r t s less s y m m e t r y a n d p r o d u c e s s l i g h t l y b e t t e r s o l u b i l i z a t i o n (e.g., s o l u b i l i t y i n a q u e o u s - c a u s t i c m e d i a ) . T o o f e w e x a m p l e s o f 1—2 b o n d i n g exist to m a k e a g e n e r a l i z a t i o n c o n c e r n i n g s o l u b i l i t y c h a r a c t e r i s t i c s . L i n k a g e t h r o u g h the 1- a n d 6c a r b o n positions dramatically improves aqueous solubility. T h e 5-6 carb o n - c a r b o n b o n d is e x t e r n a l to the p y r a n o s y l r i n g a n d p r o v i d e s a n e n t r o p i c c o n t r i b u t i o n to s o l u b i l i z a t i o n t h r o u g h i n c r e a s e d r o t a t i o n a l f r e e d o m i n the s o l u b i l i z e d state. T h e l i n k a g e e x t e r n a l to the p y r a n o s y l r i n g also p r o v i d e s a greater d i s t a n c e b e t w e e n r i n g s . T h e f o u r t h is n o n u n i f o r m i t y i n the r e p e a t i n g s t r u c t u r e . N o n u n i f o r m i t y c a n b e o b t a i n e d b y (1) a l t e r n a t i o n o f the t y p e o f m o n o s a c c h a r i d e units l i n k e d (i.e., to p r o d u c e a h e t e r o p o l y s a c c h a r i d e ) , (2) v a r i a t i o n o f the l i n k a g e p o s i t i o n (e.g., 1—4 a l t e r n a t i n g w i t h 1 — 3 , 1 — 2 , a n d 1—6), a n d (3) v a r i a t i o n i n the a n o m e r l i n k a g e (i.e., a l t e r n a t i n g a w i t h 0 ) .

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

1.

GLASS

Water Solubility in Carbohydrate Polymers

15

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

T h e first t h r e e s o l u b i l i z a t i o n c o n c e p t s are s u p p o r t e d w i t h s p e c i f i c examples. Branching. « ( 1 — 4 ) - G L U C O P Y R A N O S E . Storage polysaccharides o f f e r t h e b e s t e x a m p l e o f the e f f e c t i v e n e s s o f b r a n c h i n g i n p r o v i d i n g solubilization. T h e a l i n k a g e of glucose units does not confer true solub i l i t y to a m y l o s e (the m i n o r c o m p o n e n t o f m o s t starches) b u t d o e s create an i m p r o v e m e n t o f s e v e r a l o r d e r s o f m a g n i t u d e o v e r 0 - l i n k e d units. A m y l o p e c t i n ( s t r u c t u r e V I I ) , g l y c o g e n (structure V I I I ) , a n d a m y l o s e (structure V ) a l l c o n t a i n a b a c k b o n e c o m p o s e d of a ( l — 4 ) linkages; a m y l o p e c t i n a n d g l y c o g e n d i f f e r o n l y b y the f r e q u e n c y o f b r a n c h e d c h a i n s f r o m t h e 6 - c a r b o n h y d r o x y l , a n d t r u e s o l u b i l i t y is a c h i e v e d i n these p o l y m e r s (18). W h e n a m a c r o m o l e c u l a r c h a i n is h i g h l y b r a n c h e d as i n a m y l o p e c t i n o r g l y c o g e n , the t h i c k e n i n g p o w e r o f the p o l y m e r is c o m p r o m i s e d . T h e e f f e c t i v e s w e e p v o l u m e f o r a g i v e n m o l e c u l a r w e i g h t is l o w e r t h a n that of the linear m a c r o m o l e c u l e . T h e p r o b l e m of inadequate thickening b y

