Structural Variations as a Tool to Analyze the Mechanism of

Structural Variations as a Tool to Analyze the. Mechanism of Noncatalytic Solid-Gas .... seen throughout the stone is gray. The pore size distribution...
1 downloads 0 Views 955KB Size
40 Structural Variations as a Tool to Analyze the Mechanism of Noncatalytic Solid-Gas Reactions Chemical Reaction Engineering—Boston Downloaded from pubs.acs.org by YORK UNIV on 12/08/18. For personal use only.

SEVIL U L K U T A N , TIMUR DOGU, and GULSEN DOGU Middle East Technical University, Department of Chemical Engineering, Ankara, Turkey

It is shown that the mechanism of gas-solid noncatalytic reactions can be understood better by following the variations in pore structure of the solid during the reaction. By the investi­ gation of the pore structures of the limestone particles at different extents of calcination, i t has been shown that the mechanism of this particular system can be successfully repres­ ented by a two stage zone reaction model below 1000°C. It has also been observed that the mechanism changes from zone reaction to unreacted core model at higher temperatures. A g a s - s o l i d r e a c t i o n u s u a l l y i n v o l v e s heat and mass t r a n s f e r processes and chemical k i n e t i c s . One important f a c t o r which complicates the a n a l y s i s of these processes i s the v a r i a t i o n s i n the pore s t r u c t u r e o f the s o l i d during the r e a c t i o n . Increase or decrease of p o r o s i t y during the r e a c t i o n and v a r i a t i o n s i n pore s i z e s would e f f e c t the d i f f u s i o n r e s i s t a n c e and a l s o change the a c t i v e surface area. These f a c t s i n d i c a t e that the r e a l mechanism of g a s - s o l i d n o n c a t a l y t i c r e a c t i o n s can be understood b e t t e r by f o l l o w i n g the v a r i a t i o n s i n pore s t r u c t u r e during the reaction. Number o f models have been proposed f o r g a s - s o l i d n o n c a t a l y t i c r e a c t i o n s i n the l i t e r a t u r e . Most of the workers have l i m i t e d t h e i r models by n e g l e c t i n g the s t r u c t u r a l changes as the r e a c t i o n proceeds. Microscopic c o n s i d e r a t i o n of pore s i z e change has been considered by Petersen (1), White and Carberry (2), Schechter and G i d l e y ( 3 ) , S z e k e l l y and Evans ( 4 ) , Ramachandran and Smith ( 5 , 6 ) , Dogii ( 7 ) , and Orbey e t a l . (8).

0097-6156/82/0196-0515$06.00/0 © 1982 American Chemical Society

516

CHEMICAL REACTION ENGINEERING

Although number of models proposed i n recent years consider the s t r u c t u r a l v a r i a t i o n s , there are v e r y few works t r y i n g to p r e d i c t the a c t u a l mechanism of such r e a c t i o n s from experimental pore s t r u c t u r e data. The major aim of t h i s work i s the under­ standing of the mechanism of g a s - s o l i d n o n c a t a l y t i c r e a c t i o n s and p r e d i c t i o n of the best model, using the experimental pore s i z e d i s t r i b u t i o n data and v a r i a t i o n of pore s t r u c t u r e during the reaction. C a l c i n a t i o n of limestone has been chosen as a model r e a c t i o n and pore s i z e d i s t r i b u t i o n s of the limestone p a r t i c l e s are d e t ­ ermined at d i f f e r e n t extents of c a l c i n a t i o n at d i f f e r e n t temperatures. Although the c a l c i n a t i o n r e a c t i o n s have been i n v e s t i g a t e d f o r ages there a r e s t i l l questions about the a c t u a l mechanism of such r e a c t i o n s . The l i t e r a t u r e does not i n v o l v e the structural variations. The mechanism of many of the n o n c a t a l y t i c f l u i d - s o l i d r e ­ a c t i o n s can be described by a model i n between unreacted core and homogeneous r e a c t i o n s models. I s h i d a and Wen (9) formulated such a model using the zone r e a c t i o n concept of Ausman and Watson (10). In t h i s model the r e a c t i o n i s not r e s t r i c t e d to the s u r f a c e of the core as i n the unreacted core model but occurs homogeneously w i t h i n a r e t r e a t i n g core of r e a c t a n t . Wen and I s h i d a (11) combined the g r a i n concept w i t h the zone r e a c t i o n model and analyzed the r e a c t i o n of SO2 w i t h CaO p a r t i c l e s . In the study conducted by M a n t r i , Gokarn and Doraiswamy (12) the concept of f i n i t e r e a c t i o n zone model was f u r t h e r developed. In t h i s work i t i s shown from the v a r i a t i o n s of pore s t r u c ­ ture that a zone r e a c t i o n model s i m i l a r to the one suggested by Ishida and Wen (9) can e x p l a i n the mechanism of c a l c i n a t i o n reaction studied. Experimental The limestone p a r t i c l e s of about one cm equivalent diameter are c a l c i n e d i n a tubular furnace. These p a r t i c l e s c o n t a i n 99.5% CaC03 and have an i n i t i a l p o r o s i t y of 0.09. Hot N gas flows over the p a r t i c l e s during the c a l c i n a t i o n and the gas flow r a t e i s adjusted such that the f i l m mass t r a n s f e r l i m i t a t i o n s are n e g l i g i b l e (13). Conversion-time data i s determined g r a v i m e t r i c a l l y . The pore s i z e d i s t r i b u t i o n s of samples at d i f f e r e n t conversions are determined by a mercury i n t r u s i o n porsimeter and a l s o i n v e s t i g a t e d with an e l e c t r o n microscope. In order to ob­ t a i n samples with c e r t a i n degree of c o n v e r s i o n , c a l c i n e s are suddenly cooled and the r e a c t i o n i s stopped i n a system through which c o l d Ν 2 gas i s flowing through. C a l c i n a t i o n r e a c t i o n s a r e repeated a t 8 d i f f e r e n t temperatures i n the range 700 °C-1040 °C. The v a r i a t i o n s i n the pore s t r u c t u r e during the c a l c i n a t i o n are examined and used to analyze the r e a c t i o n mechanism. 2

