11 Structure-Activity Relationships in Antifungal Agents: A Survey Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 7, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch011
ERIC J. LIEN School of Pharmacy, University of Southern California, Los Angeles, Calif. 90007 CORWIN HANSCH Department of Chemistry, Pomona College, Claremont, Calif. 91711
Using computerized regression analysis, a generalized equa tion and a few of its simplified forms can be used to correlate the antifungal activity of more than 560 compounds with their chemical structures. The general equation is: log activity = parabolic function of log Ρ + k (electronic) + k' (steric) + k" Hydrophobic character as measured by the octanol/water partition coefficient (log P or π) and electronic effects of substituents as measured by Hammett's σ constant appear to be the most important factors in determining the relative potency of congeneric members of drugs while the intrinsic activity is governed by the functional group(s) of the mole cules. The correlations obtained should serve as useful guidelines for predicting the design of more specific new antifungal agents.
m o n g the 70,000 k n o w n species of f u n g i m a n y are parasitic to a n i m a l s a n d plants. F u r t h e r m o r e , u n d e r p r o p e r c o n d i t i o n s almost a n y m a t e r i a l is o p e n to f u n g a l attack i f not a d e q u a t e l y p r o t e c t e d b y a f u n g i c i d e . It is not s u r p r i s i n g , t h e n , that thousands of c o m p o u n d s are s y n t h e s i z e d a n d tested each year for a n t i f u n g a l a c t i v i t y . A n u m b e r of a n t i f u n g a l agents have thus b e c o m e c o m m e r c i a l l y a v a i l a b l e for v a r i o u s purposes (1-3). 155
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
156
BIOLOGICAL CORRELATIONS
Table l a .
Equations Correlating Antifungal
log A c t i v i t y = ki l o g Ρ + Organism
Type of
T H E HANSCH A P P R O A C H
k
2
Action
Compound
Units of Activity
Η
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 7, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch011
S.
inh.
sarciîiaeforme spores
Ϊ
I/ED50
μΜ/cm
2
CH S.
sarcinaeforme
inh.
N - R
I
0=N
I/ED50
μΜ/cm
2
NH CH
V.
inaequales spores
3
RNH—C—NH
2
inh.
% inh. germination
inh.
pC
inh.
pC
inh.
pC
inh
pC
inh.
pC
Ri
T.
mentagrophytes OCH
M.
3
verrucaria
C.
albicans
HOC H COOR
T.
mentagrophytes
R RN(CH ) N(CH )
C.
albicans
RiR N(CH ) N(CH )
A.
niger
RCOO-
kill
pC
RCOO-
kill
pC
RCOO-
inh.
pC
XPh(CH ) NCS
inh.
pC
XPhCH NCS
inh.
pC
T. A. P. A.
interdigitale niger cyclopium niger
6
4
1
2
2
2
2
2
2
3
2
2
3
2
2
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
11.
L I E N A N D HANSCH
Antifungal
157
Agents
A c t i v i t y with Physicochemical Constants
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 7, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch011
ki
k
r
2
6
s
c
Equation
Ref.
3
0.99
0.24
1
4
6
3
0.99
0.30
2
4
d
5
0.94
0.16
3
4
0.90
12
0.95
0.16
4
4
0.79
0.93
9
0.93
0.15
5
4
0.70
0.95
7
0.97
0.21
6
8
0.53
1.37
22
0.89
0.50
7
8
0.34
1.74
19
0.86
0.40
8
8
0.67
2.08
8
0.97
0.18
9
8
0.76
2.43
14
0.99
0.13
10
8
0.55
2.66
10
0.96
0.21
11
8
0.46
2.79
6
0.97
0.06
12
8
0.55
3.28
13
0.90
0.15
13
8
0.51
-0.94
1.65
0.06
0.15
1.51
0.81
d
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
158
BIOLOGICAL CORRELATIONS
T H E HANSCH A P P R O A C H
Table l a . log A c t i v i t y = k ι log Ρ + Organism
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 7, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch011
M.
k
2
Action
Φ*
kill
pC
Ο
fructicola
Units of Activity
Compound
Type of
Ο
A.
oleracea
kill
pC
C.
albicans
inh.
pC
XPhHN
Ν
NHPhX
Ο II
N.
•0>
crassa
-SCCI3
inh.
pC
Ο
"Footnotes for Tables l a , b, c are given in Table Id (p.
176).