VIII

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

16

W A T E R - S O L U B L E POLYMERS

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

s t a r c h is i n p a r t e c o n o m i c . S t a r c h is a b u n d a n t a n d c a n b e i s o l a t e d w i t h a m o l e c u l a r w e i g h t o f 1 m i l l i o n , b u t c o m m e r c i a l starches h a v e l o w m o l e c ular weights, since low-cost rectification procedures result i n m o l e c u l a r w e i g h t d e g r a d a t i o n . M a n y c o m m e r c i a l starches h a v e v e r y l o w m o l e c u l a r w e i g h t s b e c a u s e o f i n t e n t i o n a l d e g r a d a t i o n (e.g., o x i d a t i o n ) to a c h i e v e effects other than thickening. 0(1—4)-MANNOPYRANOSE. I f the b r a n c h i n g consists o f short segments, spaced r a n d o m l y , solubility can be achieved without c o m p r o m i s i n g t h e m a c r o m o l e e u l e ' s a b i l i t y to t h i c k e n . L o c u s t b e a n a n d g u a r g u m s a r e e x a m p l e s o f this t y p e o f c a r b o h y d r a t e p o l y m e r ; the b a c k b o n e s t r u c t u r e is a r e p e a t i n g m a n n o p y r a n o s y l u n i t . T h e u n b r a n c h e d 2 - c a r b o n e p i m e r o f c e l l u l o s e , i v o r y n u t m a n n a n , u n l i k e c e l l u l o s e is n o t e a s i l y s w o l len b y caustic a n d water. T h e placement of one-unit galactopyranosyl b r a n c h e s f r o m the 6 - c a r b o n o f the r e p e a t i n g m a n n o p y r a n o s y l units (in l o c u s t b e a n a n d g u a r g u m s ) causes s o l u b i l i z a t i o n w i t h o u t c o m p r o m i s i n g the r h e o l o g i c a l p r o p e r t i e s o f the m a c r o m o l e e u l e . L o c u s t b e a n g u m is o b t a i n e d f r o m c a r o b trees a n d c o n t a i n s a n a v e r age o f six m a n n o p y r a n o s y l u n i t s f o r e v e r y g a l a c t o p y r a n o s y l b r a n c h . T h e p o l y m e r achieved c o m m e r c i a l acceptance i n a w i d e variety of a p p l i c a t i o n s , b u t the l i m i t e d g r o w t h p o t e n t i a l o f c a r o b trees r e s t r i c t e d its a v a i l a b i l i t y . W h e n i t w a s r e a l i z e d that the p o l y s a c c h a r i d e i n g u a r g u m seeds w a s s t r u c t u r a l l y s i m i l a r to that i n l o c u s t b e a n g u m , a n d that the p o t e n t i a l a v a i l a b i l i t y o f g u a r a n w a s s i g n i f i c a n t l y greater, the u t i l i z a t i o n o f l o c u s t b e a n g u m d i m i n i s h e d . T h e m a n n o s e - t o - g a l a c t o s e r a t i o (2:1) i n g u a r a n is l o w e r t h a n that i n l o c u s t b e a n g u m (6:1). O r i g i n a l l y , the g a l a c t o s e b r a n c h e s i n g u a r a n w e r e t h o u g h t to b e a l t e r n a t i n g (as i l l u s t r a t e d i n s t r u c t u r e I X ) . R e s e a r c h o v e r the past d e c a d e (19-22)—

IX

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

1.

GLASS

Water Solubility in Carbohydrate Polymers

17

c o m b i n i n g p e r i o d a t e o x i d a t i o n s w i t h statistical analysis a n d d e t a i l e d c h r o m a t o g r a p h i c s e p a r a t i o n o f e n z y m a t i c a l l y d e g r a d e d p o l y m e r residues (23)—has s h o w n that the g a l a c t o s e b r a n c h e s are r a n d o m l y p l a c e d ; s e q u e n c e r u n s w i t h n o b r a n c h a t t a c h m e n t s a n d sections w h e r e the b r a n c h e s o c c u r i n c o n t i g u o u s s e q u e n c e s exist. H o w e v e r the g a l a c t o p y r a n o s y l r e s i d u e s are s p a c e d , the units are e f f e c t i v e i n d i s r u p t i n g i n t e r c h a i n associations a n d t h e r e b y p r o m o t i n g s o l u b i l i z a t i o n w i t h o u t c o m p r o m i s i n g the i n h e r e n t o v e r a l l t h i c k e n i n g p o t e n t i a l o f the m a i n c h a i n .

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

0(1—3)-GLUCOPYRANOSE. S h o r t - c h a i n b r a n c h i n g i n this f a m i l y o f c a r b o h y d r a t e p o l y m e r s affects s o l u b i l i t y w i t h d r a m a t i c v i s c o s i f y i n g p r o p e r t i e s . F o r o r g a n i z a t i o n a l p u r p o s e s , this class w i l l b e d i s c u s s e d under Interunit Positional B o n d i n g . I o n i z i n g G r o u p s . C a r b o x y l a t e , s u l f o n a t e , a n d sulfate g r o u p s are the m o s t f r e q u e n t l y f o u n d i o n i c substituents i n p o l y s a c c h a r i d e s , w i t h the f o r m e r the m o r e a b u n d a n t . C a r b o x y l a t e g r o u p s ( - C 0 H ) are w e a k a c i d s ; t h e i r salt f o r m s are r e a d i l y s o l v a t e d b y w a t e r a n d the charges i n h i b i t i n t e r m o l e c u l a r a s s o c i a tions b e t w e e n c h a i n s . O n e o f the m o s t w i d e l y u s e d c o m m e r c i a l p o l y m e r s , c a r b o x y m e t h y l c e l l u l o s e ( C M C ) , relies o n s u c h s o l u b i l i z i n g g r o u p s . T h e t e c h n o l o g y a s s o c i a t e d w i t h the d e r i v a t i z a t i o n o f c e l l u l o s e to f o r m C M C is d i s c u s s e d u n d e r S o l u b i l i z a t i o n t h r o u g h D e r i v a t i z a t i o n . T w o n a t u r a l l y o c c u r r i n g s t r u c t u r a l a n a l o g u e s , p e c t i n i c a n d a l g i n i c a c i d s , are i l l u s t r a t e d i n structures X a n d X I , r e s p e c t i v e l y . 2

Pectinic a n d alginic acids, like C M C , have a backbone comprised of 1—4 p o s i t i o n a l l i n k a g e s b e t w e e n m o n o s a c c h a r i d e units (24, 2 5 ) . U n l i k e C M C , the c a r b o x y l a t e f u n c t i o n is the C - 6 c a r b o n a n d the a c i d f u n c t i o n is n o t l i n k e d to the 6-, 3-, o r 2 - c a r b o n s as i n C M C . W h e n the a c i d f u n c t i o n -

