Structure-directing Weak Interactions with 1,4

4 days ago - The complexes [MII(acac)2] (M = Cu 1, Pd 2, Pt 3; Hacac = acetylacetone) and 1,4-diiodotetrafluorobenzene (FIB) were co-crystallized in ...
2 downloads 2 Views 1MB Size
Subscriber access provided by Kaohsiung Medical University

Article

Structure-directing Weak Interactions with 1,4-Diiodotetrafluorobenzene Convert 1D-Arrays of [MII(acac)2] Species into 3D-Networks Anton V. Rozhkov, Alexander S. Novikov, Daniil M. Ivanov, Dmitrii S. Bolotin, Nadezhda A. Bokach, and Vadim Yu. Kukushkin Cryst. Growth Des., Just Accepted Manuscript • DOI: 10.1021/acs.cgd.8b00408 • Publication Date (Web): 15 May 2018 Downloaded from http://pubs.acs.org on May 16, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

Structure-directing Weak Interactions with 1,4-Diiodotetrafluorobenzene Convert 1D-Arrays of [MII(acac)2] Species into 3D-Networks

Anton V. Rozhkov,a Alexander S. Novikov,a Daniil M. Ivanov,a Dmitrii S. Bolotin,a Nadezhda A. Bokach,a,* and Vadim Yu. Kukushkin*a,b

(a) Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation (b) Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoii Pr., 31, 199004 Saint Petersburg, Russian Federation

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 31

Abstract

The complexes [MII(acac)2] (M = Cu 1, Pd 2, Pt 3; Hacac = acetylacetone) and 1,4diiodotetrafluorobenzene (FIB) were co-crystallized in CHCl3–MeOH solutions to form adducts (1– 3)•FIB, whose structures were studied by XRD. The association leads to unification of the three structures thus demonstrating the potential of the isostructural Cu/Pd/Pt exchange for construction of supramolecular systems involving [MII(acac)2] complexes. In the crystal structures of (1–3)•FIB, the intermolecular bifurcated halogen bonding I•••µ2-(O,O) and non-covalent interactions M•••C were identified and then studied by DFT calculations and topological analysis of the electron density distribution within the framework of QTAIM method at the M06/DZP-DKH level of theory. Apart from these unconventional interactions, two types of classic hydrogen bonding, viz. the C–H•••I–C and C–H•••F–C contacts between Me groups and halogen atoms of FIB, were detected. Collectively all these non-covalent structure-directing interactions provide conversion of 1D-arrays of the [MII(acac)2] species into 3D-networks.

2

ACS Paragon Plus Environment

Page 3 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

1. Introduction

The acetylacetonate (commonly abbreviated as acac) is the simplest aliphatic specimen of a wide class of 1,3-diketonates.1 It found a widespread application as one of the most common chelating ligands for metal species and various aspects of versatile chemistry of acac complexes have been repeatedly reviewed over the years (for comprehensive books and reviews of the past decade see Refs.2-3). The great amount of publications on (acac)M species and, in general, on 1,3-diketonate metal compounds relates to their extensive application in materials chemistry (e.g., in polymer industry,4-5 energy storage devices,6-7 CVD-,8-10 FEBID-,11-12 OLED applications13-14), medicine,15-16 and also in organic chemistry where (1,3-diketonate)M’s are broadly employed as efficient catalysts for substantial number of organic transformations.17 As far as the solid state properties of acetylacetonate metal complexes are concerned, in the crystalline state they exhibit unique mechanical18 and triboluminescent properties,19 NLO-effect,20-21 and they form wave-like coordination polymers.22 These properties were achieved by proper crystal engineering approaches that are utilized metal-π and π-π interactions of delocalized electronic systems, intermolecular hydrogen bonding etc.

3

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 31

Hal

C

C

O O

M N

I

Hal

N

O

O

O

Cu

I

O

O

O

Hal

I

I

C Hal

C

M = CoII, NiII; Hal = Br, I a

N

b

F

F

I F

O I

F

O

N

O

M

O O

O

M = FeIII, AlIII c

N

Figure 1. Known types of (acac)M’s assembled by XB in the solid state.

Some reports were devoted to application of (acac)M’s (M = NiII,23 CoII,23 CuII,24 FeIII,25 and AlIII 25; Figure 1a–c) as synthons for halogen bonding (XB) as a structure-directing interaction. In Ref.23 (a; 3-Ipy is shown), construction of molecular crystals was performed by using halogensubstituted pyridine ligands (3-Ipy or 3-Brpy), whose halide centers form XB with the O centers of the acac ligands. In the copper complex (b),24 I•••O bifurcated XB (abbreviated here as BXB) is formed between the iodoethynyl moiety and the acac O atoms of another molecule. One more work25 (c) reports assembled structures, where XB is realized between FIB and peripheral pyridine N centers. In Ref.,26 construction of molecular crystals was performed by using morpholine and thiomorpholine ligands, whose O and S centers form XB with FIB, while 1,3-diketonate species act as supporting non-interacting ligands. In this work, we found that 1,4-diiodotetrafluorobenzene (FIB) forms adducts with [MII(acac)2] (M = Cu, Pd, Pt), where a complex and FIB are linked by I•••µ2-(O,O) halogen bonding 4

ACS Paragon Plus Environment

Page 5 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

(XB) and the molecules alternate each other. We verified the role of hydrogen bonding (HB), XB, and M•••C contacts in the conversion of 1D-arrays of [MII(acac)2] into 3D-networks of the three isomorphic structures of [MII(acac)2]•FIB and all our results consistently disclosed in sections that follow.

2. Results and discussion

2.1. General description of the XRD structures. The complexes [MII(acac)2] (M = Cu 1,27 Pd 2,28 Pt 329) and 1,4-diiodotetrafluorobenzene were co-crystallized in CHCl3–MeOH solutions to form isostructural adducts (1–3)•FIB, whose structures were studied by XRD. All our multifold attempts to obtain a single-crystal of the relevant adduct with [Ni(acac)2] failed probably because of the known ability of NiIIO4-type species, in particular [Ni(acac)2] complex, to coordinate two extra ligands such as, for instance, H2O or X–, forming octahedral species that are further converted to octahedral trimers.23, 30

F O I

F

O

O I

M O

F I

O

O

O I

M

I

O

O F

F

F

M = CuII, PdII, PtII

5

ACS Paragon Plus Environment

F

I

M O

F

O O

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 31

Figure 2. Crystal structures of (1–3)•FIB (a) fragment of the crystal structure of 1•FIB and (b) graphical representation of the formed adducts for all three species. Dotted blue lines indicate XB’s. 1•FIB is given on the figure as the largest number of XRD structures of unassociated 1 is known namely for the copper complex.

In (1–3)•FIB (Figure 2; Figures 1S–2S, Supporting Information), all three complexes represent a four-coordinated metal atom in a square-planar environment. Noteworthy that association of 1–3 with FIB leads to unification of their structures, which all crystallize in I2/m space group thus indicating the potential of the isostructural Cu/Pd/Pt exchange for construction of supramolecular systems involving [MII(acac)2] species. Such unification of structures is not unusual and it is associated mostly with favorable packing with advantageous combination of strength and direction of weak interactions. The unification upon association with FIB allows easy comparison of all three structures.

Figure 3. Atom numbering in the parent complexes of adducts (1–3)•FIB.

In adducts (1–3)•FIB, the M–O (M = CuII, PdII, PtII), C2–O1, and C2–C3 bond distances and the O–M–O angles (Figure 3) are equal, within 3σ, to those in the corresponding unassociated complexes 1,27 2,28 and 3;29 co-crystallization of 1–3 with FIB does not lead to substantial changes in their geometries (Table 1S, Supporting Information).