I n spite of the tremendous a m o u n t of d a t a r e p o r t e d i n the l i t e r a t u r e , f e w g e n e r a l i z e d q u a n t i t a t i v e s t r u c t u r e - a c t i v i t y c o r r e l a t i o n studies been reported
(4-8);
have
that is, little i n v e s t i g a t i o n , u s i n g a g e n e r a l i z e d
m o d e l , into correlations b e t w e e n the drug's m o l e c u l a r structure a n d the resultant b i o l o g i c a l a c t i v i t y has been done.
W e n o w report that w i t h
the use of c o m p u t e r i z e d regression analysis, a g e n e r a l i z e d e q u a t i o n a n d a f e w of its s i m p l i f i e d forms c a n be u s e d to correlate the a n t i f u n g a l ac t i v i t y of m o r e t h a n 560 c o m p o u n d s
w i t h t h e i r c h e m i c a l structures.
The
correlations o b t a i n e d s h o u l d serve as guidelines for the design of
new
a n t i f u n g a l agents.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
11.
L I E N A N D HANSCH
Antifungal
159
Agents
Continued
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 7, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch011
ki
k
n°
2
r
s
6
d
Equation
Réf.
0.88
3.53
10
0.86
0.58
14
8
0.73
3.74
10
0.83
0.56
15
8
0.50
4.15
8
0.96
0.22
16
.8
0.55
4.37
7
0.92
0.21
17
7
e
Method T h e b i o l o g i c a l d a t a w e r e c o l l e c t e d f r o m a survey of the l i t e r a t u r e u p to D e c e m b e r 1970. A l t h o u g h a n enormous a m o u n t of w o r k has b e e n p u b l i s h e d , o n l y d a t a suitable f o r q u a n t i t a t i v e analysis c o u l d b e
con-
sidered. T h e p h y s i c o c h e m i c a l constants u s e d i n the s t u d y w e r e l o g F or 7Γ, w h e r e Ρ is the o c t a n o l / w a t e r p a r t i t i o n coefficient of the w h o l e m o l e c u l e a n d 7Γ is defined as: x = log P
x
-
log Ρ π
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
160 (P
X
BIOLOGICAL CORRELATIONS
T H E HANSCH A P P R O A C H
is the p a r t i t i o n coefficient of a d e r i v a t i v e a n d P
is that for the p a r e n t
H
compound.)
A l s o u s e d w e r e H a m m e t t ' s σ constant, Taft's p o l a r
stant, σ*, a n d Taft's steric parameter, E . s
con
I n a f e w examples ( E q u a t i o n s
17, 21, 24, a n d 3 0 ) , F values f r o m o l e y l a l c o h o l / w a t e r have b e e n used. I n one instance ( E q u a t i o n 69) the c h e m i c a l shift of a p h e n o l i c p r o t o n has b e e n u s e d for c o m p a r i s o n w i t h the σ constant. e x p e r i m e n t a l l y m e a s u r e d p a r t i t i o n coefficients
W h e r e possible, the
for a l l m e m b e r s
of
the
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 7, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch011
series h a v e b e e n used. I n other instances o n l y one m e m b e r of a set has b e e n m e a s u r e d . V a l u e s for the other m e m b e r s w e r e o b t a i n e d b y t a k i n g a d v a n t a g e of the a d d i t i v i t y p r i n c i p l e s of l o g F a n d π. D e t a i l s are g i v e n elsewhere (4, 7, a n d 8 ) .
F o r the n e w w o r k of T a b l e I I , l o g F values for
the p a r e n t c o m p o u n d s are g i v e n i n the footnotes. T h e "best" equations are assembled i n T a b l e s l a , b , a n d c. H e r e w e h a v e g i v e n the equations w i t h the m a x i m u m n u m b e r of variables justified b y the F statistic w h e r e a ^
0.10.
s t u d i e d i n w h i c h o n l y p o o r correlations w e r e o b t a i n e d . i n c l u d e d these. (r =
independent
M a n y sets w e r e W e have
not
O u r s t a n d a r d for a g o o d c o r r e l a t i o n was set at r ^
0.9
c o r r e l a t i o n coefficient).
