Subscriber access provided by University of Washington | Libraries
Article
Structures, magnetic properties and photoluminescence of dicarboxylate coordination polymers of Mn, Co, Ni, Cu having N-(4-pyridylmethyl)-1,8-naphthalimide Jayanta Kumar Nath, Abhishake Mondal, Annie K. Powell, and Jubaraj B. Baruah Cryst. Growth Des., Just Accepted Manuscript • DOI: 10.1021/cg500882z • Publication Date (Web): 19 Aug 2014 Downloaded from http://pubs.acs.org on August 25, 2014
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Crystal Growth & Design is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
Structures, magnetic properties and photoluminescence of dicarboxylate coordination polymers of Mn, Co, Ni, Cu having N-(4-pyridylmethyl)-1,8naphthalimide Jayanta K. Nath1, Abhishake Mondal2, Annie K. Powell2*, Jubaraj B. Baruah1* 1 Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India,
[email protected] 2
Institut für Anorganische Chemie, Karlsruher Institut für Technologie, Engesserstr, 76131 Karlsruhe,Germany.
Abstract: Supramolecular interactions of N-(4-pyridylmethyl)-1,8-naphthalimide (L) and flexibility of intervening units of dicarboxylate ligands contribute to formation of different types of coordination polymers such as [MnL2(Adp)(H2O)2]n•2nH2O (1), [CoL2(Fum)(H2O)2]n•2nH2O
[CoL2(Adp)(H2O)2]n•2nH2O
(2),
(3),
[NiL(Fum)(H2O)3]n•H2O (4), [CuL2(Fum)]n•nH2O (5), [CuL(Mal)]n (6) and [Cu3L6(Adp)3(H2O)3]n (7) (where Adp = Adipate, Fum = fumarate and Mal = malonate). These coordination polymers are structurally characterized. Coordination polymer 1 and 3 are iso-structural having 3D supramolecular layer-like structures. Coordination polymer 2 forms a 2D supramolecular network through C-H···π and O···π interactions. Coordination polymer 4 forms H-bonded 3D chain-like supramolecular architecture. Coordination polymer 5 forms 3D supramolecular sheetlike structure whereas coordination polymer 6 and coordination polymer 7 forms 2D lamellar structure through π···π and C-H···π interactions. Manganese coordination polymer 1 shows weak antiferromagnetic interactions between chains at low temperature and also exhibits single chain magnetic behavior. Coordination polymers 2 and 3 show saturation value of magnetic moment at 2K and 7T, which are lower than the spin-only Co(II) ion. Coordination polymer 4 show spin-only values for Ni(II) ion. Room-temperature χMT value for coordination polymer 5 is close to the spin only value for two Cu(II) ions. With lowering of temperature, the χMT value remains constant to 35K, from where value begins to decrease to a minimum at 2K. For copper coordination polymer 6 value of χMT smoothly decreases with lowering of temperature to attain a quasi plateau between 80K and 35K and it further sharply
1 ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 33
increases at 2K. Coordination polymer 7 shows spin-only Cu(II) ion. These coordination polymers in solid state show quenching of fluorescence emission of ligand L, as well as shift of emission towards shorter wavelength. Introduction: Metal carboxylates frameworks1 have contributed significantly to development of various
complexes
associated
photo-activation2a,
with
opto-electronics2b-2f,
ferroelectric3, sensors4, catalysis5, selective adsorption6, proton conduction7 and magnetism.8 Variations of reaction conditions can change, dimensionality10 and structures of dicarboxylate complexes.9 From such changes single crystal to single crystal transformation in metal carboxylates has been shown.11 Weak interactions
O
M
O
O
M
M
O O
O
O
O
M
M
i
M
M
ii
iii
iv O
M O
O
O
M
M
M
v
M
O
M O
O
O M
vi
vii
M
viii
Scheme 1: Different metal-carboxylate binding modes associated with an ancillary ligand with multiple sites for weak interactions may force a carboxylate group to adopt any of coordination modes of carboxylate that are routinely observed as illustrated in scheme 1. Thus, large opportunity prevails to study complexes with new ancillary ligands to unearth new properties associated with new structures.12 This anticipation stems from the fact that subtle changes in binding modes of carboxylate change structures14c which seriously affect magnetochemistry of copper(II) dicarboxylate complexes to show antiferromagnetic13 or ferromagnetic14a-b properties. Coordination mode such as syn-syn (v of scheme 1) present in nickel (II) carboxylate complex causes antiferromagnetic interactions.14d On the other hand, selfassembly of copper(II) phenylmalonate adopts layered structure where intralayer ferromagnetic and interlayer antiferromagnetic interactions occurs13b. Beside these
2 ACS Paragon Plus Environment
Page 3 of 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
carefully designed coordination polymers can show single chain magnet properties.15 Pyridyl or carboxylate ligands have been extensively used for construction of various
HO
O
HO O
O
N
OH
O
O
4
O HO
O
OH
OH
O
N L
H2Fum
H2Mal
H2Adp
Chart 1: Ancillary ligand L and different carboxylic acids used in the preparation of metal coordination polymers. coordination frameworks in last two decades.16 These observations encourages one to use modified pyridine based ancillary ligands for construction of supramolecular metal complexes to explore novel material properties. We have chosen to study different
first
row
transition
metal
dicarboxylate
complexes
with
N-(4-
pyridylmethyl)-1,8-naphthalimide (L in chart 1) as ancillary ligand. We studied here structures, magnetic and photoluminescence properties of dicarboxylate coordination polymers of manganese (II), cobalt (II), nickel (II) and copper (II) having L as ancillary ligand which are listed in chart 1. Another motivating factor for this study is ready references on fumarate,17 malonate,17d maleate,18 adipate 17f complexes to show comparative differences caused by use of L as ancillary ligand. On the other hand, πstacking interactions and supramolecular features of naphthalimide ligands provide impetus19 to generate new structural patterns. Results and discussion: Coordination polymers 1-7 (scheme 2) were synthesised by one pot reaction of corresponding metal acetate, dicarboxylic acid and N-(4-pyridylmethyl)-1,8naphthalimide. Compositions of the coordination polymers were dependent on metal ion and carboxylic acid. Formation of a particular coordination polymer was found to be dependent on ratio of metal : L : dicarboxylic acid used in reaction. For example use of 1 : 2 : 1 ratio was used for preparation of coordination polymers 1, 2, 3, 5 and 7 whereas rest of the coordination polymers were prepared from reaction with 1 : 1 : 1 molar ratios. Use of 1 : 2 : 1 mole ratios in latter cases did not form crystalline product, thus optimized procedures to get crystalline products are given in 3 ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 33
experimental section. We also attempted preparation of crystalline products by varying first row transition metal ions in presence of the three carboxylic acids under consideration, but we could obtain good quality crystals only in case of coordination polymer 1-7. Crystal structure of each coordination polymer was determined and also powder X-ray diffraction patterns (PXRD) of coordination polymers 1−7 which are shown in Figure S1-S7 in the Supporting Information. PXRD peaks of these seven coordination polymers can be indexed nearly to their respective simulated powder Xray diffraction patterns, which indicate phase purity of the coordination polymers. Small deviations in some cases could be due to loss of solvent molecules leading to loss of crystalline properties. [MnL2(Adp)(H2O)2]n·2nH2O
(1)
H2Adp Mn(OAc)2.4H2O
H2Fum [CuL2(Fum)]n.nH2O
(5) Ni(OAc)2.4H2O
Cu(OAc)2.H2O
H2Mal
[NiL(Fum)(H2O)3]n.H2O
(4)
[CuL(Mal)]n O
H2Fum N
N
O
(6)
L
H2Adp [Cu3L6(Adp)3(H2O)3]n
(7)
Co(OAc)2.4H2O
H2Fum