V a r i a t i o n s i n Pore S t r u c t u r e During C a l c i n a t i o n . Typical cumulative pore volume d i s t r i b u t i o n data obtained f o r d i f f e r e n t

40.

ULKUTAN ET A L .

517

Noncatalytic Solid-Gas Reactions

degrees of conversion o f CaCÛ3 t o CaO a t 860 °C a r e shown i n F i g u r e 1. During the f i r s t stages o f the r e a c t i o n , o n l y t h e macropore volume i s found to i n c r e a s e and the pore s i z e d i s t r i butions o f samples a t small conversion have a monodisperse c h a r a c t e r . A f t e r a c e r t a i n degree o f conversion (which i s found to be around 0.15 i n t h i s system) micropores begin t o form, and the b i d i s p e r s e pore s i z e d i s t r i b u t i o n o f the samples i s developed. T h i s b i d i s p e r s e c h a r a c t e r o f the samples can be seen i n F i g u r e 2. I n v e s t i g a t i o n o f the c a l c i n e s w i t h a Scanning E l e c t r o n Microscope a l s o showed t h i s b i d i s p e r s e pore s t r u c t u r e (13). As can be seen from F i g u r e 2 the pores with r a d i i g r e a t e r than 0.5 microns can be considered as macropores. The o r i g i n a l limestone used has a beige c o l o r . I f the c r o s s s e c t i o n o f a sample with small conversions i s examined the c o l o r seen throughout the stone i s gray. The pore s i z e d i s t r i b u t i o n s of these samples g i v e monodispersed curves. A t higher conv e r s i o n s the c r o s s s e c t i o n s o f the samples have two l a y e r s . The outer l a y e r i s white w h i l e the i n n e r core i s gray. The pore s i z e d i s t r i b u t i o n s of these samples show b i d i s p e r s e c h a r a c t e r . Separate i n v e s t i g a t i o n s o f pore s t r u c t u r e s o f gray (core) and white ( s h e l l ) s e c t i o n s have shown that the s h e l l c o n t a i n s both macro and micropores w h i l e there a r e only macropores i n the i n n e r core. These o b s e r v a t i o n s suggest that the mechanism o f the c a l c i n a t i o n o f t h i s p a r t i c u l a r limestone can be examined i n two stages. In the f i r s t stage, r e a c t i o n s t a r t s a t every i n t e r i o r p o i n t o f the stone. The time a t which the formation o f micropores s t a r t s i s considered as the end o f the f i r s t stage. With the assumption t h a t s h e l l s e c t i o n i s completely c a l c i n e d (the j u s t i f i c a t i o n o f t h i s assumption i s g i v e n l a t e r ) and the pore s i z e d i s t r i b u t i o n obtained a t complete conversion i s the charact e r i s t i c d i s t r i b u t i o n o f the ash l a y e r the f o l l o w i n g r e l a t i o n can be w r i t t e n to p r e d i c t the dimensionless r a d i u s (ζ ) o f the inner core from the pore s i z e d i s t r i b u t i o n curves: ιη

1/3

X > ε + ξ - { 1 'm "

V

V

, 2- 1

2 x=l -Ε ε "f

}

(1)