O n l y a f e w examples w i t h r s l i g h t l y b e l o w
0.9 h a v e b e e n i n c l u d e d . A t present w e are t r y i n g to establish a basic set of equations w i t h w h i c h others c a n be c o m p a r e d
in quantitative
studies. F o r p r a c t i c a l w o r k i n d e s i g n i n g n e w f u n g i c i d e s one w o u l d w a n t to use equations h a v i n g l o w e r correlations for g u i d a n c e to d e s i g n n e w derivatives for synthesis. I n T a b l e s l a , b , a n d c, η is the n u m b e r of d a t a points u s e d i n the least-squares fit of the d a t a a n d s is the s t a n d a r d de v i a t i o n f r o m the regression. tivity) / d log F =
Log P
0
was o b t a i n e d b y setting d ( l o g
ac
0 a n d s o l v i n g for l o g F . It represents the o p t i m u m
l i p o p h i l i c character for the g i v e n set of congeners. theses u n d e r this constant are the 9 5 % instances confidence
T h e figures i n p a r e n
confidence
intervals. I n some
intervals are m i s s i n g because it is not possible to
c a l c u l a t e t h e m . A n e x p l a n a t i o n of this c a l c u l a t i o n is g i v e n elsewhere W h e r e possible, a c t i v i t y has b e e n expressed as l o g 1 / C
(9).
(i.e., p C )
w h e r e C is the m o l a r c o n c e n t r a t i o n r e q u i r e d to cause a s t a n d a r d response ( s u c h as E D - , M I C , or L D i o o ) .
I n m a n y instances the intercepts of
these equations c a n be c o m p a r e d .
W h e r e a c t i v i t y is expressed i n other
) 0
units, s u c h comparisons are not possible. I n a f e w examples the r e l a t i v e v a l u e , F C , the m o l a r p h e n o l coefficient, has b e e n used. I n T a b l e s I l a - d n e w d a t a not p r e v i o u s l y c o r r e l a t e d are assembled. Results and Discussion I n T a b l e s l a a n d l b w e h a v e p l a c e d a l l equations w h i c h are corre l a t e d b y the single p a r a m e t e r , l o g F . E x c e p t for those equations i n w h i c h a c t i v i t y c o u l d not be defined b y p C (i.e., l o g 1 / C ) , a l l equations h a v e
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
11.
Antifungal
L I E N A N D HANSCH
161
Agents
b e e n a r r a n g e d b y i n c r e a s i n g v a l u e of t h e intercept.
S i n c e a c t i v i t y for
these is defined as t h e r e c i p r o c a l of the m o l a r c o n c e n t r a t i o n of f u n g i c i d e ( 1 / C ) , the larger t h e v a l u e of the intercept, t h e greater the i n t r i n s i c a c t i v i t y of the p h a r m a c o p h o r i c f u n c t i o n of a g i v e n congeneric
set.
In
c o m p a r i n g the intercept of these equations w e are c o n s i d e r i n g t h e case where Ρ = compare
1 or log Ρ =
completely
0.
C o m p a r i n g intercepts thus a l l o w s one to
different sets of congeners a c t i n g o n
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 7, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch011
different b i o c h e m i c a l systems u n d e r the c o n d i t i o n w h e r e t h e h a v e the same l i p o p h i l i c character.
completely molecules
If c o m p a r i s o n of t w o or m o r e
sets
of congeners is b e i n g m a d e o n a n i d e n t i c a l test system ( s a m e o r g a n i s m , t e m p e r a t u r e , n u t r i e n t , a n d so f o r t h ) , t h e n differences
i n intercept c a n
b e t a k e n as differences i n w h a t m i g h t b e c a l l e d the i n t r i n s i c a c t i v i t y of the c o m m o n p h a r m a c o p h o r i c f u n c t i o n . S t a t e d another w a y , i f l o g F ac counts for differences i n a c t i v i t y caused b y t h e h y d r o p h o b i c
character
of the drugs ( a n d this is the o n l y v a r i a b l e i n our e q u a t i o n ) , t h e n other differences b e t w e e n sets are c o n t a i n e d i n the intercept.
A t o u r present
l e v e l of refinement i n e x t r a t h e r m o d y n a m i c correlations these m i g h t l u m p e d together u n d e r t h e c o m m o n nately, it turns out (10)
be
h e a d i n g stereoelectronic.
Fortu
that w h e n the o c t a n o l / w a t e r reference
system
is u s e d as a s t a n d a r d , the intercept for the most nonspecific k i n d s of b i o l o g i c a l response is 0.0 ± l o g P)
.5; t h a t is, equations
( i n the single v a r i a b l e
correlating simple protein denaturation, narcotic action on frog
hearts, narcosis of tadpoles, a n d the l i k e h a v e intercepts near zero.