X

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

18

W A T E R - S O L U B L E POLYMERS

XI

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

a l i t y is a t t a c h e d t o t h e 5 - c a r b o n , t h e s t r u c t u r e is d e s i g n a t e d as a u r o n i c acid. P e c t i n i c a c i d is i s o l a t e d f r o m c i t r u s f r u i t s . T w o t y p e s o f p r o d u c t s are a v a i l a b l e c o m m e r c i a l l y . A s a t h i c k e n e r a n d g e l l i n g agent, p e c t i n i c a c i d is c o m m e r c i a l l y a v a i l a b l e i n l o w - a n d h i g h - m e t h o x y l g r a d e s . I n the h i g h - m e t h o x y l p r o d u c t , at least 50% o f the C - 5 a p p e n d a g e exists as m e t h y l esters u n i t s . T h e h i g h - m e t h o x y l g r a d e s a r e g e l l e d t h r o u g h h y d r o p h o b i c b o n d i n g . T h i c k e n i n g is o b t a i n e d i n a n a c i d m e d i u m , w h i c h l o w ers the free c a r b o x y l i o n c o n t e n t ; the l o w e r free c a r b o x y l i o n c o n t e n t p e r m i t s g r e a t e r i n t e r c h a i n a s s o c i a t i o n , w h i c h is p o t e n t i a t e d b y d e h y d r a t i n g agents (sucrose, g l y c e r i n e , e t c ) . T h e d i l u t e a q u e o u s s o l u t i o n p r o p e r ties o f p e c t i n s a r e d i s c u s s e d i n C h a p t e r 3. A s e c o n d e x a m p l e o f a n a t u r a l l y o c c u r r i n g c a r b o x y l a t e d p o l y m e r is a l g i n i c a c i d , i s o l a t e d f r o m g i a n t k e l p , f o u n d i n the P a c i f i c O c e a n o f f southern California a n d Australia. A l g i n i c acid can be p r o d u c e d b y a n u m b e r o f d i f f e r e n t a l g a e ; the b e s t k n o w n is Macrocystis pyrifera. L i k e s t a r c h , a l g i n i c a c i d c a n b e i s o l a t e d i n h i g h m o l e c u l a r w e i g h t , i f c a r e is t a k e n i n its r e c t i f i c a t i o n . A l g i n i c a c i d c o n t a i n s u n i q u e b l o c k a r r a n g e m e n t s of 0 - D - m a n n o p y r a n o s y l u r o n i c a c i d a n d a - L - g u l o p y r a n o s y l u r o n i c a c i d m o n o m e r units ( s t r u c t u r e X I ) . T h e s t r u c t u r e o f g u l o s e is g i v e n i n C h a r t I. T h i s unusual c o p o l y m e r arrangement was p r o d u c e d b y nature m i l l e n n i u m s b e f o r e the uniqueness of b l o c k c o p o l y m e r s was r e c o g n i z e d b y synthetic p o l y m e r chemists. A l g i n i c a c i d , l i k e p e c t i n i c a c i d , c a n b e u s e d as a g e l l i n g agent t h r o u g h e i t h e r the p r e s e n c e o f d i v a l e n t c a t i o n s o r the use o f a n a c i d i c m e d i u m . I n g e n e r a l , a m a x i m u m v i s c o s i t y is r e a l i z e d at a p H o f 3.0-3.5. A l g i n i c a c i d p o l y m e r s d i f f e r i n structure w i t h different types of algae, w h i c h cause v a r i a t i o n s i n the r a t i o o f m a n n u r o n i c to g u l u r o n i c a c i d units. B o t h the mannose a n d gulose m o n o m e r units of alginic a c i d have the 2 - c a r b o n h y d r o x y l g r o u p i n a x i a l p l a c e m e n t ; i n a H a w o r t h c o n v e n t i o n o f the p y r a n o s y l r i n g , the 2 , 3 - v i c i n a l h y d r o x y l g r o u p s a r e i n a cis p o s i t i o n (i.e., b o t h a b o v e the p l a n e o f the r i n g ) . T h i s p o s i t i o n is i n c o n trast t o t h e trans a r r a n g e m e n t o f the v i c i n a l h y d r o x y l g r o u p s i n the glucose- a n d galactose-based polysaccharides discussed previously, w h e r e the 2 - c a r b o n h y d r o x y l is e q u a t o r i a l l y p o s i t i o n e d . T h e cis v i c i n a l h y d r o x y l a r r a n g e m e n t also is o b s e r v e d i n g u a r a n p o l y m e r s ; the cis

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

1.