6

ACS Paragon Plus Environment

Page 7 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

2.2. Supramolecular association via halogen bonding. In the crystal structures of (1– 3)•FIB, we identified weak intermolecular bifurcated XB with iodine centers of FIB. The BXB C– I•••(O–M–O) is formed by the two O atoms of the acac ligands and one iodine atom of FIB (Figure 2). The I•••O distances (3.354(2), 3.255(3), and 3.248(3) Å for (1–3)•FIB, respectively) are less than the corresponding sums of Bondi vdW radii (3.50 Å31) and the contact angle in each structure [157.07(3), 155.78(6), and 155.86(5)° for (1–3)•FIB, correspondingly] does not significantly deviate from 160°. The recognized examples of C–I•••µ2-(O,O’) BXB involving FIB include only metalfree adducts, viz. the vanillin derivatives [3(or 4)-MeC(=O)C6H4N=CHC6H3(OH-2)(OMe3)]2•FIB32 and (1,10-phenanthroline-5,6-dione)•FIB.33 Relevant bifurcated halogen bonding C–I•••µ2-(O,O) were repeatedly reported.34-41 Our CCDC search also allowed the verification of FIB-free structures where BXB’s span 3–6 membered systems, viz. 3-membered cycles C–I•••µ2-(O,O)-(ROOR),42 4-membered systems C–I•••µ2-(O,O)(OXO) (where X = N,35-36, 38, 43-60 C,61 S,62-63 Cl,64 or such metal centers as Co,65 Cd,66 Cu24), 5membered moieties C–I•••µ2-(O,O)-(OXXO) (X–X = C–C65,

67-68

), and 6-membered species C–

I•••µ2-(O,O)-(OXXXO) (X–X–X = N–C–C,69 S–N–S50). As far as metal-containing fragments C– I•••µ2-(O,O)-(OMO)24, 65-66 (Figure 4) are concerned, all these moieties are formed by bifunctional complexes featuring both XB donor (iodine) and XB acceptor (oxygen) centers in one molecule, whereas in our cases supramolecular organization is determined by external XB donor (the iodines of FIB) and two oxygen centers of each of the acac complexes. Our systems featuring a 4-membered cycle C–I•••µ2-(O,O)-(OMO) comprise the first example of BXB in acetylacetonate metal complexes with FIB acting as an external XB donor. Association of FIB with other than acac type complexes of CuII,70 PdII,71 PtIV,72 and PtII 72 has a few precedents in the past.

7

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

O

M

Page 8 of 31

O

O

M O

I

I I

O M

O O

O M

O

O O

O

M

M = CoII, CdII C I O

O Cu

I O

I O

I C

Figure 4. Known types of BXB C–I•••µ2-(O,O)-(OMO).

Noteworthy that the C–I•••µ2-(O,O) distances in 2•FIB (3.255(2) Å) and 3•FIB (3.248(3) Å) are the same within 3σ, while this distance in 1•FIB (3.354(2) Å) is substantially longer. Most likely the copper center exhibits higher charge density. It makes weaker the nucleophilic properties of the adjacent O atoms and, consequently, results in larger O•••I separations. Interatomic distances I•••O (RXB are in the range 0.92–0.96) indicate that these contacts are weak. However, one molecule of each complex form at least four XB’s (two bifurcated contacts, i.e. four I•••O contacts per molecule) therefore one can conclude that collectively all these contacts are sufficiently strong to stabilize the adducts. 2.3. Recognition of M•••C non-covalent interactions. In adducts (1–3)•FIB, we identified short intermolecular contacts M•••C between each metal center and the central C atom of acac ligand from neighboring molecule (Table 2S, Supporting Information, Figure 5).

8

ACS Paragon Plus Environment

Page 9 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

Figure 5. M•••C interactions in 1 (left) and 1•FIB (right). For M•••C interactions in relevant 2–3/(2– 3)•FIB see Figures 1S–2S (Supporting Information).

Table 1. Geometric parameters and energy of the M•••C bonding in [MII(acac)2] and their adducts. Adduct

M•••C, Å

Bondi vdW radii sum, Å31

Alvarez vdW radii sum, Å73

E by Espinoza74 and Vener75

1•FIB 1 2•FIB 2 3•FIB 3

3.256 3.056 3.452 3.310 3.541 3.623

1.40 + 1.70 = 3.10 1.40 + 1.70 = 3.10 1.63 + 1.70 = 3.33 1.63 + 1.70 = 3.33 1.72 + 1.70 = 3.42 1.72 + 1.70 = 3.42

2.38 + 1.77 = 4.15 2.38 + 1.77 = 4.15 2.15 + 1.77 = 3.92 2.15 + 1.77 = 3.92 2.29 + 1.77 = 4.06 2.29 + 1.77 = 4.06

1.6 and 1.3 2.5 and 1.9 1.6 and 1.3 1.9 and 1.6 1.3 and 1.1 0.9 and 1.1

E by Tsirelson– Baratashevich76 2.1 2.9–3.4 2.1 2.5–2.6 1.7 1.3–1.7

In all three cases, M•••C distances are slightly larger than the sum of their Bondi vdW radii,31 but substantially lesser than the sum of their Alvarez vdW radii73 (Table 1). In general, one should take into consideration that metal radii cannot be unambiguously defined and to date several values of vdW radii for Cu, Pd, and Pt atoms based on different approaches have been proposed, varying from 1.40 (Cu), 1.63 (Pd), and 1.72 (Pt) to 2.38 (Cu), 2.15 (Pd), and 2.29 (Pt) Å.73 Thus, in addition to structural analysis, detailed computational study is needed to check availability of non9

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 31

covalent interactions involving metal centers and, consequently, these theoretical calculations were performed (section 2.6) and the obtained data confirmed the existence of M•••C interactions. In the context of the M•••C contacts, we conducted an extensive literature search for similar contacts in 1,3-diketonate metal complexes and our results are summarized in Table 3S, Supporting Information. We found that in some works, performed mostly for copper(II) complexes27, 77-84 and more rarely for palladium(II) species,28, 85-87 short M•••C (M = CuII, PdII) contacts between metal centers and the central C atom of 1,3-diketonate ligands were recognized (Figures 5 and 6). The first reports appeared more than 50 years ago,77-78 and the observed contacts were named “long intermolecular bond” and “weak interaction”, while later27,

79, 81-84

they were characterized as

“notably short contacts”, “π-π stacking interactions involving chelate rings”, etc. It is of note that until now these contacts were not observed for any of 1,3-diketonate platinum(II) species.

R3

O

R2

R3 R2

M

O R1 R1 O O M O O

R1

R1

O

R2 O

R3

R2 R3

Figure 6. Graphical representation of a [MII(1,3-diketonate)2] dimeric structure. Dotted blue lines indicate M•••C contacts; see Table 3S, Supporting Information, for particular examples of M•••C contacts.

Other cases of weak Cu•••C contacts were reported for (1,3-diketonate)CuII or related complexes, where a metal center behaves as Lewis acid, interacting with π-system of aromatic rings from salicylaldehydate ligand of neighboring molecule (Figure 7, a),88 or with π-system of cocrystallized arene with (1,3-diketonate)CuII complex (b),89-90 or with π-system of Ph substituent 10

ACS Paragon Plus Environment

Page 11 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

from 1,3-diketonate ligand in [Cu{O=C(C6F5)CHC(Ph)=O}2] (b).80 Similar contacts between palladium(II)

center

and

of

π-system

aromatic

rings

were

observed

at

the

(9-

hydrohyphenalenonate)PdII complex (c).91

O O O O

Cu

Cu

R

O O O

O

O

O

O O

b

a

Me

Cu

O O

Pd

O

Me

O O

Me

O

Pd

O O

Me

c

Figure 7. Graphical representation of CUSALA (a), MOLHAY, MOLHOM, DORSUA, and HACYAN (b), and KEFKAI (c) structures. Dotted blue lines were indicate M•••C contacts.

As can be inferred from consideration of the M•••C contacts in (1–3)•FIB and 1–3, these interactions provide stacking of the planar [MII(acac)2] systems and determine their crystal packing (Table 1). The M•••C distances and energies are in the same range irrespectively of the nature of the metal center. We assume that the observed M•••C interactions can be described as the resonance between three types of interactions, viz. metal•••(π-hole),92 dispersion, and semicoordination,93-95 (Figure 8).

11

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

C

Page 12 of 31

C

H

C

H

M

H

M

M

dz2

Metal•••(π-hole) Interactions

Dispersion Interactions

Semicoordination via p-Orbitals

Figure 8. Anatomy of the M•••C bonding.

In the case of the stronger dz2-nucleophilic PtII center (Figure 8, left), contribution of the metal•••(π-hole) structure should be larger, whereas more electrophilic CuII center (Figure 8, right) gives a higher probability for the semicoordination; the resonance between the three forms provides the leveling effect on distances and energies of the M•••C contacts. It is clear that a possibility of the negligible contribution of one form should also be taken into account. Thus, the analysis of the published data (Table 3S, Supporting Information), the processing of appropriate cif’s from CCDC database, and our experimental data allowed the recognition of the M•••C stacking as a single phenomenon specific for (acac)MII species and their adducts. 2.4. Hydrogen bonding in (1–3)•FIB. We identified two types of hydrogen bonding formed between any complex molecule acting as HB donor through its Me groups and FIB serving as HB acceptor. The first type is the C–H•••I–C HB’s (for geometrical parameters of HB see Table 4S, Supporting Information) linking Me substituents and the I atoms of FIB. Simultaneous formation of XB and HB—the so-called amphipathic bonding96—with the same I atom are known, when, e.g., iodine atom of I2 is linked to the OH of MeOH97 or the NH of a (nitrosoguanidinate)NiII complex.95 The second type of HB is the C–H•••F–C contacts. Relevant C–H•••F–C HB’s involving metal complexes were reported in one only study on association of non-acetylacetonate metal species and FIB.98 12

ACS Paragon Plus Environment

Page 13 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

2.5. Conversion of 1D-arrays in the crystal structures of 1–3 into 3D-networks of (1– 3)•FIB. The crystal structures of (1–3)•FIB form chains, where molecules of 1–3 and FIB are connected via XB’s (section 2.2) and alternate each other. Both partners of supramolecular architecture lie in one plane but twisted along M(acac)2–FIB chain (Figure 9, top) angle between the MO4 and arene mean planes are 2.38(16) (Cu), 4.0(3) (Pd), and 4.9(3)° (Pt), and fold angle in all cases is 0°. The 1D-chains are connected to each other via C–H•••F–C HB’s giving 2D-sheets, which are, in turn, are connected via C–H•••I–C HB’s (section 2.4) and M•••C (section 2.3) intermolecular interactions.