This
holds o n l y for n e u t r a l molecules s u c h as alcohols, ketones, esters, a n d so f o r t h . I o n i c c o m p o u n d s s u c h as R C O O " a n d R N ( C H ) +
3
3
deviate f r o m
this greatly. It m u s t also be k e p t i n m i n d t h a t t h e v a l u e of the i n t e r c e p t depends o n the l e v e l of response; that is, the intercept for a n E D i o o w o u l d b e l o w e r t h a n that for a n E D
5 0
.
W e c a n c a u t i o u s l y b e g i n to use intercepts s u c h as those i n T a b l e s l a a n d l b to order v a r i o u s f u n c t i o n a l groups i n terms of t h e i r r e l a t i v e effects o n v a r i o u s b i o c h e m i c a l systems. T h e r e is a n a d v a n t a g e i n m a k i n g comparisons of molecules o n a n i s o l i p o p h i l i c basis e a r l y i n structure-ac t i v i t y studies, w h i c h c a n be i l l u s t r a t e d as follows.
O m i t t i n g t h e t w o ex
treme examples ( E q u a t i o n s 2 a n d 3, w h i c h are b a s e d o n little d a t a ) , the m e a n a n d s t a n d a r d d e v i a t i o n for the slopes of the other 15 cases i n T a b l e l a is 0.62 ±
0.15.
O n this basis, molecules i n different c o n g e n e r i c
sets
w h i c h differ b y 3 i n l o g Ρ values w o u l d h a v e differences i n a c t i v i t y of 1.86 l o g units, or 70-fold.
W h i l e this w o u l d i n d i c a t e g r e a t l y different
a c t i v i t y for the t w o isolated examples, i f the intercepts for the t w o e q u a tions c o r r e l a t i n g the S A R for the sets are the same, little i m p o r t a n c e is to be a t t a c h e d to the 70-fold difference i n a c t i v i t y . T h i s c a n b e a c h i e v e d for a n y m e m b e r s of the sets s i m p l y b y m a n i p u l a t i o n of the l o g Ρ values.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
162
BIOLOGICAL
CORRELATIONS
Table l b . log A c t i v i t y = Organism
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 7, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch011
T.
Equations Correlating Antifungal
(log P )
-kx
Type of
T H E HANSCH A P P R O A C H
2
+ k log Ρ +
Compound
rosaceum
2
k
s
Action
Units of Activity
inh.
PC
inh. Mycelia
mm/day
inh. Mycelia
mm/day
inh.
relative
inh.
PC
It A.
niger
with EDTA
OH R A.
niger
OH
0 II
A.
cV
tenuis
C
/
NSCC1,
II
ο
C.
albicans Br
V.
inaequales spores
E.
graminis
RNH + 3
•o' V
,N—SCCU
inh.
% Germination
inh.
% reduction in infection
Ο
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
11.
Antifungal
L I E N A N D HANSCH
163
Agents
A c t i v i t y with Physicochemical Constants
Equa-
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 7, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch011
ki
k
2
k
log P
0.11
1.68
-2.68
d
0.14
1.36
-2.36
d
0.13
1.20
-1.84
d
0.21
1.13
-1.59
d
0.08
1.32
-0.89
d
0.18
1.38
-0.85
d
1.12
3.87
1.90
3
d
η
r
s
Hon
Ref.
7.3 (6.2-11)
22
0.99
0.13
18
8
5.0 (4.9-5.2)
9
0.99
0.08
19
4
4.7 (4.6-5.0)
11
0.96
0.11
20
4
2.8 (2.3-31)
6
0.98
0.08
21
7
7.8 (6.2-15)
14
0.99
0.12
22
8
3.9 (3.5-5.5)
5
0.99
0.07
23
4
1.7 (0.7-2.0)
6
0.96
0.32
24
7
c
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
164
BIOLOGICAL CORRELATIONS
T H E HANSCH A P P R O A C H
Table l b . log A c t i v i t y =
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 7, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch011
Organism
- f c i (log P ) + k l o g Ρ + 2
2
Type of Compound
Ο-*
h
Action
Units of Activity
kill
Ι/μΜ/cm
2
M.
fructicola
P.
infestons
χ-
kill
Ι/μΜ/cm
2
A.
oleracea
x-
kill
Ι/μΜ/cm
2
V.
inaequales
X-
kill
Ι/μΛί/cm
2
kill
Ι/μΜ/cm
2
^ ^ N + - R
R BrV.
inaequales
0
II
S.