[CoL2(Fum)(H2O)2]n.2nH2O
H2Adp [CoL2(Adp)(H2O)2]n.2nH2O
(3)
(2)
Scheme 2: Synthesis of coordination polymers 1-7 Each manganese ion in manganese (II) malonate coordination polymer 1 is in O4N2 environment with distorted octahedral coordination geometry. Two L-ligands attached to each manganese ion having Mn1-N1= 2.302(5) Å distance are axially located trans to each other. There are two carboxylate ligands from two independent
4 ACS Paragon Plus Environment
Page 5 of 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
(a)
(b)
(c)
(d)
Figure 1: (a) Coordination environments around manganese ions of coordination polymer 1 (thermal ellipsoids are with 30% probability), (b) Hydrogen-bonding motif of coordinated water molecules in the complex, (c) Hydrogen-bonded structure of the coordination polymer 1 forming 2D sheet and (d) 3D supramolecular architecture along a crystallographic axis. adipates (one carboxylate each) coordinated in a monodentate fashion to manganese ion (Mn1-O3 = 2.172(3) Å). Two water molecules (Mn1-O5 = 2.196(4) Å) (Figure 1a) coordinated to each manganese ion. Carboxylate ligands are trans to each other facilitating formation of linear chain structure. Uncoordinated carbonyl oxygen atom of carboxylate groups takes part in bifurcated hydrogen-bond, one part of which is intramolecular and other part being intermolecular. The intermolecular hydrogen bond involves one C-H of adipate molecule of an adjacent chain [C20−H20A···O4 (3.59Å)] which helps in self-assembly formation between layers. There is bifurcated hydrogen-bond between carbonyl oxygen of coordinated carboxylate groups with coordinated water molecules in which O5−H5A···O4 distance is 2.64 Å. whereas, coordinated oxygen atom of carboxylate is involved in O5−H5B···O3 (O3-O5 = 2.79 Å) hydrogen-bond with coordinated water molecule attached on copper ions of 5 ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
adjacent chain (figure 1b). Due to these hydrogen-bonds, one dimensional polymeric chains form hydrogen-bonded 2D sheet (Figure 1c). Further weak interactions of lattice water molecules and naphthalimide ligands, a 3D supramolecular architecture is obtained (figure 1d). Thermogram of coordination polymer 1 shows 5.26 % weight loss from 80°C to 170°C. It corresponds to loss of two molecules of water of crystallisation (theoretical value 4.3 %). Second weight loss of 21.8 % occur from 190°C to 320°C due to two coordinated water molecules and one Adp linker (calcd. 22.17 %). At 475 °C coordination polymer transforms to MnO (theoretical 8.9 %, found 9.0 % residue). Loss of coordinated water molecules at higher temperature is attributed to their extra stability in lattice due to intramolecular and intermolecular hydrogen-bonds. Manganese(II) adipate complex occurring as [Mn(Adp)]n adopts interpenetrated layered structure having dinuclear Mn(II) units as nodes.24a Aqua bridged dimeric manganese(II) adipate complex form two dimensional polymeric structure,24a which loses water molecules on heating to about 200°C and annealed samples on exposure to moisture reabsorbs water,24b however, at 600°C it forms Mn3O4. On the other hand, thermal decomposition of manganese phthalate coordination polymer forms chain-like nanostructures of Mn2O3.21 Manganese adipate coordination polymer with dinuclear manganese-carboxylate units having chelating as well as bridging carboxylate were reported earlier, but coordination polymer 1 has linear structure. Formation of manganese adipate complexes are dependent on reaction conditions, for example polymeric or dimeric manganese adipate complexes having 1,10-phenanthroline ligand were formed under different reaction conditions. Dimeric [Mn(phen)(H2O)]2+ cations bridged by two tridentate adipate ligands adopt twisted conformer.24d These comparisons show coordination polymer 1 to be a very simple example of a linear coordination polymer with sheet like structure formed by stacking of naphthalimides in which chains are held by C-H···O interactions. Plot of χMT vs. T under 1000 Oe external field in temperature range of 300-2 K for 1 is shown in figure 2a. Room-temperature χMT value for 1 is 4.23 cm3 mol-1 K, is close to spin only value 4.37 cm3 mol-1 K for one isolated high-spin MnII ion (typically Mn2+ ion has a S = 5/2 state and gMn= 2.0). As temperature is lowered, χMT value remains almost constant down to about 15 K, where value begins to decrease to a minimum value 3.37 cm3mol-1K at 2 K. This type of magnetic behavior indicates weak antiferromagnetic interactions between the chains. M vs. H plot of 1 at different 6 ACS Paragon Plus Environment
Page 6 of 33
Page 7 of 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
temperature (2 K-5 K) shown in figure 2b. At 2 K, an increase of magnetization was observed with a value of 4.70 µΒ at 7 T, which is closer to the saturation value of 5.0
µΒ, that expected for a spin-only Mn(II) ions (S = 5/2 and gMn =2). Magnetization values at higher temperatures do not superimpose, which indicates presence of low lying excited state and zero-field splitting in this polymer. Magnetic susceptibility of 1 measured in 3.5 Oe ac magnetic field and 1500 Oe dc magnetic field showed strong frequency dependence of the in- and out-of-phase signals (χ' and χ''), which showed presence of slow magnetization relaxation, typical of single chain magnetic (SCM) behavior. Fitting to the log(1/2πντ) vs. 1/T plot based on the Arrhenius relationship 1/τ = (1/τ0)exp(∆eff/kBT) showed a relaxation time τ0 = 1.27×10-6 s and large relaxation energy barrier ∆eff/kB = 16.98 K (supporting figure 11S). This clearly showed single-chain magnetic properties of coordination polymer 1. Observation of antiferromagnetic inter-chain interactions is evident as distance between two manganese ions of adjacent chains are 5.58 Å whereas along a chain the adjacent manganese ions are 12.61 Å apart from each other (figure1b). Manganese (II) polynuclear phthalate or terephthalate were shown to exhibit antiferromagnetic behaviour.20 Manganese phthalate 1D or 2D networks having phthalates as bridging
(b)
(a)
Figure 2: Plots of (a) χMT vs. T (inset is expansion in the range of temperature range 2K to 30K). (b) M vs. H for coorodination polymer 1. ligands show antiferromagnetic properties.22a-22b Weak intra-layer ferromagnetic interactions in manganese(III) malonate complexes was documented earlier.23a Manganese malonate complexes with different bridging modes also show weak antiferromagnetic interactions.23b Hence, in coordination polymer 1 intermolecular CH···O interactions along with the O-H···O interactions facilitated by stacking effects 7 ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 33
of naphthalimides bring manganese ions to closer proximity to have antiferromagnetic interactions. Aliphatic dicarboxylic acids such as adipic acid or fumaric acid forms wide varieties of cobalt(II) complexes either as monomer25a, polymer25b-d or as complexes with dicarboxylate anions.25e On the other hand, double bond geometry of cobalt(II) maleate complex can be modulated to form fumarate complex by ligands such as pyridine or bipyridine.26 Coordination polymer 2 has cobalt ions in +2 oxidation state, in distorted octahedral geometry constructed by two nitrogen atoms as donors from two ligands (L), two oxygen of monodentate bridging fumarate and two water molecules (Figure 3a). Four oxygen atoms from ligands around each cobalt ion are in one
(a)
(b)
(c)
(d)
Figure 3: (a) Structure showing coordination environment around cobalt ion in polymer 2 (thermal ellipsoids with 30% probability), (b) Assembling of chains with lattice water molecules in coordination polymer 2. (c) Diagram showing C-H···π, CH···O, O···π and π ···π interactions. (d) 2D-supramolecular network of coordination polymer 2.