Figure 9. Schematic representation of directing interactions providing conversion of 1D- into 3Dnetwork of [MII(acac)2] (M = Cu taken as an example) upon their association with FIB.

13

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 31

2.6. Theoretical study of the intermolecular bifurcated XB I•••O and non-covalent interactions M•••C. Inspection of the crystallographic data for (1–3)•FIB suggests the presence in all these structures the intermolecular BXB I•••µ2-(O,O) (section 2.2) and also non-covalent interactions M•••C (section 2.3); both are responsible for the formation of a polymeric networks. Considering this, in addition to structural analysis, detailed computational study is desirable. Its necessity is also determined by unambiguity what vdW radii should be taken for comparison purposes (for discussion see section 2.3). 2.6.1. Hirshfeld surface analysis for the X-ray structures of (1–3)•FIB. The molecular Hirshfeld surface represents an area where molecules come into contacts, and its analysis gives the possibility of an additional insight into the nature of intermolecular interactions in the crystal state. We carried out the Hirshfeld surface analysis for the X-ray structures of (1–3)•FIB (Table 2) to understand what kind of intermolecular contacts gives the largest contributions in crystal packing.

Table 2. Results of the Hirshfeld surface analysis for XRD structures of (1–3)•FIB. X-ray structure 1•FIB 2•FIB 3•FIB

Contributions of different intermolecular contacts to the molecular Hirshfeld surface* H–H 29.9%, F–H 19.0%, O–H 18.9%, I–H 9.9%, O–C 4.8%, Cu–C 4.2%, C–H 4.2%, I–O 3.5%, F–C 2.6%, O–O 1.5%, Cu–H 1.3% H–H 30.1%, F–H 19.0%, O–H 16.9%, I–H 9.3%, Pd–C 5.3%, C–H 5.3%, I–O 4.3%, O–C 3.8%, O–O 2.9%, F–C 2.3% H–H 31.1%, F–H 19.0%, O–H 17.0%, I–H 8.4%, Pt–C 5.4%, C–H 5.4%, I–O 4.0%, O–C 3.3%, O–O 3.2%, F–C 2.7%

*The contributions of all other intermolecular contacts do not exceed 1%.

14

ACS Paragon Plus Environment

Page 15 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

Figure 10. Hirshfeld surfaces of (1–3)•FIB.

For the visualization, we have used a mapping of the normalized contact distance (dnorm); its negative value enables identification of molecular regions of substantial importance for detection of short contacts. Figure 10 depicts the Hirshfeld surfaces of (1–3)•FIB. In these Hirshfeld surfaces, the regions of shortest intermolecular contacts visualized by red circle areas. The main partial contributions of different intermolecular contacts to the molecular Hirshfeld surfaces are H–H 29.9%, F–H 19.0%, O–H 18.9%, and I–H 9.9%, in case of 1•FIB; H–H 30.1%, F–H 19.0%, O–H 16.9%, and I–H 9.3% in case of 2•FIB; H–H 31.1%, F–H 19.0%, O–H 17.0%, and I–H 8.4% in case of 3•FIB. Thus, the Hirshfeld surface analysis for the obtained X-ray structures of (1–3)•FIB reveal that in all cases crystal packing is determined primarily by intermolecular contacts involving hydrogen, fluorine, oxygen, and iodine atoms. However, this analysis does not answer the question on energies of these contacts and, therefore, the DFT calculations (section 2.6.2) should be further performed. 2.6.2. DFT-QTAIM calculations. In order to confirm or disprove the hypothesis on the existence of these supramolecular contacts and quantify their energies from theoretical viewpoint, we carried out DFT calculations and performed topological analysis of the electron density distribution within the framework of Bader theory (QTAIM method)99 for model supramolecular clusters (1–3)3(FIB)2 (Supporting Information, Table 6S). This approach has already been successfully used by us upon studies of different non-covalent interactions, e.g., hydrogen,100-103 halogen,95, 104-109 and chalcogen bonding,110 as well as metallophilic interactions,111 in various metal complexes. Results are summarized in Table 3, the contour line diagrams of the Laplacian distribution ∇2ρ(r), bond paths, and selected zero-flux surfaces for 1•FIB are shown in Figure 11, corresponding atomic basins of electron density gradient lines maps are presented in Figure 12. To

15

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 31

visualize studied non-covalent interactions, reduced density gradient (RDG) analysis112 was carried out, and RDG isosurfaces for 1•FIB were plotted (Figure 11).

Table 3. Values of the density of all electrons – ρ(r), Laplacian of electron density – ∇2ρ(r), energy density – Hb, potential energy density – V(r), and Lagrangian kinetic energy – G(r) (Hartree) at the bond critical points (3, –1), corresponding to the intermolecular bifurcated halogen bonding I•••O and non-covalent interactions M•••C responsible for the formation of a polymeric networks in (1– 3)•FIB, bond lengths – l (Å), as well as energies for these contacts Eint (kcal/mol), defined by two approaches.

a b

Contact

ρ(r)

∇2ρ(r)

Hb

I•••O Cu•••C

0.008 0.008

0.031 0.021

0.001 0.000

I•••O Pd•••C

0.010 0.009

0.038 0.020

0.001 0.000

I•••O Pt•••C

0.010 0.009

0.038 0.021

0.002 0.001

V(r) 1•FIB –0.005 –0.005 2•FIB –0.007 –0.005 3•FIB –0.007 –0.004

Eint = –V(r)/2 74 Eint = 0.429G(r) 75

16

ACS Paragon Plus Environment

G(r)

Einta

Eintb

l

0.006 0.005

1.6 1.6

1.6 1.3

3.354 3.256

0.008 0.005

2.2 1.6

2.2 1.3

3.257 3.451

0.008 0.004

2.2 1.3

2.2 1.1

3.248 3.541

Page 17 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

Figure 11. Contour line diagrams of the Laplacian distribution ∇2ρ(r), bond paths and selected zero-flux surfaces (left) and RDG isosurfaces (right) referring to the intermolecular bifurcated halogen bonding I•••O (top) and non-covalent interactions Cu•••C (bottom) in 1•FIB. Bond critical points (3, –1) are shown in blue, nuclear critical points (3, –3) – in pale brown, ring critical points (3, +1) – in orange, cage critical points (3, +3) – in light green. Length units – Å, RDG isosurface values are given in Hartree.

Figure 12. Atomic basins of electron density gradient lines maps referring to the intermolecular bifurcated halogen bonding I•••O (left) and non-covalent interactions Cu•••C (right) in 1•FIB. Bond critical points (3, –1) are shown in blue, nuclear critical points (3, –3) – in pale brown, ring critical points (3, +1) – in orange, cage critical points (3, +3) – in light green, length units – Å.