Some of the v a l u e s of t o t a l p o r o s i t y (ε), cumulative pore volumes o f macropores ( V ^ and micropores (V*2) a t d i f f e r e n t degrees of c a l c i n a t i o n a t 860 °C a r e given i n Table IA. C a l c u l ­ ated v a l u e s o f ζ u s i n g Equation 1 a r e r e p o r t e d i n Table IB. As can be seen from Table IB average r a d i u s of micropores i s e s s e n t i a l l y the same a t d i f f e r e n t v a l u e s o f f r a c t i o n a l conversion of CaC03. The s u r f a c e area o f micropores ( p r e d i c t e d from the pore s i z e d i s t r i b u t i o n curves) i n c r e a s e with degree o f c a l c i n a t i o n as expected. The s u r f a c e area of micropores d i v i d e d by the v o l ιη

Figure 1. Cumulative pore size distributions of Goynuk limestone at different conversions at 860°C.

1

w w

«

ζ

w ο

S

H

w > ο

2

w

a

00

H-*

Figure 2. Differential pore size distributions of Goynuk limestone at different conversions at 860°C.

4*

VO

Ut

s

S'

!

««·«·

?

Ο*

1

ι

> ρ

W H

25

>

r

Cl

Ο

520

CHEMICAL REACTION ENGINEERING

ume of the s h e l l s e c t i o n , ( l a s t column i n Table I B ) , i s a l s o independent of degree of c a l c i n a t i o n and e s s e n t i a l l y same as the v a l u e obtained a t complete c o n v e r s i o n . These observations together w i t h the experimental f i n d i n g showing that micropores are present only i n the s h e l l s e c t i o n i n d i c a t e that the complete c o n v e r s i o n assumption f o r the s h e l l s e c t i o n i s j u s t i f i a b l e . These i n f o r m a t i o n from the pore s t r u c t u r e data show that a simple two-stage zone r e a c t i o n model can be s u c c e s s f u l l y used to des­ c r i b e the mechanism o f the c a l c i n a t i o n of t h i s p a r t i c u l a r limestone and i t i s not necessary to c o n s i d e r much more complex models such as three-zone and p a r t i c l e - p e l l e t models. Table IA S t r u c t u r a l V a r i a t i o n s During C a l c i n a t i o n of Limestone a t 860 °C Fractional Conversion of CaC0 3

Cumulative Macropore Volume V ml/g r

0.25 0.59 0.82 1.00

0.0800 0.0919 0.0959 0.1000

Cumulative Micropore Volume V , ml/g

Porosity ε

2

0.0407 0.1339 0.1866 0.2825

0.235 0.377 0.419 0.520

Table IB S t r u c t u r a l V a r i a t i o n s During C a l c i n a t i o n of Limestone a t 860 °C Fractional Conversion of CaC0

£

0.25 0.59 0.82 1.00

0.926 0.748 0.653 0

m

3

Average Micropore Radius, um 0.0258 0.0266 0.0272 0.0267

Micropore Surface Area Sg, cm /g 2

4

3.2 χ Ι Ο 10.1 χ Ι Ο 13.7 χ Ι Ο 21.4 χ Ι Ο

4

4

4

S ν (1 - £ ) p^ τη 3.01 2.89 2.83 2.91

χ χ χ χ

5

ΙΟ ΙΟ 1θ5 ΙΟ 5

5

Zone Reaction Model Experimental f i n d i n g s show that c a l c i n a t i o n r e a c t i o n s t a r t s at every i n t e r i o r p o i n t o f the r e a c t a n t and a f t e r a c e r t a i n time the r e a c t a n t s o l i d near the e x t e r n a l s u r f a c e i s completely ex­ hausted forming a b i d i s p e r s e i n e r t product l a y e r . The p e r i o d of r e a c t i o n p r i o r to the formation of the ash l a y e r i s designated as the f i r s t stage and the p e r i o d f o l l o w i n g the formation o f the ash l a y e r as the second stage. During the c a l c i n a t i o n , the gaseous product CO2 d i f f u s e s out through the pores. The r a t e o f CO2 e v o l u t i o n depends upon whether d i f f u s i o n or s u r f a c e r e a c t i o n i s the c o n t r o l l i n g mechanism. Since c a l c i n a t i o n r e a c t i o n i s r e v e r s i b l e c o n c e n t r a t i o n p r o f i l e o f CO2 w i t h i n the pores would s t r o n g l y e f f e c t the apparent r a t e of

40.

ULKUTAN ET A L .