8 ACS Paragon Plus Environment
Page 9 of 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
plane of distorted octahedron and two nitrogen atoms are coordinated to cobalt centers are trans to each other. Coordination polymer 2 shows a 4.9 % weight loss at 80°C to 130°C which corresponds to loss of two water of crystallisation. This corroborates calculated weight loss of 4.4 %. A second weight loss of 17.8% occurs from 135°C to 330°C that may be due to loss of one Fum linker (calcd. 19.1 wt %). Further weight loss completes at 400°C which leads to CoO (theoretical residue 9.2%, experimental 9.8%). Lattice water molecules of coordination polymer 2 interact with coordinated water molecules and also carbonyl of carboxylate groups (figure 3b). In addition to these there are C-H···π interactions among naphthalimide rings with hydrogen atom and centroid of interacting aromatic part (dC-H…л = 3.70 Å). Coordination polymer shows strong O···π interactions among naphthalimide ring ( O···π
centroid
distance 3.09 Å).
There is also C-H···π interactions between hydrogen atom of one CH2-group of L and pyridine moiety of another L (C···π
centroid
distance 3.67 Å shown in figure 3c. These
interactions result in formation of 2D-supramolecular network shown in figure 3d. Coordination environment around cobalt(II) ions in coordination polymer 3 are similar to that of coordination polymer 1 and they are isostructural. Supramolecular assembly of cobalt(II) adipate [(µ-Adp)2Co(µ-H2O)2Co(H2O)4] 25d reported earlier do not have directly aqua bridges between cobalt ions. Thus, difference between such structures with coordination polymer 3 is due to role of L in organizing assembly of coordination polymer. In present case naphthalimides inhibits water molecules to bridge cobalt centers. Structure of 3 being identical with manganese coordination polymer 1, it is shown in supporting information (Supporting Figure 18S). For coordination polymer 3, 5.3% weight loss takes place between 90°C and 130°C due to loss of two water of crystallisation (calcd. 4.2 %). On further heating it gives a residue of 9.6% at 450 °C, which corresponds to formation of CoO. For 2 and 3, χMT values at 300 K are 2.82 and 2.69 cm3 mol-1 K respectively, which are close to spin only value (S = 3/2 and gCo = 2.1) of 2.5-3.1 cm3 mol-1 K expected for non interacting one high-spin cobalt(II) ion. This behavior is common for cobalt(II) complexes, and can be attributed to orbital contribution of cobalt(II).20 The χMT values of 2 and 3 shows a continuous decrease to a minimum value of 1.45 and 1.25 cm3mol-1K at 2K respectively (supporting figures 12S and 13S), which are in accordance with antiferromagnetic behavior of cobalt(II) ions. Structures of two complexes have large differences in distances between the adjacent cobalt ions. 9 ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 33
Adjacent cobalt to cobalt distance in same chain of cobalt coordination polymer 2 is 7.27 Å and similar distances between cobalt ions of adjacent chains are 9.02 Å. Thus, inter-chain interactions are not possible, but coordination polymer has an olefinic double bond between carboxylates making an effective exchange through conjugation. On the other hand, coordination polymer 3 being isostructural to coordination polymer 1, an inter-chain interaction makes antiferromagnetic effect feasible. M vs. H plots of 2 and 3 shows a saturation value 2.86µB and 2.52 µB respectively per formula unit at 2K and 7T, which is lower than saturation value of 3
µB for spin-only cobalt (II) ion (S = 3/2 and gCo = 2.1). This behaviour also supports an antiferromagnetic coupling between cobalt (II) ions in 2 and 3.
(a)
(b)
(c) Figure 4: (a) Asymmetric unit of the coordination polymer 4 (thermal ellipsoids are of 30% probability). (b) Prominent C-H···O, π···π and O···π interactions in 4. (c) 3Dsupramolecular chain present in lattice of 4 (hydrogen atoms and lattice water molecules are omitted for clarity).
10 ACS Paragon Plus Environment
Page 11 of 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
There are many aliphatic dicarboxylate nickel complexes, which form mixed ligand complexes having oxo-27a-d, hydroxo27e-f, alkoxo ligands27g-h. Nickel(II) dicarboxylate bridges adopts syn-syn
15,28a
or syn-anti geometry28b among which latter geometry is
less preferred. Open framework of nickel fumarate28c with hydroxy bridged nickel (II) complex [Ni3(OH)2(Fum)(H2O)4]·2H2O showed exceptional ferromagnetic properties. Coordination polymer [NiL(Fum)(H2O)3]n.H2O (4) has hexa-coordinated nickel ions and each has one ligand L coordinating (Figure 4a) through pyridine [Ni-N1, 2.075(4) Å]. Other coordination sites are occupied by two monodentate carboxylates groups (Ni1-O3, 2.047(2) Å, Ni1-O8, 2.060(3) Å) and three water ligands (Ni1-O5, 2.047(2) Å, Ni1-O6, 2.127(3) Å and Ni1-O9, 2.073(3) Å). L attached to alternate metal ions are trans to each other and have π···π interactions as shown in figure 4b. These interactions help to form 3D-supramolecular chains as shown in figure 4c.