The QTAIM analysis performed for (1–3)•FIB demonstrates the presence of appropriate bond critical points (BCP’s) (3, –1) for the intermolecular bifurcated XB I•••O and non-covalent interactions M•••C (Table 3). The low magnitude of the electron density (0.008–0.010 Hartree), positive values of the Laplacian (0.020–0.038 Hartree), and zero or close to zero positive energy density (0.000–0.002 Hartree) in these BCP’s are typical for non-covalent interactions. We have defined energies for these contacts according to the procedures proposed by Espinosa et al.74 and Vener et al.75 (Table 4), and one can state that strength of these supramolecular contacts vary from

17

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 18 of 31

1.1 to 2.2 kcal/mol. Tsirelson, Bartashevich et al. also proposed alternative correlations developed exclusively for non-covalent contacts involving iodine atoms,76 viz. Eint = 0.68(−V(r)) or Eint = 0.67G(r). In accord with these correlations, energies of non-covalent interaction I•••O in (1–3)•FIB even reach 3.4 kcal/mol. The balance between the Lagrangian kinetic energy G(r) and potential energy density V(r) at the BCP’s reveals the nature of these interactions, if the ratio –G(r)/V(r) > 1 is satisfied, than the nature of appropriate interaction is purely non-covalent, in case the –G(r)/V(r) < 1 some covalent component takes place.113 Based on this criterion one can state that the covalent contribution in all discussed above contacts is negligible. We also carried out DFT calculations and performed topological analysis of the electron density distribution within the framework of Bader’s theory (QTAIM method)99 for the model trimeric supramolecular adducts 13, 23, and 33 without FIB molecules based on the previously published X-ray structures (CCDC codes: ACACCU01,27 ACACPD01,28 and HAHHIJ,29 respectively; Tables 4 and 6S). The appropriate BCP’s for all M•••C contacts were found in all species and estimated energies for these contacts are 1.9–2.5 (13), 1.6–1.9 (23), and 0.9–1.1 (33) kcal/mol. Thus, association of 1–3 with FIB molecules leads to slight weakening of Cu•••C and Pd•••C contacts and negligible strengthening of the Pt•••C contacts in solid state.

18

ACS Paragon Plus Environment

Page 19 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

Table 4. Values of the density of all electrons – ρ(r), Laplacian of electron density – ∇2ρ(r), energy density – Hb, potential energy density – V(r), and Lagrangian kinetic energy – G(r) (Hartree) at the bond critical points (3, –1), corresponding to intermolecular non-covalent interactions M•••C in the [Cu(acac)2]3 (13), [Pd(acac)2]3 (23), and [Pt(acac)2]3 (33) trimers, bond lengths – l (Å), as well as energies for these contacts Eint (kcal/mol), defined by two approaches. Contact

ρ(r)

∇2ρ(r)

Hb

Cu•••C

0.012

0.027

0.000

Pd•••C

0.011

0.023

0.000

Pt•••C Eint = –V(r)/274 b Eint = 0.429G(r)75

0.007

0.018

0.001

V(r) 13 –0.008 23 –0.006 33 –0.003

G(r)

Einta

Eintb

l

0.007

2.5

1.9

3.056

0.006

1.9

1.6

3.310

0.004

0.9

1.1

3.623

a

3. Conclusions

Results from this work can be considered from the following perspectives. Firstly, the XRD studies of isostructural species (1–3)•FIB indicate that association any one of 1–3 with FIB leads to unification of the (1–3)•FIB structures and, by contrast to the parent [MII(acac)2], all structures of (1–3)•FIB are isomorphic (crystallize in the same space group, exhibit very similar crystal packing, and also close geometrical parameters of the molecular structures). Secondly, we identified significant types of structure-directing contacts and found that these interactions provide conversion of 1D-arrays of crystalline 1–3 into 3D-networks of (1–3)•FIB (Figure 9). Apart from classic hydrogen bonding, unconventional C–I•••µ2-(O,O)-(OMO) halogen bonding as well as M•••C interactions represents these types of intermolecular contacts. As can be inferred from consideration of our data, FIB is a useful building block for design of extended 19

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 31

structures via I•••µ2-(O,O) contacts and further utilization of FIB for these purposes is under way in our group. Thirdly, in the crystal structures of (1–3)•FIB, we observed short contacts between each of the metal centers and central C atoms of the chelated acetylacetonate ring from a neighboring complex. Our analysis of the published data collected in Table

4S, Supporting Information,

revealed that M•••C contacts between stacks of the chelated rings were noticed in the past for [MII(acac)2] (M = Cu, Pd; not observed for Pt) complexes, but this stacking has never been considered as a single phenomenon specific for (acac)MII species and their adducts. The obtained data on M•••C interactions and their energies might be useful for crystal engineering and, eventually, for design of functional materials insofar as stacking intermolecular interactions often determine magnetic,114-115 photo- and electroluminescent,116-118 as well as charge-transporting119 properties of solid materials.

4. Experimental

Reagents. The complexes [MII(acac)2] (M = Cu,120 Pd,121 Pt122) were synthesized by the published methods. Solvents were obtained from commercial sources and used as received. 1,4diiodotetrafluorobenzene (FIB; 98%) was purchased from Sigma–Aldrich. Crystal Growth. The single crystals were prepared by slow evaporation of a chloroformmethanol solution (1:1, v/v) of a mixture of the corresponding [MII(acac)2] and FIB taken in a 1:1 molar ratio. X-ray diffraction studies. Suitable crystals of 1•FIB and 3•FIB were studied using Xcalibur, Eos diffractometer (monochromated MoKα radiation, λ = 0.71073 Å), whereas crystal of 2•FIB was studied using SuperNova, Dual, Cu at zero, Atlas diffractometer (monochromated CuKα radiation, λ

20

ACS Paragon Plus Environment

Page 21 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

= 1.54184 Å) at 100(2) K. In each case, the structures have been solved with the ShelXT123 structure solution program using Intrinsic Phasing and refined with the ShelXL123 refinement package incorporated in the OLEX2 program package124 using Least Squares minimization. Empirical absorption correction was applied in CrysAlisPro125 program complex using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Crystal data and structure refinement for (1–3)•FIB are presented in Supporting Information, Table 5S. Computational details. The single point calculations based on the experimental X-ray geometries have been carried out at the DFT level of theory using the M06 functional126 (this functional was specifically developed to describe weak dispersion forces and non-covalent interactions) with the help of Gaussian-09127 program package. The Douglas–Kroll–Hess 2nd order scalar relativistic calculations requested relativistic core Hamiltonian were carried out using DZPDKH basis sets128-131 for all atoms. The topological analysis of the electron density distribution with the help of the atoms in molecules (QTAIM) method developed by Bader99 has been performed by using the Multiwfn program (version 3.3.8).132 The Cartesian atomic coordinates of model supramolecular clusters are presented in Supporting Information, Table 6S. The Hirshfeld molecular surfaces were generated by CrystalExplorer 3.1 program133-134 based on the results of the X-ray study. The normalized contact distances, dnorm,135 based on Bondi vdW radii,31 were mapped into the Hirshfeld surface. In the color scale, negative values of dnorm are visualized by the red color indicating contacts shorter than the sum of vdW radii. The white color denotes intermolecular distances close to van der Waals contacts with dnorm equal to zero. In turn, contacts longer than the sum of van der Waals radii with positive dnorm values are colored with blue.

5. Acknowledgments

21

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 31

This work supported by the Russian Science Foundation (grant 17-73-10078). Theoretical calculations were performed under the Russian Foundation for Basic Research project (16-3360063) and RAS Program 1.14P (2018; coordinated by N.T. Kuznetsov). XRD studies were performed at the Center for X-ray Diffraction Studies of Saint Petersburg State University. The authors thank V. K. Stepanovich for preliminary experiments at the initial stage of this project.