GLASS

Water Solubility in Carbohydrate Polymers

19

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

a r r a n g e m e n t is v e r y r e a c t i v e to m u l t i v a l e n t ions (e.g., c a l c i u m , b o r a t e s , a n d titanates). C a r b o x y l a t e a n i o n s are the salts o f w e a k a c i d s a n d are t h e r e f o r e s u s c e p t i b l e to s i g n i f i c a n t c h a r g e s h i e l d i n g i n saline solutions. W i t h o u t h i g h c h a r g e densities b e t w e e n r e p e a t i n g units that m a i n t a i n the e x t e n d e d p o l y i o n r o d c o n f o r m a t i o n t h r o u g h c h a r g e r e p u l s i o n s , the p o l y m e r c o l lapses ( i n h i g h l y saline solutions) a n d the v i s c o s i t y o f the s o l u t i o n d e c r e a s e s . I f the a n i o n is the salt o f a s t r o n g a c i d (e.g., a s u l f o n a t e o r s u l f a t e g r o u p ) , saline s o l u t i o n s are less e f f e c t i v e i n d e c r e a s i n g v i s c o s i t i e s , i n c r e a s i n g a d s o r p t i o n , etc. S u c h c a r b o h y d r a t e p o l y m e r s are k n o w n (e.g., the c a r r a g e e n a n s ) a n d a r e d i s c u s s e d u n d e r N o n u n i f o r m i t y i n R e p e a t i n g S t r u c t u r e . A m o d i f i e d c e l l u l o s i c ( c e l l u l o s e s u l f a t e ester) of this t y p e has b e e n r e p o r t e d (26, 27). U n i f o r m s u b s t i t u t i o n c a n b e a c h i e v e d o n c e l l u l o s e b y first n i t r a t i n g a n d t h e n e x c h a n g i n g the substituents w i t h sulfate g r o u p s . T h e r e a c t i o n s e q u e n c e is i l l u s t r a t e d i n S c h e m e I I I . T h e e c o n o m i c s o f p r o d u c t i o n f o r a c o m m e r c i a l synthesis of this t y p e w i l l b e less f a v o r a b l e t h a n those e n c o u n t e r e d w i t h C M C . S o m e s u p e r i o r c h a r a c t e r i s tics f o r c e l l u l o s e s u l f a t e ester solutions h a v e b e e n o b s e r v e d a n d are d i s c u s s e d i n C h a p t e r 11. Interunit Positional Bonding. A t h i r d f a c t o r i m p o r t a n t to a c h i e v i n g w a t e r s o l u b i l i t y is v a r i a t i o n i n the i n t e r u n i t b o n d i n g p o s i t i o n . T h e s y m m e t r i c a l 0(1—4) b o n d i n g f o u n d i n c e l l u l o s e a n d i v o r y n u t m a n n a n p r o m o t e s a n e x t e n d e d , n e a r - p l a n a r m a c r o m o l e c u l a r c o n f o r m a t i o n that f a c i l itates i n t e r - a n d i n t r a m o l e c u l a r h y d r o g e n b o n d i n g , c r y s t a l l i t e f o r m a t i o n , a n d i n s o l u b i l i t y . D e r i v a t i z a t i o n to o b t a i n a q u e o u s s o l u t i o n s o l u b i l i t y o f c e l l u l o s e w a s d i s c u s s e d i n the p r e c e d i n g s e c t i o n . W h e n the i n t e r u n i t b o n d i n g is 0(1—3) as n o t e d i n the f e r m e n t a t i o n p o l y m e r c u r d l a n , s o l u b i l i t y is a p p a r e n t i n h y d r o g e n - b o n d b r e a k i n g a n d a l k a l i n e s o l u t i o n s . A 0(1—3) b o n d i n g a r r a n g e m e n t p r o m o t e s h e l i c a l

+ RONO or HONO Scheme III. Synthesis of cellulose sulfate ester.

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

20

W A T E R - S O L U B L E POLYMERS

structures as w a s n o t e d i n the a(1 — 4 ) - g l u c o p y r a n o s y l p o l y m e r ( a m y lose). A n a ( l — 6) b o n d i n g u n i t p e r m i t s greater r o t a t i o n a l f r e e d o m t h a n b o n d i n g t h r o u g h a r i n g h y d r o x y l , a n d the C - 6 p o s i t i o n also increases the distance b e t w e e n g l u c o p y r a n o s y l units; b o t h factors favor water solubility.