In
thermogravimetry of coordination polymer 4, 3.2 % weight loss was observed between 50°C to 85°C, which corresponds to loss of one lattice water molecule (calculated 3.4 %). A second weight loss of 9.7 % at 90°C - 175°C corresponds to loss of three coordinated water (calcd. 10.6 %) molecules between and a third weight loss amounting 23.7 % occurs due the loss of one Fum (calcd. 24.7 %) in the range of 194°C - 320°C was found. Coordination polymer finally yields NiO (calculated 14.4 % residue) at 475°C. Room-temperature χMT value for the coordination polymer 4 is 1.07 cm3 mol-1 K, which is close to spin only value 1.10 cm3 mol-1 K for one isolated high-spin nickel (II) ion (S = 1 and gNi= 2.1). As temperature is lowered, χMT value remains almost constant down to about 30K, from where value begins to decrease to a minimum value of 0.51 cm3 mol-1 K at 2K. M vs. H plot of 4 show almost a saturation value of 1.95 µB per formula unit at 2K and 7T, which is close to saturation value 2 µB for spin-only nickel (II) ion (S = 1 and gNi = 2.1). We find that naphthalimide tethered pyridine ligand provides new copper malonate, fumarate and adipate coordination polymers. Copper (II) centers in coordination polymer [CuL2(Fum)]n.nH2O (5) have distorted octahedral geometries (figure 5a), which are reflected in 3 > 1 > 4 > 5 > 6 > 7 > 2. Thus, metal ion as well as packing has role in deciding fluorescence emissions. Analysis of packing patterns of these coordination polymers show some prominent interactions associated with naphthalimide rings. Packing pattern of coordination polymer 1 shows presence of dimers of water molecules held in assemblies of naphthalimides (figure 12a). Water molecules are observed to be present above naphthalimide rings and are held by weak C-H···O interactions. Situation is similar to positioning of an anion over naphthalimide via CH···anion interactions.41 Coordination polymer 2 has C-H···π and O···π interactions between naphthalimide rings (figure 12b). Coordination polymer 3
(a)
(b)
(c)
Figure 12: (a) Assemblies of water molecules held through C-H···O with a C-H of pyridine and oxygen-π interactions with naphthalimide in coordination polymer 1. (b) C-H···π interaction in coordination polymer 2 between perpendicularly placed naphthalimide rings. (c) π-stacking of naphthalimide rings in coordination polymer 5. has dimeric assemblies of water molecules which are held by carbonyl group of naphthalimide ring. In crystal lattice of coordination polymer 4 naphthalimide rings have very small portions which are parallel to each other. Naphthalimide rings in lattices of coordination polymer 5 are parallel to each other and have π-π interactions (Figure 12c). On the other hand, crystal lattice of coordination polymer 6 has naphthalimide rings in oblique positions but their distance of separations suggests that they have π-π interactions. Naphthalimide rings of coordination polymer 7 are parallel in its lattice, separating distance of the rings are suitable for π-π interactions. From the separation distance between the naphthalimide rings in lattice, it may be suggested
20 ACS Paragon Plus Environment
Page 21 of 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
that there is insignificant π-interactions among the naphthalimide rings in the in coordination polymer 4 and 6. In conclusion, supramolecular interactions associated with naphthalimide rings of L guides coordination modes of different carboxylates. Change in coordination and assembling properties caused by supramolecular interactions of naphthalimide group on these coordination polymers decide their photoluminescence and magnetic properties. Single chain magnetic property of manganese adipate coordination polymer 1 is due to weak interactions between polymer chains. Frequency dependency of χ′ and χ′′ given in supporting figures S19 and S20 clearly shows that in χ′′ there is a clear maximum at different fields, which is indicative of SCM behavior. In this polymer, distance between neighboring manganese ions of polymeric chain is 12.612 Å, but inter-chain hydrogen bonds brings two manganese ions of neighboring chain to a distance 5.584 Å. Such orderly arrangement enables the polymer to show SCM properties at low temperature. Experimental: General: Thermogravimetric analyses were performed using a thermal analyser SDTQ600 simultaneous DTA/TGA system, under nitrogen with a heating rate of 7 °C/min. UV-Vis spectra were recorded using Perkin-Elmer Lamda-750 spectrometer. Solid-state fluorescence spectra were recorded using Fluoromax-4 Fluorimeter. Fluorescence spectra were recorded with equal amount of powdered samples of L and coordination polymers in solid state by exciting at 330 nm. Powder X-ray diffraction patterns were recorded using Bruker powder X-ray diffractometer D2 phaser. Solid state X-band electron paramagnetic resonance spectra of the coordination polymers were recorded on a JES-FA200 ESR spectrometer. Magnetic susceptibility measurements for coordination polymers 1-7 were performed on Quantum Design SQUID MPMS XL instruments under the applied magnetic field of 1000Oe and in the temperature range of 300K to 2K. Field dependent magnetization for coordination polymer 1 was measured in the field range of 0 to 7T under different temperatures (1.8K to 5K) and for coordination polymers 2-7 were measured at 2K and 3K. The AC-susceptibility measurements for coordination polymer 1 was recorded at Hdc = 1500 Oe with Hac = 3.5 Oe in the temperature range of 15K–2K at various frequencies.
21 ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 22 of 33
Crystallographic Study: X-ray single crystal diffraction data for the coordination polymer 1 and coordination polymer 7 were collected at 298 K with Mo Kα radiation (λ = 0.71073 Å) with the use of a Bruker Nonius SMART APEX CCD diffractometer equipped with a graphite monochromator and an Apex CCD camera whereas for the coordination polymer 2, coordination polymer 3, coordination polymer 4, coordination polymer 5 and coordination polymer 6 the data were collected on a Oxford SuperNova diffractometer. Data refinement and cell reductions were carried out by CrysAlisPro when data were collected on SuperNova diffractometer.42 SMART software was used for data collection and also for indexing the reflections and determining the unit cell parameters. Data reduction and cell refinement were performed using SAINT and XPREP software.43 Multi-scan empirical absorption corrections were carried out with the help of face-indexing . Structures were solved by direct methods using SHELXS-97 and were refined by full-matrix least squares on F2 using SHELXL-97. All non-H atoms were refined in anisotropic approximation against F2 of all reflections. H-atoms were placed at their calculated positions and refined in the isotropic approximation; some of the hydrogen atoms of water molecules of crystallization and coordinated water molecules could not be located and left as such. Crystallographic data collection was done at room temperature, and data are tabulated in Table 2. Table 2: Crystallographic parameters of coordination polymers:
CCDC No. Mol. wt.