Noncatalytic Solid-Gas Reactions

521

decomposition. During the f i r s t stage o f the r e a c t i o n and i n the r e a c t i o n zone during the second stage the pore d i f f u s i o n of C0 i s c o n t r o l l e d by Equation 2. I n w r i t i n g t h i s equation the r e ­ a c t i o n i s considered t o be zeroth order i n t h e forward d i r e c t i o n and f i r s t order with r e s p e c t to 0 0 c o n c e n t r a t i o n i n the r e v e r s e direction. 2

2

0 = -±r _ L 2 r

d_ άξ

u

2 d± άζ>

+ 1

(2)

where k

1/2 (3) eA

On the other hand, m a t e r i a l balance f o r the c o n c e n t r a t i o n o f the s o l i d r e a c t a n t ( C ) can be w r i t t e n a s , s

dc

s

(4) e Simultaneous s o l u t i o n o f these equations w i t h the assumption o f n e g l i g i b l e f i l m mass t r a n s f e r r e s i s t a n c e y i e l d the f o l l o w i n g r e l a t i o n s f o r f r a c t i o n a l conversion a t the end o f f i r s t stage (Xj) and the d u r a t i o n o f f i r s t stage ( T J ) :

ν

11

φ

coth

(φ )

(5)

C„ (6) T l

=

k

C

-l A

For the second stage, Equation 2 (which holds f o r 0 < ξ < ξ ) and the d i f f u s i o n equation f o r the outer l a y e r m

0 =\

J-

2

(ξ d £

) f

r




1 -

CaO

(ID

CaCO,

In c o n c l u s i o n , i t i s shown that the mechanism of a nonc a t a l y t i c g a s - s o l i d r e a c t i o n can be analyzed i n d e t a i l by observing the v a r i a t i o n s i n pore s t r u c t u r e during the r e a c t i o n .

Legend o f Symbols C

Ae

e q u i l i b r i u m c o n c e n t r a t i o n o f the product gas

D

eA

e f f e c t i v e d i f f u s i v i t y i n the core s e c t i o n

D*

e f f e c t i v e d i f f u s i v i t y i n the s h e l l s e c t i o n

A

f i r s t order r e v e r s e r a t e constant cumulative macropore volume, ml/g V2

cumulative micropore volume, ml/g

Vp

s p e c i f i c volume o f samples, ml/g

V

Ca0'

molar volumes o f CaO and CaC03

V

CaC0 ε ε^

ψ ω ξ

3

p o r o s i t y a t a c e r t a i n degree o f conversion p o r o s i t y a t complete conversion dimensionless c o n c e n t r a t i o n o f C O 2 a t t h e f i r s t stage and i n the core s e c t i o n a t the second stage, O^/^e dimensionless c o n c e n t r a t i o n of C 0 a t the second stage, i n the s h e l l s e c t i o n dimensionless r a d i a l c o o r d i n a t e dimensionless r a d i u s o f the core 2

duration of f i r s t

stage

time r e q u i r e d f o r complete c o n v e r s i o n

524

CHEMICAL REACTION ENGINEERING

1.0

TEMPERATURE

• • • Δ

Ο

8I0°C 860 °C 905 °C 950°C I000°C 1040°C

ém I—

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CONVERSION Figure 3.

Variation of total porosity with fractional conversion of CaCO to CaO at different calcination temperatures. s

40. ULKUTAN ET A L .

Noncatalytic Solid-Gas Reactions

525

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.

Petersen, E . E . AIChE J. 1957, 3, 443. White, Α . ; Carberry, J.J. Can. J. Chem. Eng. 1965, 43, 334. Schechter, R . S . ; Gidley, J.L. AIChE J. 1969, 15, 339. Szekelly, J.; Evans, J.W. Chem. Eng. S c i . 1970, 25, 1091. Ramachandran, P . Α . ; Smith, J . M . AIChE J. 1977, 23, 353. Ramachandran, P . Α . ; Smith, J . M . Chem. Eng. J. 1977, 14, 137. Dogu, T. Chem. Eng. J. 1981, 21, 213. Orbey, N . ; Dogu, G . ; Dogu, T. Can. J. Chem. Eng., i n press. Ishida, M . ; Wen, C.Y. AIChE J. 1968, 14, 311. Ausman, J . M . ; Watson, C.C. Chem. Eng. S c i . 1962, 17, 323. Wen, C . Y . ; Ishida, M. Env. S c i . Technol. 1973, 7, 703. Mantri, V . B . ; Gokarn, A . N . ; Doraiswamy, L . K . Chem. Eng. S c i . 1976, 31, 779. Ulkutan, S. M.S. Thesis, Middle East Technical University, Ankara, Turkey, 1979. H i l l , K.J.; Winter, E.R.S. J. Phys. Chem. 1956, 60, 1361. Ingraham, T . R . ; Marier, P. Can. J. Chem. Eng. 1963, 41, 170. Freeman, E . S . ; Carrol B. J. Phys. Chem. 1958, 62, 394.

Received April 27, 1982.