22

ACS Paragon Plus Environment

Page 23 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

6. References

1. Skopenko, V. V.; Amirkhanov, V. M.; Sliva, T. Y.; Vasilchenko, I. S.; Anpilova, E. L.; Garnovskii, A. D., Various types of metal complexes based on chelating [small beta]-diketones and their structural analogues. Russ. Chem. Rev. 2004, 73 (8), 737-752. 2. Zabicky, J.; Rappoport, Z., The Chemistry of Metal Enolates, 2 Volume Set. Wiley: 2009. 3. Ribeiro, M. G. T. C.; Machado, A. A. S. C., Metal−Acetylacetonate Synthesis Experiments: Which Is Greener? J. Chem. Educ. 2011, 88 (7), 947-953. 4. Rabek, J. F., Photostabilization of Polymers: Priciples and Application. Springer Netherlands: 2012. 5. Wu, J.; Jiang, X.; Zhang, L.; Cheng, Z.; Zhu, X., Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic Catalyst Iron(III) Acetylacetonate. Polymers 2016, 8 (2), 29. 6. Suttil, J. A.; Kucharyson, J. F.; Escalante-Garcia, I. L.; Cabrera, P. J.; James, B. R.; Savinell, R. F.; Sanford, M. S.; Thompson, L. T., Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries. J. Mater. Chem. A 2015, 3 (15), 7929-7938. 7. Bamgbopa, M. O.; Shao-Horn, Y.; Almheiri, S., The potential of non-aqueous redox flow batteries as fast-charging capable energy storage solutions: demonstration with an iron-chromium acetylacetonate chemistry. J. Mater. Chem. A 2017, 5 (26), 13457-13468. 8. Tiitta, M.; Niinistou, L., Volatile Metal β-Diketonates: ALE and CVD precursors for electroluminescent device thin films. Chem. Vapor Dep. 1997, 3 (4), 167-182. 9. Gennadii, V. B.; Kurbatova, L. D., The chemistry of volatile β-diketonates and their application in the synthesis of high-temperature superconducting thin films. Russ. Chem. Rev. 1993, 62 (10), 981. 10. Premkumar, P. A.; Bahlawane, N.; Kohse-Höinghaus, K., CVD of Metals Using Alcohols and Metal Acetylacetonates, Part I: Optimization of Process Parameters and Electrical Characterization of Synthesized Films. Chem. Vapor Dep. 2007, 13 (5), 219-226. 11. Wnuk, J. D.; Rosenberg, S. G.; Gorham, J. M.; van Dorp, W. F.; Hagen, C. W.; Fairbrother, D. H., Electron beam deposition for nanofabrication: Insights from surface science. Surface Sci. 2011, 605 (3), 257-266. 12. Puydinger dos Santos, M. V.; Szkudlarek, A.; Rydosz, A.; Guerra-Nuñez, C.; Béron, F.; Pirota, K. R.; Moshkalev, S.; Diniz, J. A.; Utke, I., Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID. Beilstein J. Nanotechnol. 2018, 9, 91-101. 13. Yersin, H., Highly Efficient OLEDs with Phosphorescent Materials. Wiley: 2008. 14. Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X., Recent progress in metalorganic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43 (10), 3259-3302. 15. Pramanik, A.; Laha, D.; Pramanik, P.; Karmakar, P., A novel drug “copper acetylacetonate” loaded in folic acid-tagged chitosan nanoparticle for efficient cancer cell targeting. J. Drug Target. 2014, 22 (1), 23-33. 16. Pramanik, A.; Laha, D.; Dash, S. K.; Chattopadhyay, S.; Roy, S.; Das, D. K.; Pramanik, P.; Karmakar, P., An in-vivo study for targeted delivery of copper-organic complex to breast cancer using chitosan polymer nanoparticles. Mater. Sci. Engin. C 2016, 68, 327-337.

23

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 24 of 31

17. Sodhi, R. K.; Paul, S., An Overview of Metal Acetylacetonates: Developing Areas/Routes to New Materials and Applications in Organic Syntheses. Catal. Surveys Asia 2017. 18. Worthy, A.; Grosjean, A.; Pfrunder, M. C.; Xu, Y.; Yan, C.; Edwards, G.; Clegg, J. K.; McMurtrie, J. C., Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nature Chem. 2017, 10, 65. 19. Bukvetskii, B. V.; Mirochnik, A. G.; Shishov, A. S., Triboluminescence and crystal structure of centrosymmetric complex Tb (AcAc)(3)Phen. J. Lumin. 2018, 195, 44-48. 20. Qin, J.; Liu, D.; Dai, C.; Chen, C.; Wu, B.; Yang, C.; Zhan, C., Influence of the molecular configuration on second-order nonlinear optical properties of coordination compounds. Coord. Chem. Rev. 1999, 188 (1), 23-34. 21. Su, X.; Zhang, G.; Liu, T.; Chen, L. Q.; Qin, J. G.; Chen, C. T., A new screw shaped coordination compound for crystal engineering: Synthesis, crystal structure and nonlinear optical effect of o-chlorophenylthiourea zinc(II) diacetylacetonate. Inorg. Chem. Commun. 2006, 9 (10), 986-988. 22. Steward, O. W.; Kaltenbach, M. V.; Biernesser, A. B.; Taylor, M. J.; Hovan, K. J.; VerPlank, J. J. S.; Haamid, A.; Karpov, I.; Munie, M. T., Crystal Engineering: Synthesis and Structural Analysis of Coordination Polymers with Wavelike Properties. Polymers 2011, 3 (4), 1662-1672. 23. Borovina, M.; Kodrin, I.; Dakovic, M., Testing the limits of halogen bonding in coordination chemistry. CrystEngComm 2018, 20 (5), 539-549. 24. Gamekkanda, J.; Sinha, A.; Desper, J.; Ðaković, M.; Aakeröy, C., The Role of Halogen Bonding in Controlling Assembly and Organization of Cu(II)-Acac Based Coordination Complexes. Crystals 2017, 7 (7), 226. 25. Merkens, C.; Pan, F.; Englert, U., 3-(4-Pyridyl)-2,4-pentanedione - a bridge between coordinative, halogen, and hydrogen bonds. CrystEngComm 2013, 15 (40), 8153-8158. 26. Lapadula, G.; Judaš, N.; Friščić, T.; Jones, W., A Three-Component Modular Strategy to Extend and Link Coordination Complexes by Using Halogen Bonds to O, S and π Acceptors. Chem. Eur. J. 2010, 16 (25), 7400-7403. 27. Lebrun, P. C.; Lyon, W. D.; Kuska, H. A., Crystal structure of bis(2,4pentanedionato)copper(II). J. Crystallogr.Spectrosc. Res. 1986, 16 (6), 889–. 28. Hamid, M.; Zeller, M.; Hunter, A. D.; Mazhar, M.; Tahir, A. A., Redetermination of bis(2,4pentanedionato)palladium(II). Acta Cryst. Sect. E 2005, 61 (11), m2181-m2183. 29. Ha, K., Crystal structure of bis(pentane-2,4-dionato-) k2O,O')platinum(II), Pt(C5H7O2)2. Z. Krist. New Cryst. Struct. 2011, 226 (3), 329–330. 30. Wyatt, M. F.; Havard, S.; Stein, B. K.; Brenton, A. G., Analysis of transition-metal acetylacetonate complexes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22 (1), 11-18. 31. Bondi, A., van der Waals Volumes and Radii of Metals in Covalent Compounds. J. Phys. Chem. 1966, 70 (9), 3006-3007. 32. Zbačnik, M.; Vitković, M.; Vulić, V.; Nogalo, I.; Cinčić, D., Competition between Halogen Bonds in Cocrystals of Imines Derived from o-Vanillin. Cryst. Growth Des. 2016, 16 (11), 63816389. 33. Ji, B.; Wang, W.; Deng, D.; Zhang, Y., Symmetrical Bifurcated Halogen Bond: Design and Synthesis. Cryst. Growth Des. 2011, 11 (8), 3622-3628. 34. Bennion, J. C.; Vogt, L.; Tuckerman, M. E.; Matzger, A. J., Isostructural Cocrystals of 1,3,5Trinitrobenzene Assembled by Halogen Bonding. Cryst. Growth Des. 2016, 16 (8), 4688–4693. 35. Goud, N. R.; Bolton, O.; Burgess, E. C.; Matzger, A. J., Unprecedented Size of the σ-Holes on 1,3,5-Triiodo-2,4,6-trinitrobenzene Begets Unprecedented Intermolecular Interactions. Cryst. Growth Des. 2016, 16 (3), 1765–1771. 24