Coordination polymer 1 C42H36MnN4 O12 976310 843.69
Coordination polymer 2 C40H34CoN4 O12 976311 821.65
Coordination polymer 3 C42H36CoN4 O12 976312 847.68
Crystal system
Triclinic
Monoclinic
Triclinic
Space group
P1̅
P21/a
P1̅
P21/a
P1̅
Pbca
P1̅
Temp.(K)
296
296
296
296
296
296
296
Wavelength (Å)
0.71073
0.71073
0.71073
0.71073
0.71073
0.71073
0.71073
9.1127(3)
8.8003(5)
15.1823(11)
17.0180(5)
12.0319(13)
13.0832(5)
14.7244(10)
7.8010(6)
17.8705(7)
14.5280(15)
18.4154(7)
16.5169(14)
31.418(2)
20.8120(7)
90.00
98.647(6)
90.00
65.116(3)
97.724(3)
93.170(6)
90.00
83.339(3)
90.00
98.561(5)
90.00
69.993(3)
2085.7(3)
Compound No. Formulae
a /Å
5.5839(12)
b /Å
12.097(3)
c /Å
14.595(3)
α/°
107.883(11)
β/°
100.455(11)
γ/°
97.851(12)
9.0212(5) 13.2138(9) 30.273(2) 90.00 91.213(6) 90.00
5.5869(4)
107.552(9) 100.654(7) 97.990(7)
Coordination polymer 4 C22H22N2Ni O10 976313 533.13
Coordination polymer 5 C40H26CuN4 O9 976314 770.19
Coordination polymer 6 C21H16CuN2 O7 976315 471.90
Coordination polymer 7 C126H95Cu3N12 O27 976316 2399.80
Monoclinic
Triclinic
Orthorhombic
Triclinic
V/ Å
903.0(3)
3607.8(4)
895.09(15)
2175.63(13)
3721.1(5)
5392.3(3)
Z
1
4
1
4
2
8
2
1.552
1.505
1.573
1.628
1.226
1.685
1.479
3
Density/g.cm
-3
22 ACS Paragon Plus Environment
Page 23 of 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
Abs. Coeff. /mm1
F(000) Total no. of reflections Reflections, I > 2σ(I) Max. 2θ/°
0.442
0.550
0.557
437
1684
439
3218 1695
6532 5221
0.956
3231 2751
0.578
1104
790
3924
7553
3313
4276 25.25
1.225
0.674
1928
2476
3321
28001
2036
25971
25.25
25.25
25.24
25.24
25.25
28.77
-6 ≤ h ≤ 6 -14 ≤ k ≤ 14 -17 ≤ l ≤ 17
-10 ≤ h ≤ 10 -10 ≤ k ≤ 15 -32 ≤ l ≤ 36
-6 ≤ h ≤ 6 -13 ≤ k ≤ 14 -17 ≤ l ≤ 17
-17 ≤ h ≤ 22 -23 ≤ k ≤ 23 -23 ≤ l ≤ 27
99.8
99.9
-10 ≤ h ≤ 10 -17 ≤ k ≤ 17 -19 ≤ l ≤ 18 99.8
-17 ≤ h ≤ 17 -8 ≤ k ≤ 8 -36 ≤ l ≤ 37
98.5
-10 ≤ h ≤ 10 -9 ≤ k ≤ 15 -19 ≤ l ≤ 22 99.8
98.5
99.8
Data/ Restraints/ Parameters
3218/1/273
6532/4/528
3231/2/276
1.087
1.068
7553/0/487 1.168
28001/0/1514
0.987
3924/8/327 1.032
3321/0/285
Goof (F2)
1.001
1.072
0.0514
0.0877
0.0406
0.0640
0.0618
0.1458
0.0890
0.1032
0.1572
0.2156
0.0946
0.1565
0.1688
0.2399
0.1389
0.1847
Ranges (h,k, l) Complete to 2θ (%)
R indices [I > 2σ(I)] R indices (all data) WR2 [I > 2σ(I)] WR2(all data)
0.0778 0.1531 0.1299 0.1535
0.0936 0.1105 0.1905 0.1993
0.0561 0.0670 0.1147 0.1209
N-(4-pyridylmethyl)-1,8-naphthalimide (L) was prepared by procedure reported earlier.44 [MnL2(Adp)(H2O)2]n.2nH2O (1): To a solution of Ligand L (0.58g, 2mmol) dissolved in warm methanol (10ml) adipic acid (0.15g, 1 mmol) was added. The resulting solution was stirred for half an hour. Manganese(II) acetate tetrahydrate (0.26g, 1mmol) was added to the above mixture and refluxed for about 1 hr. A white precipitate formed was dissolved in water, filtered and kept undisturbed for crystallization. White crystals of 1 were obtained (Isolated yield 51 % based on Mn). Anal. Calcd for C42H40MnN4O12 (1) : C, 59.51; H, 4.76; N, 6.61. Found: C, 59.68; H, 4.89; N, 6.93. IR (KBr, cm-1): 3559 (m), 1706 (s), 1659 (s), 1590 (w), 1407 (m), 1316 (w), 1240 (s), 960 (s), 701 (w), 478 (m). [CoL2(Fum)(H2O)2]n.2nH2O (2): Coordination polymer 2 was prepared by a similar procedure as that of coordination polymer 1 by reacting cobalt(II) acetate tetrahydrate (0.25g, 1mmol), L (0.58g, 2mmol), and fumaric acid (0.12g, 1mmol) (ratio of Co : L : H2Fum = 1: 2: 1). A pink precipitate formed from the reaction mixture was dissolved in water and kept undisturbed to obtain pink crystals of coordination polymer 2 after a few days (Isolated yield 49 % based on Co). Anal. Calcd. for C40H34CoN4O12 (2): C, 58.47; H, 4.17; N, 6.82. Found: C, 58.70; H, 4.39; N, 7.02. IR (KBr, cm-1): 3421 (br),
23 ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1716 (s), 1662 (s), 1549 (m), 1380 (s), 1236 (s), 1177 (m), 954 (s), 781 (s), 679 (s), 536 (w). [CoL2(Adp)(H2O)2]n.2nH2O (3): Similar procedure as that of 1 was employed to prepare 3 by reacting cobalt(II) acetate tetrahydrate, L and adipic acid with a ratio of Co : L : H2adp = 1 : 2 : 1. Pink precipitate obtained was dissolved in DMF/water mixture. After seven days pink crystals were isolated. (Isolated yield 50 % based on Co). Anal. Calcd. for C42H40CoN4O12 (3): C, 59.23; H, 4.73; N, 6.58. Found: C, 59.48; H, 4.81; N, 6.87. IR (KBr, cm-1): 3557 (w), 1706 (s), 1659 (s), 1590 (m), 1314 (m), 1239 (s), 1315 (m), 959 (s), 780 (s), 691 (m), 478 (m). [NiL(Fum)(H2O)3]n.H2O (4) : Green crystals of coordination polymer 4 were obtained from a reaction of nickel(II) acetate tetrahydrate (0.25g, 1mmol), L (0.29g, 1mmol) and fumeric acid (0.12g, 1mmol) with a ratio of Ni : L : H2Fum = 1 : 1 : 1 (Isolated yield 49 % based on Ni). Anal. Calcd. for C22H22NiN2O10 (4): C, 49.56; H, 4.16; N, 5.25. Found: C, 49.73; H, 4.31; N, 5.56. IR (KBr, cm-1): 3428 (br), 1700 (m), 1660 (s), 1548 (m), 1380 (s), 1234 (s), 1176 (m), 954 (m), 781 (s), 680 (m). [CuL2(Fum)]n.nH2O (5): Blue precipitate was obtained on addition of copper acetate monohydrate ( 0.20g, 1mmol) to a solution of L and fumeric acid ( 0.12g, 1mmol) (ratio Cu : L : H2Fum = 1 : 2 : 1) in methanol on refluxing for 1 hr . Precipitate was dissolved in DMF and kept undisturbed for crystallization. After one week, blue crystals suitable for single crystal diffraction were obtained (Isolated yield 60 % based on Cu). Anal. Calcd. for C40H28CuN4O9 (5): C, 62.21; H, 3.65; N, 7.26. Found: C, 62.30; H, 3.79; N, 7.42. IR (KBr, cm-1): 3460 (br), 1700 (m), 1662 (s), 1587 (s), 1383 (s), 1242 (m), 955 (w), 780 (s), 657 (m), 523 (m). [CuL(Mal)]n (6): Malonic acid (0.11g, 1mmol) was added to a solution of Ligand L dissolved in warm methanol and stirred for half an hour. To this solution copper(II) acetate monohydrate was added (ratio of Cu : L : H2Mal = 1 : 1 : 1) and refluxed for 1 hr. The precipitate obtained was dissolved in DMF and kept for crystallization. Blue crystals were obtained (Isolated yield 42 % based on Cu). Anal. Calcd. for C21H16CuN2O7 (6): C, 53.45; H, 3.42; N, 5.94. Found: C, 53.69; H, 3.58; N, 6.18. IR (KBr, cm-1): 3505(br), 3101(br), 1708(m), 1644(br), 1536(w), 1449(m), 1344(m), 1233(s), 1176(m), 961(s), 782(s), 726(s), 575(m), 501(w).