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

T w o polysaccharides made b y single-enzyme action and demons t r a t i n g the i m p o r t a n c e o f p o s i t i o n a l s u b s t i t u t i o n patterns i n p r o m o t i n g a q u e o u s s o l u b i l i t y are the d e x t r a n s (3-5) a n d 1 — 6 - b o n d e d m a l t o t r i o s e p o l y m e r (3-5). D e x t r a n is a p o l y s a c c h a r i d e that e x h i b i t s 1—6 u n i t b o n d i n g ; d e x t r a n is p r o d u c e d f r o m sucrose b y the a c t i o n o f g l u c o s y l t r a n s f e r a s e , a n e n z y m e f r o m the b a c t e r i u m Leuconostoc dextranium, w h i c h transfers the g l u c o s e u n i t t o the g r o w i n g d e x t r a n p o l y m e r . T h e m o s t c o m m o n d e x t r a n consists o f g l u c o s e m o n o m e r s , 95% o f w h i c h are l i n k e d b y a ( l — 6 ) b o n d s (structure X I I ) ; the r e m a i n i n g 5% are g e n e r a l l y l i n k e d b y 1—4 b o n d s , p r o d u c i n g a b r a n c h e d s t r u c t u r e . A p p r o x i m a t e l y 80% o f the s i d e b r a n c h e s are o n l y o n e g l u c o s e u n i t ; the r e m a i n i n g 2Q% are c h a i n s of v a r i a b l e l e n g t h w h e n p r o d u c e d f r o m B-511 e n z y m e ( U . S . D e p a r t m e n t o f A g r i c u l t u r e l a b o r a t o r y c o d e s y s t e m ) . T h e s p e c i f i c e n z y m e systems o f d i f f e r e n t b a c t e r i a p r o d u c e the s t r u c t u r a l v a r i a t i o n s d e s c r i b e d . C o m p l e x i n g a b i l i t i e s o f d e x t r a n a r e d e t e r m i n e d p r i m a r i l y b y the p o s i t i o n o f the b r a n c h e d u n i t s a n d a r e o f i m p o r t a n c e i n b i o m e d i c a l a p p l i c a t i o n s w h e r e d e x t r a n is u s e d as a p l a s m a e x t e n d e r , a d r u g c a r r i e r , a n d as a s o l u b i l i z e d salt c o m p l e x e r . A n o t h e r e x a m p l e o f 1—6 i n t e r u n i t b o n d i n g is i l l u s t r a t e d b y p o l y [ a - ( l — 6 ) - D - m a l t o t r i o s e ] (structure XIII) p r o d u c e d f r o m s t a r c h b y the y e a s t Pullularia pullulans. T h e a ( l — 4 ) l i n k a g e s o f s t a r c h are r e t a i n e d i n the t h r e e - u n i t s e g m e n t s ; the t h r e e - u n i t s e q u e n c e constitutes a b o u t 94% o f t h e m a c r o m o l e c u l e . A p p r o x i m a t e l y 6% o f the segments are f o u r units i n l e n g t h (not i l l u s t r a t e d ) . T h e a m b i e n t t e m p e r a t u r e s o l u b i l i t y n o t r e a l i z e d o n a l o n g - t e r m basis i n amylose a n d r e a l i z e d o n l y w i t h a cost-thickening

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

1.

GLASS

Water Solubility in Carbohydrate Polymers

21

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

XIII p e n a l t y i n a m y l o p e c t i n is o b t a i n e d t h r o u g h the 1—6 p o s i t i o n b o n d i n g w h i c h o c c u r s after e v e r y three o r f o u r 1—4 b o n d i n g units. As noted under Branching, poly-0(1—3)-glucopyranose is s o l u b l e i n a l k a l i n e s o l u t i o n s , b u t c e l l u l o s e [i.e., p o l y - / ? ( l — 4 ) - g l u c o p y r a n o s e ] is n o t s o l u b l e . S o l u b i l i t y i n n e u t r a l o r a c i d i c s o l u t i o n s i n the p o l y - 0 ( 1 — 3 ) - g l u c o p y r a n o s e f a m i l y c a n b e a c h i e v e d i f b r a n c h i n g is i n t r o d u c e d . S u c h a p o l y s a c c h a r i d e is s y n t h e s i z e d b y the e n z y m e s o f the yeast Sclerotium glucanium ( S G P S ) (28). T h e s t r u c t u r a l f o r m u l a is i l l u s t r a t e d i n structure X I V ; a glucopyranosyl b r a n c h occurs on every third m a i n c h a i n u n i t . T h e associations i n S G P S l e a d i n g to h e l i c a l aggregates are s u f f i c i e n t to p r o m o t e t h r e e - d i m e n s i o n a l structures that are n o t s o l u b l e i n s a l i n e o r l o w - t e m p e r a t u r e s o l u t i o n s (50 ° C ) . I n a d d i t i o n , X C P S is s e n s i t i v e to b o r a t e i o n c r o s s - l i n k i n g , as is a l g i n i c a c i d , d u e to the p r e s e n c e o f cis v i c i n a l d i o l s i n the b r a n c h e d u n i t s . T h e u r o n i c a c i d p o l y m e r s , p e c t i n i c a n d a l g i n i c acids, are unstable i n alkaline solutions. T h e C - 6 c a r b o n y l group activ a t e s t h e p r o t o n a t t a c h e d to the C - 5 c a r b o n , a n d a j 3 - e l i m i n a t i o n o f the C - 4 - b o n d e d r e s i d u e ( S c h e m e V ) . C e l l u l o s e s u l f a t e ester is n o t as s e n s i t i v e to d i v a l e n t i o n s . T h i s ester's r i g i d i t y i n f r e s h w a t e r solutions p r o v i d e s m a n y s o l u t i o n p r o p e r t i e s a s s o c i a t e d w i t h the h e l i c a l f e r m e n t a t i o n p o l y m e r s , b u t the ester g r o u p i n c e l l u l o s e sulfate ester is n o t h y d r o l y t i c a l l y stable.

CH OH

OH

2

/

HO

XV

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

1.

GLASS

23

Water Solubility in Carbohydrate Polymers

Scheme IV. Schematic of egg-crate complex formation of alginic or pectinic acid.