ACS Paragon Plus Environment

Page 25 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

36. Li, X.; Parkin, S.; Lehmler, H.-J., 2,4-Dichloro-1-iodo-6-nitrobenzene. Acta Cryst. Sect. E 2014, 70 (5), o607. 37. Tothadi, S.; Sanphui, P.; Desiraju, G. R., Obtaining Synthon Modularity in Ternary Cocrystals with Hydrogen Bonds and Halogen Bonds. Cryst. Growth Des. 2014, 14 (10), 5293– 5302. 38. Wardell, J. L.; Tiekink, E. R. T., 1-Iodo-4-methoxy-2-nitrobenzene. Acta Cryst. Sect. E 2012, 68 (3), o761. 39. Cavallo, G.; Metrangolo, P.; Pilati, T.; Resnati, G.; Sansotera, M.; Terraneo, G., Halogen bonding: a general route in anion recognition and coordination. Chem. Soc. Rev. 2010, 39 (10), 3772–3783. 40. Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G., The Halogen Bond. Chem. Rev. 2016, 116 (4), 2478–2601. 41. Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D., Halogen Bonding in Supramolecular Chemistry. Chem. Rev. 2015, 115 (15), 7118–7195. 42. Landenberger, K. B.; Bolton, O.; Matzger, A. J., Energetic–Energetic Cocrystals of Diacetone Diperoxide (DADP): Dramatic and Divergent Sensitivity Modifications via Cocrystallization. J. Am. Chem. Soc. 2015, 137 (15), 5074–5079. 43. Saha, S.; Ganguly, S.; Desiraju, G. R., Graded IR Filters: Distinguishing Between Single and Multipoint NO2···I Halogen Bonded Supramolecular Synthons (P, Q, and R Synthons). Aust. J. Chem. 2014, 67, 1840-1848. 44. Podoprygorina, G.; Bolte, M.; Böhmer, V., Tetra-urea calix[4]arenes 1,3-bridged at the narrow rim. Org. Biomol. Chem. 2009, 7, 1592-1598. 45. Nikiforov, V. A.; Karavan, V. S.; Miltsov, S. A.; Selivanov, S. I.; Kolehmainen, E.; Wegelius, E.; Nissinen, M., Hypervalent iodine compounds derived from o-nitroiodobenzene and related compounds: syntheses and structures. ARKIVOC 2003, 191-200. 46. Glidewell, C.; Low, J. N.; Skakle, J. M. S.; Wardell, S. M. S. V.; Wardell, J. L., Isomeric N(iodo-phenyl)nitrophthalimides: interplay of C—H⋯O hydrogen bonds, iodo⋯nitro and iodo⋯carbonyl interactions, and aromatic π⋯π stacking interactions. Acta Cryst. 2005, B61, 227237. 47. Weiss, R.; Schwab, O.; Hampel, F., Ion⋯Pair Strain as the Driving Force for Hypervalent Adduct Formation between Iodide Ions and Substituted Iodobenzenes: Structural Alternatives to Meisenheimer Complexes. Chem. Eur. J. 1999, 5, 968-974. 48. Saha, B. K.; Nangia, A.; Jaskólski, M., Crystal engineering with hydrogen bonds and halogen bonds. CrystEngComm 2005, 7, 355-358. 49. Wardell, J. L.; Low, J. N.; Skakle, J. M. S.; Glidewell, C., Isomeric N(iodo-phenyl)nitrobenzamides form different three-dimensional framework structures. Acta Cryst. Sect. B 2006, B62, 931-943. 50. Kelly, C. J.; Skakle, J. M. S.; Wardell, J. L.; Wardell, S. M. S. V.; Low, J. N.; Glidewell, C., Iodo-nitroarenesulfonamides: interplay of hard and soft hydrogen bonds, I...O interactions and aromatic [pi]...[pi] stacking interactions. Acta Cryst. 2002, B58, 94-108. 51. Tothadi, S.; Desiraju, G. R., Designing ternary cocrystals with hydrogen bonds and halogen bonds. Chem. Commun. 2013, 49, 7791-7793. 52. Ramana, C. V.; Goriya, Y.; Durugkar, K. A.; Chatterjee, S.; Krishnaswamy, S.; Gonnade, R. G., Evaluation of viability of halogen⋯O2N interactions: Insight from crystal packing in a series of isomeric halo and nitro substituted triaryl compounds with modular positioning of halogen and NO2 groups. CrystEngComm 2013, 15, 5283-5300. 53. Masciocchi, N.; Sironi, A.; Masciocchi, N.; Bergamo, M., Comments on the elusive crystal structure of 4-iodo-4′-nitrobiphenyl. Chem. Commun. 1998, 1347-1348. 25

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 31

54. Labat, G.; Behrnd, N.-R.; Couderc, G.; Bonin, M.; Tsuwi, J.; Batagiannis, A.; Berger, R.; Bertoni, M.; Prodi-Schwab, A.; Hulliger, J., Polymorphism, polar morphology and absolute structure determination of 4-iodo-4′-nitrobiphenyl (INBP). CrystEngComm 2010, 12, 1252-1262. 55. Dey, A.; Desiraju, G. R., Correlation between molecular dipole moment and centrosymmetry in some crystalline diphenyl ethers. Chem. Commun. 2005, 2486-2488. 56. Garden, S. J.; Wardell, J. L.; Low, J. N.; Skakle, J. M. S.; Glidewell, C., 2-Iodo-4-nitro-N(tri-fluoro-acet-yl)aniline: sheets built from iodo–nitro and nitro–nitro inter-actions. Acta Cryst. Sect. E 2006, E62, o3762-o3764. 57. Watkin, D. J.; Motherwell, W. D. S.; Cooper, R. I.; Pantos, S.; Steadman, O. I., 3-Iodo-2,6di-nitro-toluene. Acta Cryst. Sect. E 2005, E61, o2836-o2838. 58. Allen, F. H.; Goud, B. S.; Hoy, V. J.; Howard, J. A. K.; Desiraju, G. R., Molecular recognition via lodo ⋯ nitro and lodo ⋯ cyano interactions: crystal structures of the 1 : 1 complexes of 1,4-diiodobenzene with 1,4-dinitrobenzene and 7,7,8,8-tetracyanoquinodimethane (TCNQ). J. Chem. Soc. Chem. Commun. 1994, 0, 2729-2730. 59. Thalladi, V. R.; Goud, B. S.; Hoy, V. J.; Allen, F. H.; Howard, J. A. K.; Desiraju, G. R., Supramolecular synthons in crystal engineering. Structure simplification, synthon robustness and supramolecular retrosynthesis. Chem. Commun. 1996, 0, 401-402. 60. Bushuyev, O. S.; Friščić, T.; Barrett, C. J., Controlling Dichroism of Molecular Crystals by Cocrystallization. Cryst. Growth Des. 2016, 16, 541-545. 61. Zhao, H.; Chen, J.-M.; Lin, J.-R.; Wang, W.-X., Hydrothermal syntheses and crystal structures of two Zn(II) complexes with 1-substituted-1H-[1,2,3]-triazole-4-carboxylic acid. J. Coord. Chem. 2011, 46, 2735–2745. 62. Mukai, T.; Nishikawa, K., 4,5-Dihaloimidazolium-based ionic liquids: effects of halogenbonding on crystal structures and ionic conductivity. RSC Adv. 2013, 3, 19952-19955. 63. Wu, C.-J.; Lin, C.-Y.; Cheng, P.-C.; Yeh, C.-W.; Chen, J.-D.; Wang, J.-C., Structural diversity in the self-assembly of Ag(I) complexes containing 2-amino-5-halopyrimidine. Polyhedron 2011, 30, 2260-2267. 64. Jones, P. G.; Dix, I., CCDC identifier: 241164 CSD Commun. 2004. 65. Zang, S.-Q.; Fan, Y.-J.; Li, J.-B.; Hou, H.-W.; Mak, T. C. W., Halogen Bonding in the Assembly of Coordination Polymers Based on 5-Iodo-Isophthalic Acid. Cryst. Growth Des. 2011, 11, 3395–3405. 66. Deng, Y.; Hou, C.-T.; Walton, R. I.; Tang, J.; Zhu, P.; Zhang, K.-L.; Ng, S. W., Preparation, structural diversity and characterization of a family of Cd(II)–organic frameworks. Dalton Trans. 2013, 42, 12468-12480. 67. Yang, Y.; Cui, M.; Zhang, X.; Dai, J.; Zhang, Z.; Lin, C.; Guo, Y.; Liu, B., Radioiodinated Flavones for in Vivo Imaging of β-Amyloid Plaques in the Brain. J. Med. Chem. 2014, 57, 6030– 6042. 68. Getmanenko, Y. A.; Fonari, M.; Risko, C.; Sandhu, B.; Galán, E.; Zhu, L.; Tongwa, P.; Hwang, D. K.; Singh, S.; Wang, H.; Tiwari, S. P.; Loo, Y.-L.; Brédas, J.-L.; Kippelen, B.; Timofeevac, T.; Marder, S. R., Benzo[1,2-b:6,5-b′]dithiophene(dithiazole)-4,5-dione derivatives: synthesis, electronic properties, crystal packing and charge transport. J. Mater. Chem. C 2013, 1, 1467-1481. 69. Miyazaki, E.; Morita, Y.; Nakasuji, K., 2-Iodo-1,6-dithiapyrene: Syntheses, crystal structures and physical properties of CT complexes and salt. Polyhedron 2005, 24, 2632-2638. 70. Cincic, D.; Friscic, T., Synthesis of an extended halogen-bonded metal-organic structure in a one-pot mechanochemical reaction that combines covalent bonding, coordination chemistry and supramolecular synthesis. CrystEngComm 2014, 16 (44), 10169-10172. 71. Johnson, M. T.; Džolić, Z.; Cetina, M.; Wendt, O. F.; Öhrström, L.; Rissanen, K., Neutral Organometallic Halogen Bond Acceptors: Halogen Bonding in Complexes of PCPPdX (X = Cl, Br, 26