24 ACS Paragon Plus Environment
Page 24 of 33
Page 25 of 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
[Cu3L6(Adp)3(H2O)3]n (7): A similar procedure used in synthesis of 5 was employed to prepare coordination polymer 7. Copper(II) acetate monohydrate (0.2g, 1mmol), L (0.58g, 2mmol) and adipic acid (0.17g, 1mmol) in a molar ratio of Cu : L : Adp = 1: 2: 1 Was used in this reaction. A precipitate obtained was dissolved in DMF solvent and kept undisturbed. Blue crystals were obtained from the solution after one week ( Isolated yield 56 % based on Cu). Anal. Calcd. for C126H101Cu3N12O27 (7): C, 62.90; H, 4.23; N, 6.99. Found: C, 63.24; H, 4.37; N, 7.27. IR (KBr, cm-1): 3454 (br), 1706 (s), 1660 (s), 1583 (s), 1385 (s), 1235 (s), 1175 (m), 955 (m), 781 (s), 653 (m), 520 (w). Supporting information: CIF, PXRD patterns, thermogravimetry of coordination polymers, magnetic measurement plots and table for bond parameters are available as supporting information. This information is available free of charge via the Internet at http://pubs.acs.org/. References: 1. (a) Perry, J. J. I. V.; Perman, J. A. Zaworotko, M. J. Chem. Soc. Rev. 2009, 38, 1400-1417. (b) O'Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc. Chem. Res. 2008, 41, 1782-1789. 2. (a) Maji, T. K.; Matsuda, R.; Kitagawa, S. Nat. Mater. 2007, 6, 142-148. (b) Tzeng, B. -C.; Chiu, T. -H.; Chen, B. -S.; Lee, G. -H. Chem. Eur. J. 2008, 14, 5237-5245. (c) Yaghi, O. M.; Li, H.; Davis, C.; Richardson, D.; Groy, T. L. Acc. Chem. Res. 1998, 31, 474-484. (d) Aoyama, Y. Top. Curr. Chem. 1998, 198, 131-161. (e) Kitagawa, S.; Kondo, M. Bull. Chem. Soc. Jpn. 1998, 71, 1739-1753. (f) Janiak, C. Angew. Chem. Int. Ed. 1997, 36, 1431-1434. 3. Zhang, W.; Ye, H. -Y.; Xiong, R. -G. Coord. Chem. Rev. 2009, 253, 2980-2997. 4. (a) Li, K.; Olson, D. H.; Seidel, J.; Emge, T. J.; Gong, H; Zeng, H.; Li, J. J. Am. Chem. Soc. 2009, 131, 10368-10369. (b) Chae, H. K.; Eddaoudi, M.; Kim, J.; Hauck, S. I.; Hartwig, J. F.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2001, 123, 1148211483. 5. (a) Kitaura, R.; Onoyama, G.; Sakamoto, H.; Matsuda, R.; Noro, S.; Kitagawa, S. Angew. Chem. Int. Ed. 2004, 43, 2684-2687. (b) Hasegawa, S.; Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.; Kinoshita, Y.; Kitagawa, S. J. Am. Chem. Soc. 2007, 129, 2607-2614. (c) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982-986. (d) Shultz, A. M.; Farha, O. K.; Hupp, J. T.; 25 ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Nguyen, S. T. J. Am. Chem. Soc. 2009, 131, 4204-4205. (e) Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196-1231. 6. (a) Inubushi, Y.; Horika, S.; Fukushima, T.; Akiyama, G.; Matsuda, R.; Kitagawa, S. Chem. Commun. 2010, 46, 9229-9231. (b) An, J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 5578-5579. 7. (a) Nagao, Y.; Fujishima, M.; Ikeda, R.; Kanda, S.; Kitagawa, H.; Synth. Met., 2003, 431, 133-134. (b) Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudra-kovski, I. M.; Shimizu, G. K. H. Nat. Chem. 2009, 1, 705-710. 8. (a) Kurmoo, M. Chem. Soc. Rev. 2009, 38, 1353-1379. (b) Kostakis, G.E.; Powell, A. K. Coord. Chem. Rev. 2009, 253, 2686-2697. (c) Wang, X.-Y.; Avendano, C.; Dunbar, K. R. Chem. Soc. Rev. 2011, 40, 3213-3238. (d) Liu, T.; Zhang, Y. -J.; Wang, Z. -M.; Gao, S. J. Am. Chem. Soc. 2008, 130, 10500-10501. (e) Halder, G. H.; Kepert, C. J.; Moubaraki, B.; Murray, K. S.; Cashion, J. D. Science 2002, 298, 1762-1765. 9. (a) Rao, C. N. R.; Natarajan, S.; Vaidhynathan, R. Angew. Chem., Int. Ed. 2004, 43, 1466-1496. (b) Cheetham, A. K.; Ferey, G.; Loiseu, T. Angew. Chem., Int. Ed. 1999, 38, 3268-3292. (c) Froster, M. P.; Cheetham, A. K. Angew. Chem., Int. Ed. 2002, 41, 457-459. (d) Braga, D.; Grepioni, F.; Desiraju, G. R. Chem. Rev. 1998, 98, 1375-1386. (e) Fujita, M.; Oguru, D.; Milyazawa, M.; Oka, H.; Yamaguchi, K; Oguru, K. Nature 1995, 378, 469-471. (f) Guillou, N.; Pastre, S.; Levage, C.; Ferey, G. Chem. Commun. 2002, 2358-2359. (g) Shi, Z.; Zhang, L.; Gao, S.; Yang, G.; Hua, J.; Gao, L.; Feng, S. Inorg. Chem. 2000, 39, 1990-1993.(i) Seki, K.; Mori, W. J. Phys. Chem. B 2002, 106, 1380-1385. (h) Burrows, A. D.; Harrington, R. W.; Mahon, M. F.; Teat, S. J. Cryst. Growth Des. 2004, 4, 813-822. 10. (a) Zheng, S.; Wu, T.; Zhang, J.; Chow, M.; Nieto, R. A.; Feng, P.; Bu, X. Angew. Chem. Int. Ed. 2010, 49, 5362-5366. (b) Zhang, J. -P.; Huang, X. -C.; Chen, X. -M. Chem. Soc. Rev. 2009, 38, 2385-2396. 11. (a) Xue, D. -X.; Zhang, W. -X.; Chen, X. -M.; Wang, H. -Z. Chem. Commun. 2008, 1551-1553. (b) Kepert, C. J.; Rosseinsky, M. J. Chem. Commun. 1999, 375376. (c) Li, H. -L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276279. (d) Maji, T. K.; Uemura, K.; Chang, H. -C.; Matsuda, R.; Kitagawa, S.; Angew. Chem., Int. Ed. 2004, 43, 3269-3272. (e) Cheng, X. -N.; Zhang, W.-X.; Lin, Y. -Y.; Zheng, Y. -Z.; Chen, X. -M. Adv. Mater. 2007, 19, 1494-1498. (f) Xue, D. -X.; Lin, Y. -Y.; Cheng, X. -N.; Chen, X. -M. Cryst. Growth Des. 2007, 7, 1332-1336. (g) Kaneko, W.; Ohba, M.; Kitagawa, S. J. Am. Chem. Soc. 2007, 129, 13706-13712. (h) 26 ACS Paragon Plus Environment