1

OMe

Scheme V. Instability of uronic acid structure. D e s p i t e these l i m i t a t i o n s the s t r u c t u r a l v e r s a t i l i t y a v a i l a b l e i n c a r b o h y d r a t e p o l y m e r s a p p e a r s t o o f f e r the p o s s i b i l i t y o f o b t a i n i n g w a t e r - s o l u b l e p o l y m e r s c a p a b l e o f m e e t i n g the p e r f o r m a n c e d e m a n d s i n m a n y a p p l i c a t i o n s . W i t h this t h o u g h t , the f o u r t h a l t e r n a t i v e to a c h i e v i n g w a t e r s o l u b i l i t y i n c a r b o h y d r a t e p o l y m e r s is c o n s i d e r e d . N o n u n i f o r m i t y i n R e p e a t i n g S t r u c t u r e . V a r i a t i o n i n the r e p e a t i n g u n i t (i.e., h e t e r o p o l y s a c c h a r i d e r a t h e r t h a n h o m o p o l y s a c c h a r i d e ) a n d

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

24

W A T E R - S O L U B L E POLYMERS

a l t e r n a t i o n i n the i n t e r u n i t b o n d i n g p a t t e r n ( c o m b i n i n g b o t h a n o m e r i c a n d p o s i t i o n a l changes) s h o u l d i n c o n c e p t p r o v i d e the m e a n s to o b t a i n aqueous solution solubility without 1. l o s i n g v i s c o s i f y i n g p o w e r as n o t e d i n the a ( l - * 6 ) h i g h l y b r a n c h e d a ( l - 4 ) structures;

o r the

2. the salt s e n s i t i v i t y i n h e l i c a l structures n o t e d i n the j8(l—4) p o l y e l e c t r o l y t e s (i.e., X C P S ) ; a n d

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

3. the m u l t i p l i c i t y o f p r o b l e m s c i t e d i n 1 a n d 2 w i t h the h e l i c a l / J ( l - * 3 ) class o f c a r b o h y d r a t e p o l y m e r s . R e a l i z i n g an o p t i m u m i n aqueous solution properties through m u l t i p l e b o n d i n g p a t t e r n s w i t h v a r i a b l e p y r a n o s y l units a p p e a r s r e a s o n a b l e , b u t p r o v i d i n g s p e c i f i c e x a m p l e s i n s u p p o r t o f the c o n c e p t is a n e l u s i v e task. T h e o r e t i c a l efforts (37-40) that c o n s i d e r c o n f o r m a t i o n a l e n e r g y , p r i m a r i l y e s t i m a t i n g the c o n f i g u r a t i o n a l e n t r o p y p e r r e s i d u e a n d e s t i m a t i n g the d e g r e e o f r o t a t i o n a l f r e e d o m o f t o r s i o n a l angles (structure X V I ) , c o u l d o f f e r i n s i g h t i f the m e t h o d s w e r e q u a n t i t a t i v e tools. U n f o r t u n a t e l y , the state o f the art i n s u c h efforts is u n r e f i n e d . A l i m i t e d e x a m p l e o f the i r r e g u l a r i t y i n s t r u c t u r e t h o u g h t to o v e r c o m e the l i m i t a t i o n s d i s c u s s e d is f o u n d i n n i g e r a n (structure X V I I ) . T h i s c a r b o h y d r a t e p o l y m e r c o n t a i n s v a r i a t i o n i n the i n t e r u n i t p o s i t i o n a l b o n d i n g p a t t e r n , b u t the r e p e a t i n g m o n o m e r a n d a n o m e r i c l i n k a g e are c o n stant. S t u d i e s o f this p o l y m e r h a v e b e e n l i m i t e d p r i m a r i l y to the s o l i d state (41, 42). T h e c a r r a g e e n a n s , e x t r a c t e d f r o m s e a w e e d a n d h a r v e s t e d o n t h e coasts o f M a i n e a n d M a s s a c h u s e t t s , a r e o t h e r e x a m p l e s . A l t h o u g h the r e p e a t i n g u n i t is c o n s t a n t ( g a l a c t o p y r a n o s e ) , the a n o m e r i c l i n k a g e

XVI

XVII

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

1.

GLASS

Water Solubility in Carbohydrate Polymers

25

v a r i e s w i t h the i n t e r u n i t b o n d i n g p a t t e r n s ; the a n o m e r i c a n d p o s i t i o n a l p a t t e r n s a l t e r n a t e as 0(1—3) a n d a ( l — 4 ) l i n k a g e s . T h i s class, h o w e v e r , is also n o t e n t i r e l y s u i t a b l e i n that the m a i n c h a i n ( s t r u c t u r e K - c a r r a g e e n a n , R = H ; i - c a r r a g e e n a n , R = S03~)

XVIII:

c o n t a i n s sulfate ester

g r o u p s . F r o m the g e n e r a l s o l u b i l i t y c o n c e p t s d i s c u s s e d , i t m i g h t b e e x p e c t e d that the carrageenans w o u l d b e r e a d i l y soluble i n aqueous solutions a n d s a l i n e i n s e n s i t i v e . T h i s class o f p o l y m e r , h o w e v e r , r e a d i l y gels w i t h salts o f m o n o v a l e n t i o s (e.g., K

+

or N H

4

+

) . G e l a t i o n is r e l a t e d t o

helix f o r m a t i o n a n d subsequent desolvation.