ACS Paragon Plus Environment

Page 27 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

I) with Iodine (I2), 1,4-Diiodotetrafluorobenzene (F4DIBz), and 1,4-Diiodooctafluorobutane (F8DIBu). Cryst. Growth Des. 2012, 12 (1), 362-368. 72. Ghosh, B. N.; Lahtinen, M.; Kalenius, E.; Mal, P.; Rissanen, K., 2,2′:6′,2″-Terpyridine Trimethylplatinum(IV) Iodide Complexes as Bifunctional Halogen Bond Acceptors. Cryst. Growth Des. 2016, 16 (5), 2527-2534. 73. Alvarez, S., A cartography of the van der Waals territories. Dalton Trans. 2013, 42 (24), 8617-8636. 74. Espinosa, E.; Molins, E.; Lecomte, C., Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285 (3), 170-173. 75. Vener, M. V.; Egorova, A. N.; Churakov, A. V.; Tsirelson, V. G., Intermolecular hydrogen bond energies in crystals evaluated using electron density properties: DFT computations with periodic boundary conditions. J. Comput. Chem. 2012, 33 (29), 2303-2309. 76. Bertolotti, F.; Shishkina, A. V.; Forni, A.; Gervasio, G.; Stash, A. I.; Tsirelson, V. G., Intermolecular Bonding Features in Solid Iodine. Cryst. Growth Des. 2014, 14 (7), 3587-3595. 77. Hon, P.-K.; Pfluger, C. E.; Belford, R. L., The Molecular and Crystal Structure of Bis(1phenyl-l,3-butanedionato)copper. Inorg. Chem. 1966, 5 (4), 516-521. 78. Robertson, I.; Truter, M. R., The crystal structure of bis-(3-methylpentane-2,4dionato)copper(II). J. Chem. Soc. A 1967, (0), 309-313. 79. Aruffo, A. A.; Anderson, L. D.; Lingafelter, E. C.; Schomaker, V., Bis(3allylacetylacetonato)copper(II), C16H22CuO4. Acta Cryst. Sect. C 1983, 39 (2), 201-203. 80. Hori, A.; Mizutani, M., Synthesis and Crystal Structure Differences between Fully and Partially Fluorinated β-Diketonate Metal (Co2+, Ni2+, and Cu2+) Complexes. 2011; Vol. 2011, p 8. 81. Heine, K. B.; Clegg, J. K.; Heine, A.; Gloe, K.; Gloe, K.; Henle, T.; Bernhard, G.; Cai, Z.-L.; Reimers, J. R.; Lindoy, L. F.; Lach, J.; Kersting, B., Complexation, Computational, Magnetic, and Structural Studies of the Maillard Reaction Product Isomaltol Including Investigation of an Uncommon π Interaction with Copper(II). Inorg. Chem. 2011, 50 (4), 1498-1505. 82. Judas, N.; Kaitner, B., One-dimensional self-assembly of bis(3-benzylpentane-2,4dionato)copper(II) in the solid state, mediated by weak C-H...O hydrogen bonding. Acta Cryst. Secti. E 2006, 62 (1), m163-m165. 83. Modenbach, C. L.; Fronczek, F. R.; Berg, E. W.; Taylor, T. C., Crystal and molecular structures of bis(cyclodecane-1,3-dionato)copper(II) and bis(cyclotridecane-1,3-dionato)copper(II). Inorg. Chem. 1983, 22 (26), 4083-4085. 84. Sans-Lenain, S.; Gleizes, A., Structural features of homo- and heteroleptic complexes of copper(II) with 2,2,6,6-tetramethyl-3,5-heptanedione and 3-chloro-2,4-pentanedione. Inorg. Chim. Acta 1993, 211 (1), 67-75. 85. Okeya, S.; Ooi, S.; Matsumoto, K.; Nakamura, Y.; Kawaguchi, S., Bis(beta-diketonato)palladium(II) and -platinum(II) Complexes. Bull. Chem. Soc. Japan 1981, 54, 1085-1095. 86. Berg, M. A. G.; Ritchie, M. K.; Merola, J. S., Synthesis and crystal structures of 3-alkyl-2,4pentanedionates and 3-phenyl-2,4-pentanedionate of palladium. Polyhedron 2012, 38 (1), 126-130. 87. Guo, Q.; Merkens, C.; Si, R.; Englert, U., Crosslinking of the Pd(acacCN)2 building unit with Ag(i) salts: dynamic 1D polymers and an extended 3D network. CrystEngComm 2015, 17 (23), 4383-4393. 88. McKinnon, A. J.; Waters, T. N.; Hall, D., 623. The colour isomerism and structure of copper co-ordination compounds. Part VII. The crystal of bissalicylaldehydatocopper(II). J. Chem. Soc. Chem. Commun. 1964, (0), 3290-3294. 89. Hori, A.; Nakajima, K.; Akimoto, Y.; Naganuma, K.; Yuge, H., Guest-adjusted encapsulation and thermal studies of non-porous mononuclear Cu(ii) coordination complexes 27

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 31

through electrostatic interactions induced by fluorine substitution. CrystEngComm 2014, 16 (37), 8805-8817. 90. Hori, A.; Nakajima, K.; Yuge, H., Three p-xylene-solvated pseudopolymorphs of bis[1,3bis(pentafluorophenyl)propane-1,3-dionato]copper(II). Acta Cryst. Sect. C 2014, 70 (10), 960-964. 91. Mochida, T.; Torigoe, R.; Koinuma, T.; Asano, C.; Satou, T.; Koike, K.; Nikaido, T., Platinum-Group Chelate Complexes with 9-Hydroxyphenalenone Derivatives: Synthesis, Structures, Spectroscopic Properties and Cytotoxic Activities. Eur. J. Inorg. Chem. 2006, 2006 (3), 558-565. 92. Cavallo, G.; Metrangolo, P.; Pilati, T.; Resnati, G.; Terraneo, G., Naming Interactions from the Electrophilic Site. Cryst. Growth Des. 2014, 14 (6), 2697–2702. 93. Brown, D. S.; Lee, J. D.; Melsom, B. G. A.; Hathaway, B. J.; Procter, I. M.; Tomlinson, A. A. G., The structure of Cu(en)2(BF4)2 and an infrared spectral criterion for "semi-co-ordinated" polyanions. Chem. Commun. 1967, (8), 369-371. 94. Valach, F., A bond-valence approach to the semicoordination of copper-oxygen and copper– nitrogen complexes. Polyhedron 1999, 18 (5), 699-706. 95. Bikbaeva, Z. M.; Ivanov, D. M.; Novikov, A. S.; Ananyev, I. V.; Bokach, N. A.; Kukushkin, V. Y., Electrophilic–Nucleophilic Dualism of Nickel(II) toward Ni···I Noncovalent Interactions: Semicoordination of Iodine Centers via Electron Belt and Halogen Bonding via σ-Hole. Inorg. Chem. 2017, 56 (21), 13562-13578. 96. Ho, P. S., Halogen bonding in medicinal chemistry: from observation to prediction. Future Med. Chem. 2017, 9 (7), 637-640. 97. Tuikka, M.; Niskanen, M.; Hirva, P.; Rissanen, K.; Valkonen, A.; Haukka, M., Concerted halogen and hydrogen bonding in [RuI2(H2dcbpy)(CO)2]...I2...(CH3OH)...I2...[RuI2(H2dcbpy)(CO)2]. Chem. Commun. 2011, 47 (12), 3427-9. 98. Sgarbossa, P.; Bertani, R.; Di Noto, V.; Piga, M.; Giffin, G. A.; Terraneo, G.; Pilati, T.; Metrangolo, P.; Resnati, G., Interplay between Structural and Dielectric Features of New Low k Hybrid Organic–Organometallic Supramolecular Ribbons. Cryst. Growth Des. 2012, 12 (1), 297305. 99. Bader, R. F. W., A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91 (5), 893-928. 100. Serebryanskaya, T. V.; Novikov, A. S.; Gushchin, P. V.; Haukka, M.; Asfin, R. E.; Tolstoy, P. M.; Kukushkin, V. Y., Identification and H(D)-bond energies of C-H(D)[three dots, centered]Cl interactions in chloride-haloalkane clusters: a combined X-ray crystallographic, spectroscopic, and theoretical study. Phys. Chem. Chem. Phys. 2016, 18 (20), 14104-14112. 101. Mikhaylov, V. N.; Sorokoumov, V. N.; Korvinson, K. A.; Novikov, A. S.; Balova, I. A., Synthesis and Simple Immobilization of Palladium(II) Acyclic Diaminocarbene Complexes on Polystyrene Support as Efficient Catalysts for Sonogashira and Suzuki–Miyaura Cross-Coupling. Organometallics 2016, 35 (11), 1684-1697. 102. Bolotin, D. S.; Burianova, V. K.; Novikov, A. S.; Demakova, M. Y.; Pretorius, C.; Mokolokolo, P. P.; Roodt, A.; Bokach, N. A.; Suslonov, V. V.; Zhdanov, A. P.; Zhizhin, K. Y.; Kuznetsov, N. T.; Kukushkin, V. Y., Nucleophilicity of Oximes Based upon Addition to a Nitrilium closo-Decaborate Cluster. Organometallics 2016, 35 (20), 3612-3623. 103. Ivanov, D. M.; Novikov, A. S.; Starova, G. L.; Haukka, M.; Kukushkin, V. Y., A family of heterotetrameric clusters of chloride species and halomethanes held by two halogen and two hydrogen bonds. CrystEngComm 2016, 18 (28), 5278-5286. 104. Ivanov, D. M.; Novikov, A. S.; Ananyev, I. V.; Kirina, Y. V.; Kukushkin, V. Y., Halogen bonding between metal centers and halocarbons. Chem. Commun. 2016, 52 (32), 5565-5568.