Page 26 of 33
Page 27 of 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
Suh, M. P.; Ko, J. W.; Choi, H. J. J. Am. Chem. Soc. 2002, 124, 10976-10977. (i) Wu, C. -D.; Lin, W. -B. Angew. Chem. Int. Ed. 2005, 44, 1958-1961. (j) Bradshaw, D.; Warren, J. E.; Rosseinsky, M. J. Science 2007, 315, 977-980. (k) Zeng, M. -H.; Feng, X. -L.; Chen, X. -M. Dalton Trans. 2004, 2217-2223. (l) Hu, C.-H.; Englert, U. Angew. Chem., Int. Ed. 2005, 44, 2281-2283. 12. (a) Abourahma, H.; Moulton, B.; Kravtsov, V.; Zaworotko, M. J. J. Am. Chem. Soc. 2002, 124, 9990-9991. (b) Zhu, A. -X.; Lin, J. -B.; Zhang, J. -P.; Chen, X. -M. Inorg. Chem. 2009, 48, 3882-3889. (c) Xue, D. -X.; Lin, J. - B.; Zhang, J. -P.; Chen, X. -M. CrystEngComm 2009, 11, 183-188. (d) Zhang, J. -J.; Wojtas, L.; Larsen, R. W.; Eddaoudi, M.; Zaworotko, M. J. J. Am. Chem. Soc. 2009, 131, 17040-17041. 13. (a) Konar, S.; Mukherjee, P.S.; Drew, M. G.; Ribas, J.; Chaudhuri, N.R. Inorg Chem. 2003, 42, 2545-2552. (b) Wang, X. -F.; Zhang, Y. -B.; Xue, W.; Qi, X. -L.; Chen, X. -M. CrystEngComm 2010, 12, 3834-3839. 14. (a) Ruiz-Perez, C.; Sanchiz, J.; Molina, M. H.; Lloret, F.; Julve, M. Inorg. Chem. 2000, 39, 1363-1370. (b) Delgado, F. S.; Sanchiz, J.; Ruiz-perez, C.; Lloret, F.; Julve, M. Inorg Chem. 2003, 42, 5938-5948. (c) Burrows, A.D.; Frosts, C. G.; Mahon, M. F.; Winsper, M.; Richardson, C.; Attfield, J. P.; Rodgers, J. A. Dalton Trans. 2008, 6788-6795. (d) Husebye, S.; Kato, M.; Maartman-Moe, K.; Muto, Y.; Nakashima, M.; Tokii, T. Acta Chem. Scand. 1994, 48, 628-634. 15. (a) Zheng, Y. -Z.; Tong, M. -L.; Zhang, W. -X.; Chen, X. -M. Angew. Chem. Int. Ed. 2006, 45, 6310-6314. (b) Zheng, Y. -Z.; Xue, W.; Tong, M. -L.; Chen, X. -M.; Zheng, S. -L. Inorg. Chem. 2008, 47, 11202-11211. (c) Hu, S.; Yun, L.; Zheng, Y. Z.; Lan, Y.; Powell, A.K.; Tong, M.-L. Dalton Trans. 2009, 1897-1900. (d) Zheng, Y. -Z.; Tong, M. -L.; Xue, W.; Zhang, W. -X.; Chen, X. -M.; Grandjean, F.; Long, G. J.; Ng, S. -W.; Panissoid, P.; Drillon, M. Inorg. Chem. 2009, 48, 2028-2042. (e) Miyasaka, H.; Yamashita, M. Dalton Trans. 2007, 399-406. 16. (a) Lu, G.; Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 7832-7833.(b) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M., Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105-1125. 17. (a) Mukherjee, P. S.; Dalai, S.; Mostafa, G.; Zangrando, E.; Lu, T.-H.; Rogez, G.; Mallah, T.; Chaudhuri, N.R. Chem. Commun. 2001, 1346-1347. (b) Mukherjee, P. S.; Maji, T. K.; Mostafa, G.; Ribas, J.; El Fallah, M. S.; Chaudhuri, N.R. Inorg. Chem. 2001, 40, 928-929. (c) Dalai, S.; Mukherjee, P. S.; Zangrando, E.; Lloret, F.; Chaudhuri, N.R. J. Chem. Soc. Dalton Trans. 2002, 822-823. (d) Sain, S.; Maji, T. K.; 27 ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 28 of 33
Mostafa, G.; Lu, T. -H.; Chaudhuri, N.R. New J. Chem. 2003, 27, 185-187. (e) Konar, S.; Mukherjee, P. S.; Zangrando, E.; Lloret, F.; Chaudhuri, N. R. Angew. Chem. Int. Ed. 2002, 41, 1561-1563. 18. (a) Li, M. -X.; Xie, G. -Y.; Jin, S. -L.; Gu, Y. -D.; Li, M. -Q.; Liu, J.; Xu, Z.; You, X. -Z. Polyhedron 1996, 15, 535-539. (b) Young, D. M.; Geiser, U.; Schultz, A. J.; Wang, H. H.; J. Am. Chem. Soc. 1998, 120, 1331-1332. (c) Konar, S.; Zangrando, E.; Chaudhuri, N. R. Inorg. Chim. Acta 2003, 355, 264-271. (d) Zheng, Y.; Xie, H. J. Solid State Chem. 2004, 177, 1352-1358. (e) Ghoshal, D.; Mostafa, G.; Maji, T. K.; Zangrando, E.; Lu, T.; Ribas, J.; Chaudhuri, N. R. New J. Chem. 2004, 28, 12041213. (f) Porollo, N. P.; Aliev, Z. G.; Dzhardimalieva, G. I.; Ivleva, I. N.; Uflyand, I. E.; Pomogailo, A. D.; Ovanesyan, N. S. Russ.Chem. Bull. 1997, 46, 362-370. (g) Pajtasova, E.; Jona, E.; Koman, M.; Ondrusova, D. Pol. J. Chem. 2001, 75, 12091217. 19. (a) Reger, D. L.; Debreczeni, A.; Reinecke, B.; Rassolov, V.; Smith, M. D. Inorg. Chem. 2009, 48, 8911-8924. (b) Reger, D. L.; Debreczeni, A.; Smith, M. D. Inorg. Chim. Acta 2010, 364, 10-15. (c) Reger, D. L.; Horger, J. J.; Debreczeni, A.; Smith, M. D. Inorg. Chem. 2011, 50, 4669-4670. (d) Reger, D. L.; Leitner, A. P.; Smith, M. D. Inorg. Chem. 2012, 51, 10071-10073. (e) Reger, D. L.; Horger, J. J.; Smith, M. D. Chem. Commun. 2011, 47, 2805-2807. (f) Singh, D.; Baruah, J. B. Cryst. Growth Des. 2012, 12, 2109-2121. 20. (a) Lloret, F.; Julve, M.; Cano, J.; Ruiz-Garcia, R.; Pardo, E. Inorg. Chim. Acta 2008, 361, 3432-3445. (b) Mondal, A.; Durdevik, S.; Chamoreau, L. M.; Journaux, Y. ; Julve, M.; Lisnard, L. ; Lescouezec, R. Chem. Commun. 2013, 49, 1181-1183. 21. Salavati-Niasari, M.; Mohandes, F.;
Davar, F.; Saberyan, K. Appl. Surf. Sci.