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

A g a r o s e ( s t r u c t u r e X I X ) is w e a k l y a n i o n i c a n d is s t r u c t u r a l l y s i m i l a r to the c a r r a g e e n a n s . T h e p o l y m e r is s o l u b l e i n h o t (100 ° C )

aqueous

s o l u t i o n s b u t gels at a m b i e n t t e m p e r a t u r e s f r o m m o d e r a t e l y

concen-

t r a t e d s o l u t i o n s . A g a r o s e c o n t a i n s residues o f

3,6-anhydro-a-L-galactose

that a r e c o n s i d e r e d i n the c a r r a g e e n a n s to p r o m o t e g e l a t i o n (36). T h u s , agarose is n o t a s u i t a b l e e x a m p l e o f w h a t m i g h t b e c o n c e p t u a l l y p o s s i b l e in aqueous solubility a n d solution properties.

Conclusions T h e p r i m a r y p r o b l e m i n projecting structural relationships for water solu b i l i t y i n c a r b o h y d r a t e p o l y m e r s is e x e m p l i f i e d i n the b e h a v i o r o f p o l y 0 ( 1 — 6 ) - g l u c o p y r a n o s e . T h i s p r o b l e m relates to r e s i d u a l c r y s t a l l i n i t y . T h e w a t e r s o l u b i l i t y o f the a n o m e r i c a ( l — 6) i s o m e r (i.e., d e x t r a n ) is j u s t i f i e d o n its p o s i t i o n a l s u b s t i t u t i o n p a t t e r n . T h a t the d i f f e r e n c e i n a n o m e r i c b o n d i n g w o u l d n o t a f f e c t i n s o l u b i l i t y is e x p e c t e d ; h o w e v e r , this p o l y m e r a p p e a r s to h a v e a n o p t i m u m g e l f o r m a t i o n t e m p e r a t u r e i n the 5 - 2 5 ° C

OR XVIII

XIX

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

26

W A T E R - S O L U B L E POLYMERS

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

r a n g e . S t i p a n o v i c p r o p o s e d (43) that the g e l a t i o n m e c h a n i s m i n v o l v e s c r y s t a l l i n e r e g i o n s that act as c r o s s - l i n k s o r j u n c t i o n z o n e s to e s t a b l i s h a three-dimensionally stabilized n e t w o r k structure. T h e naturally occurr i n g 0 i s o m e r c o n t a i n s a p p r o x i m a t e l y 10% a c e t y l a t i o n a n d d o e s n o t g e l . T h e l o w d e g r e e o f g l u c o p y r a n o s e b r a n c h i n g m i g h t also b e a f a c t o r i n i n h i b i t i n g g e l a t i o n i n the a n o m e r i c (a) p o l y m e r (i.e., d e x t r a n ) . L o n g usage o f c a r b o h y d r a t e p o l y m e r s has n o t to d a t e p r o v i d e d suff i c i e n t f u n d a m e n t a l i n s i g h t s to p r o j e c t w h a t m i g h t b e a c h i e v e d w i t h structural variations i n carbohydrate p o l y m e r s . C o n t r o l l e d synthetic p r o d u c t s to d e l i n e a t e s t r u c t u r e - a q u e o u s s o l u t i o n p r o p e r t i e s w o u l d p r o v i d e direction a n d advance our understanding sufficiently for theoretical p r o j e c t i o n s to b e o f v a l u e . T h e t y p e o f insights p o s s i b l e w i t h c u r r e n t i n s t r u m e n t a l t e c h n i q u e s [ b e a u t i f u l l y d e m o n s t r a t e d i n the 0 ( 1 — 6 ) - g l u c o p y r a n o s e s t u d y (43)] o f f e r s the p o s s i b i l i t y o f a d d i n g s i g n i f i c a n t l y to w h a t has b e e n i n h e r i t e d o v e r the m i l l e n i u m s i n this f a m i l y o f m a c r o m o l e c u l e s . T h e r e a d e r w h o desires g r e a t e r d e t a i l o n e a c h class o f c a r b o h y d r a t e p o l y m e r d i s c u s s e d i n this b r i e f c h a p t e r is r e f e r r e d to the r e c e n t series o n The Polysaccharides, b y A s p i n a l l (44).