28

ACS Paragon Plus Environment

Page 29 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

105. Adonin, S. A.; Gorokh, I. D.; Novikov, A. S.; Abramov, P. A.; Sokolov, M. N.; Fedin, V. P., Halogen Contacts-Induced Unusual Coloring in BiIII Bromide Complex: Anion-to-Cation Charge Transfer via Br⋅⋅⋅Br Interactions. Chem. Eur. J. 2017, 23 (62), 15612-15616. 106. Usoltsev, A. N.; Adonin, S. A.; Novikov, A. S.; Samsonenko, D. G.; Sokolov, M. N.; Fedin, V. P., One-dimensional polymeric polybromotellurates(iv): structural and theoretical insights into halogen[three dots, centered]halogen contacts. CrystEngComm 2017, 19 (39), 5934-5939. 107. Novikov, A. S.; Ivanov, D. M.; Avdontceva, M. S.; Kukushkin, V. Y., Diiodomethane as a halogen bond donor toward metal-bound halides. CrystEngComm 2017, 19 (18), 2517-2525. 108. Ding, X.; Tuikka, M. J.; Hirva, P.; Kukushkin, V. Y.; Novikov, A. S.; Haukka, M., Finetuning halogen bonding properties of diiodine through halogen-halogen charge transfer - extended [Ru(2,2[prime or minute]-bipyridine)(CO)2X2][middle dot]I2 systems (X = Cl, Br, I). CrystEngComm 2016, 18 (11), 1987-1995. 109. Ivanov, D. M.; Kinzhalov, M. A.; Novikov, A. S.; Ananyev, I. V.; Romanova, A. A.; Boyarskiy, V. P.; Haukka, M.; Kukushkin, V. Y., H2C(X)–X···X– (X = Cl, Br) Halogen Bonding of Dihalomethanes. Cryst. Growth Des. 2017, 17 (3), 1353-1362. 110. Mikherdov, A. S.; Kinzhalov, M. A.; Novikov, A. S.; Boyarskiy, V. P.; Boyarskaya, I. A.; Dar’in, D. V.; Starova, G. L.; Kukushkin, V. Y., Difference in Energy between Two Distinct Types of Chalcogen Bonds Drives Regioisomerization of Binuclear (Diaminocarbene)PdII Complexes. J. Am. Chem. Soc. 2016, 138 (42), 14129-14137. 111. Bikbaeva, Z. M.; Novikov, A. S.; Suslonov, V. V.; Bokach, N. A.; Kukushkin, V. Y., Metalmediated reactions between dialkylcyanamides and acetamidoxime generate unusual (nitrosoguanidinate)nickel(ii) complexes. Dalton Trans. 2017, 46 (30), 10090-10101. 112. Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W., Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132 (18), 6498-6506. 113. Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E., From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems. J. Chem. Phys. 2002, 117 (12), 5529-5542. 114. Chi, Y.-H.; Yu, L.; Shi, J.-M.; Zhang, Y.-Q.; Hu, T.-Q.; Zhang, G.-Q.; Shi, W.; Cheng, P., [small pi]-[small pi] Stacking and ferromagnetic coupling mechanism on a binuclear Cu(ii) complex. Dalton Trans. 2011, 40 (7), 1453-1462. 115. Giri, S.; Saha, S. K., Room-Temperature Spontaneous Magnetization in a Coordination π–π Framework. J. Phys. Chem. Lett. 2011, 2 (13), 1567-1571. 116. He, L.; Ma, D.; Duan, L.; Wei, Y.; Qiao, J.; Zhang, D.; Dong, G.; Wang, L.; Qiu, Y., Control of Intramolecular π–π Stacking Interaction in Cationic Iridium Complexes via Fluorination of Pendant Phenyl Rings. Inorg. Chem. 2012, 51 (8), 4502-4510. 117. Yam, V. W.-W.; Au, V. K.-M.; Leung, S. Y.-L., Light-Emitting Self-Assembled Materials Based on d8 and d10 Transition Metal Complexes. Chem. Rev. 2015, 115 (15), 7589-7728. 118. Tuong Ly, K.; Chen-Cheng, R.-W.; Lin, H.-W.; Shiau, Y.-J.; Liu, S.-H.; Chou, P.-T.; Tsao, C.-S.; Huang, Y.-C.; Chi, Y., Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nature Photonics 2016, 11, 63. 119. Cai, M.; Song, X.; Zhang, D.; Qiao, J.; Duan, L., [small pi]-[small pi] stacking: a strategy to improve the electron mobilities of bipolar hosts for TADF and phosphorescent devices with low efficiency roll-off. J. Mater. Chem. C 2017, 5 (13), 3372-3381. 120. Shahid, M.; Anjuli; Tasneem, S.; Mantasha, I.; Ahamad, M. N.; Sama, F.; Fatma, K.; Siddiqi, Z. A., Spectral characterization, crystal structures and biological activities of iminodiacetate ternary complexes. J. Mol. Struct. 2017, 1146 (Supplement C), 424-431. 121. Cui, Y.; Wang, L.; Kwong, F. Y.; Tse, M. K.; Chan, A. S. C., A Highly Efficient ChiralBridged Diphosphine Ligand Modified Cationic Palladium(II) Catalyst System for Asymmetric 29

ACS Paragon Plus Environment

Crystal Growth & Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 30 of 31

Alternating Copolymerization of Propene and Carbon Monoxide. Synlett 2009, 2009 (16), 26962700. 122. Werner, A., Ueber Acetylacetonverbindungen des Platins. Berichte 1901, 34 (2), 2584-2593. 123. Sheldrick, G., Crystal structure refinement with SHELXL. Acta Cryst. Sect. C 2015, 71 (1), 3-8. 124. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42 (2), 339-341. 125. CrysAlisPro, Agilent Technologies Ltd., Version 1.171.136.120 (release 127–106–2012). 126. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120 (1), 215-241. 127. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; T. Vreven; A., M. J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; J., C.; Fox, D. J. Gaussian 09, Revision C.01, , Gaussian, Inc., Wallingford, CT: 2010. 128. Barros, C. L.; de Oliveira, P. J. P.; Jorge, F. E.; Canal Neto, A.; Campos, M., Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol. Phys. 2010, 108 (15), 1965-1972. 129. Canal Neto, A.; Jorge, F. E., All-electron double zeta basis sets for the most fifth-row atoms: Application in DFT spectroscopic constant calculations. Chem. Phys. Lett. 2013, 582 (Supplement C), 158-162. 130. de Berrêdo, R. C.; Jorge, F. E., All-electron double zeta basis sets for platinum: Estimating scalar relativistic effects on platinum(II) anticancer drugs. J. Mol. Struct. THEOCHEM 2010, 961 (1), 107-112. 131. Jorge, F. E.; Canal Neto, A.; Camiletti, G. G.; Machado, S. F., Contracted Gaussian basis sets for Douglas–Kroll–Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties. J. Chem. Phys. 2009, 130 (6), 064108. 132. Lu, T.; Chen, F., Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33 (5), 580-592. 133. Wolff, S. K.; Grimwood, D. J.; McKinnon, J. J.; Turner, M. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer (Version 3.1) University of Western Australia: 2012: 2012. 134. Spackman, M. A.; Jayatilaka, D., Hirshfeld surface analysis. CrystEngComm 2009, 11 (1), 19-32. 135. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A., Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, (37), 3814-3816.

30

ACS Paragon Plus Environment

Page 31 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

FOR TABLE OF CONTENTS USE ONLY Structure-directing Weak Interactions with 1,4-Diiodotetrafluorobenzene Convert 1D-Arrays of [MII(acac)2] Species into 3D-Networks Anton V. Rozhkov,a Alexander S. Novikov,a Daniil M. Ivanov,a Dmitrii S. Bolotin,a Nadezhda A. Bokach,a,* and Vadim Yu. Kukushkin*a,b

Table of Contents Graphic

Table of Contents Synopsis Halogen bonding I•••µ2-(O,O), M•••C contacts, and hydrogen bonding convert 1D-arrays of [MII(acac)2] (M = Cu, Pd, Pt) into 3D-networks of the three isomorphic structures of [MII(acac)2](1,4-diiodotetrafluorobenzene). ACS Paragon Plus Environment