Literature Cited 1. Lehninger, A. L. Biochemistry; Worth Publishers: New York, 1975, 2nd ed., p 250. 2. Morrison, R. T.; Boyd, R. N . Organic Chemistry; Allyn and Bacon: Boston, 1983; 4th ed., Chapter 28. 3. Whistler, R. L . Industrial Gums; Whistler, R. L., E d . ; Academic: New York, 1973; 2nd ed., Chapter 1. 4. Bolker, H . I. Natural and Synthetic Polymers; Dekker: New York, 1974. 5. Elias, H - G . Macromolecules; Plenum: New York, 1977; Vol. II, Chapter 31. 6. Purification of Fermentation Products; LeRoth, D.; Shiloach, J.; Leahy, T. J., Eds.; ACS Symposium Series 271: American Chemical Society: Washington, D C , 1984. 7. Saeir, H . H . Mechanisms and Regulation of Carbohydrate Transport in Bacteria; Academic: Orlando, F L ; 1985. 8. Croon, I. Sven. Papperstin. 1960, 63, 247. 9. Glass, J. E.; Buettner, A. M . ; Lowther, R. G.; Young, C. S.; Cosby, L. A.; Carbohydr. Res. 1980, 84, 245. 10. Ramnas, O.; Samuelson, O. Sven Papperstin. 1968, 71, 829. 11. Rowland, S. P.; Roberts, E . J.; Wade, C. P. Text. Res. J. 1969, 39, 530. 12. Roberts, E . J. Wade, C. P.; Rowland, S. P. Carbohydr. Res. 1971, 17, 393. 13. Roberts, E . J.; Wade, C. P.; Rowland, S. P.; Carbohydr. Res. 1972, 21, 357. 14. Seneker, S. D. Ph.D. Thesis, North Dakota State University, 1986. 15. Klug, E . D.; Winquist, D. P.; Lewis, C. A.; In Water Soluble Polymers; Bikalis, N . M , E d . ; Plenum: New York, 1973; p 401. 16. Klop, W.; Kooiman, P. Biochim. Biophys. Acta 1965, 99, 102. 17. Seneker, S. D.; Glass, J. E. Proc. Am. Chem. Soc. Div. Polym. Mater.: Sci. Eng. 1984, 51, 248.

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.

Downloaded by 146.185.202.12 on May 23, 2016 | http://pubs.acs.org Publication Date: May 5, 1986 | doi: 10.1021/ba-1986-0213.ch001

1.

GLASS

Water Solubility in Carbohydrate Polymers

27

18. French, D. Chemistry and Biochemistry of Starch; Whelan, W. J., E d . ; Biochemistry of Carbohydrates, Biochem. Series I; Butterworths: New York, 1979; Vol. V . 19. Gonzales, J. J.; Hemmer, P. C. J. Chem. Phys. 1977, 67, 2496-2526. 20. Gonzales, J. J . ; Kehr, K. W. Macromolecules 1978, 11, 996-1000. 21. Gonzales, J. J. Macromolecules 1978, 11, 1074-1085. 22. Painter, T . J . ; Gonzales, J. J . ; Hemmer, P. C. Carbohydr. Res. 1979, 69, 217-226. 23. McCleary, B. V . Carbohydr. Res. 1979, 71, 205-230. 24. McNuly, W. H . ; Pettitt, D . J. Industrial Gums; Whistler, R. L . , E d . ; Academic: New York, 1973; 2nd ed., Chapter 4. 25. Cottrell, I. W.; Kovacs, P. Food Colloids; Graham, J. D., E d . ; Avir Publishing: Westport, C T , 1977; Chapter 11. 26. Schweiger, R. G. J. Org. Chem. 1976, 41, 90. 27. Carbohydrate Sulfates; Schweiger, R. G. ACS Symposium Series 77, American Chemical Society: Washington, D C 1978; p 163. 28. Rodgers, N . E . Industrial Gums; Whistler, R. L . , E d . ; Academic: New York, 1973; 2nd ed., Chapter 12. 29. Norisuye, T . Presented at the XI International Carbohydrate Symposium; August, 1982, Vancouver, B C ; Vol. 5, p 2. 30. Norisuye, T.; Takashi, T . J. Polym. Sci., Polym. Lett. Ed. 1980, 18, 547-558. 31. Kashiwagi, Y.; Macromolecules 1981, 14, 1220-1225. 32. Misaki, A.; Kakuta, M . Presented at the XI International Carbohydrate Symposium, August, 1982, Vol. 5, p 17. 33. Janson, P-E.; Kenne, L.; Lindberg, B. Carbohydr. Res. 1975, 45, 275-282. 34. Melton, L. D.: Mindt, L.; Rees, D. A. Carbohydr. Res. 1976, 46, 245-257. 35. Thom, D . ; Grant, G. T . ; Morris, E. R.; Rees, D. A. Carbohydr. Res. 1982, 100, 29-42. 36. Rees, D . A.; Walsh, E . J. Angew. Chem., (Int. Ed. Engl.) 1977, 16, 214. 37. Abe, A.; Mark, J. E. J. Am. Chem. Soc. 1976, 98, 6468-6476. 38. Allinger, M . L.; Chung, D. Y. J. Am. Chem. Soc. 1976, 98, 6798-6803. 39. Twaroska, I.; Bleha, T. Biopolymers 1979, 18, 2537-2547. 40. Burton, B. A.; Brandt, D. A. Biopolymers 1983, 22, 1769-1792. 41. Marchessault, R. H . ; Revol, J. F.; Bobbitt, T . F.; Norbin, J. H . Biopolymers 1980, 19, 1069-1080. 42. Barker, S. A.; Bourne, E. J.; O'Mant, D . M . ; Stacey, M . J. Chem. Soc. 1957, 2448-2454. 43. Stipanovic, A. J . ; Giammatteo, P.; Robie, S. B.; Easter, S. A. Proc. Am. Chem. Soc. Div. Polym. Mater.: Sci. Eng. 1985, 52, 34. 44. Aspinall, G. O., The Polysaccharides; Academic: New York, Vols. 1-3, 1982, 1983, and 1984. R E C E I V E D for review March 5, 1985. A C C E P T E D August 23, 1985.

Glass; Water-Soluble Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1986.