2009, 1476-1480. 22. (a) Ma, C.; Wang, W.; Zhang, X.; Chen, C.; Liu, Q.; Zhu, H.; Liao, D.; Li, L. Eur. J. Inorg. Chem. 2004, 3522-3532. (b) Ma, C.; Chen, C.; Liu, Q.;
Liao, D.;
Li, L.; Sun, L. New J. Chem. 2003, 27, 890-894. 23. (a) Delgado, F.S.; Kerbellec, N.; Ruiz-Perez, C.; Cano, J.; Lloret, F.; Julve, M. Inorg Chem. 2006, 45, 1012-1020. (b) Ma, C.; Chen, C.; Liu, Q.; Chen, F.; Liao, D.; Li, L.; Sun, L. Eur. J. Inorg. Chem. 2003, 2872-2879. (c) Lincy, A.; Mahalakshmi, V.; Thomas, J.; Saban, K.V. Optik 2013, 124, 2881-2884. 24. (a) Batten, S. R.; Robson, R. Angew. Chem. Int. Ed. 1998, 37, 1460-1494. (b). Mukherjee, P. S; Konar, S.; Zangrando, E.; Mallah, T.; Ribas, J.; Chaudhuri, N. R. 28 ACS Paragon Plus Environment
Page 29 of 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
Inorg. Chem. 2003, 42, 2695-2703. (c) Kim, Y. J.; Jung, D.-Y. Inorg. Chem. 2000, 39, 1470-1475. (d) Zheng, Y.-Q.; Zheng, M. -F. Z. Naturforsch. 2003, 58b, 266-270. 25. (a) Setifi, Z.; Setifi, F.; Smith, G.; El-Ghozzi, M.; Rouag D. -A.; Avignant, D.; Merazig, H. Acta Crystallogr. 2013, 69E, m335-m336. (b) Beko, S. L.; Batts, J.W.; Schmidt, M. U. Acta Crystallogr. 2009, 65C, m347-m351. (c) Ma, J. -F.; Yang, J.; Liu, J. -F. Acta Crystallogr. 2003, C59, m304-m306. (d) Zheng, Y. -Q.; Lin, J. -L.; Pan, A. -Y. Zeitsch. fur Anorg. Allgem. Chem. 2008, 626, 1718-1720. (e) Yang, M. H. Acta Crystallogr. 2008, 64E, m1406. 26. Padmanabhan, M.; Joseph, J. C.; Thirumurugan,A.; Rao, C. N. R. Dalton Trans. 2008, 2809-2811. 27. (a) Ma, S.; Simmons, J. M.; Yuan, D.; Li, J. -R.; Weng, W.; Liu, D. -J.; Zhou, H. -C. Chem. Commun. 2009, 4049-4051. (b) Ma, S.; Wang, X. -S.; Manis, E. S.; Collier, C. D.; Zhou, H. -C. Inorg. Chem. 2007, 46, 3432-3434. (c) Wages, H. E.; Taft, K. L.; Lippard, S. J. Inorg. Chem. 1993, 32, 4985-4987. (d) Nanda, K. K.; Das, R.; Thompson, L. K.; Venkatsubramanian, K.; Nag, K. Inorg. Chem. 1994, 33, 59345939. (e) Nikiforova, M. E.; Sidorov, A. A.; Aleksandrov, G. G.; Ikorskii, V. N.; Smolyaninov, I. V.; Okhlobystin, A. O.; Berberova, N. T.; Eremenko, I. L. Russ. Chem. Bull. Int. Ed. 2007, 56, 943-952, (f) Chaudhuri, P.; Kupers, H. J.; Wieghardt, K.; Gehring, S.; Haase, W.; Nuber, B.; Weiss, J. J. Chem. Soc. Dalton Trans. 1988, 1367-1370. (g) Buchanan, R. M.; Mashuta, M. S.; Oberhausen, K. J.; Richardson, J. F. J. Am. Chem. Soc. 1989, 111, 4497-4498. 28. (a) Konar, S.; Zangrando, E.; Drew, M. G. B.; Ribas, J.; Chaudhuri, N. R.; Dalton Trans. 2004, 260-266. (b) Zhou, Z. -H.; Ye, J. -J.; Deng, Y. -F.; Wang, G.; Gao, J. -X.; Wao, H. -L. Polyhedron 2002, 21, 787-792. (c) Guillou, N.; Pastre, S.; Livage, C.; Ferey, G. Chem Commun. 2002, 2358-2359. 29. (a) Seki, K.; Takamizawa, S.; Mori, W. Chem. Letters 2001, 30, 122-123. (b) Ohata, N.; Masuda, H.; Yamauchi, O. Angew.Chem. Int. Ed. 1996, 35, 531-532. (c) Wang, X. -L.; Sui, F. -F.; Lin, H. -Y.; Xu, C.; Liu, G. -C.; Zhang, J.; Tian, A. -X. CrystEngComm 2013, 15, 7274-7284. 30. (a) Naumov, P.; Ristova, M.; Soptrajanov, B.; Drew, M. G. B.; Ng, S. W. Croatica Chim. Acta 2002, 75, 701-711. (b) Liu, T. -F.; Sun, H. -L.; Gao, S.; Zhang, S.-W.; Lau, T.-C. Inorg. Chem. 2003, 42, 4792- 4794. (c) Slone, R. V.; Yoon, D. I.; Calhoun, R. M.; Hupp, J. T. J. Am. Chem. Soc. 1995, 117, 11813-11814. (d) Karipides, A.; Ault, J.; Reed, T. Inorg. Chem. 1977, 16, 3299-3302. (e) Chung, K. H.; 29 ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Hong, E.; Do, Y.; Moon, C. H. J. J. Chem. Soc., Chem. Commun. 1995, 2333-2334. (f) Ray, N. J.; Hathaway, B. J. Acta Crystallogr. 1982, 38B, 770. (g) Chattopadhyay, D.; Chattopadhyay, S. K.; Lowe, P. R.; Schwalbe, C. H.; Mazumder, S. K.; Rana, A.; Ghosh, S. J. Chem. Soc. Dalton Trans. 1993, 913-916. (h) Saadeh, S. M.; Trojan, K. L.; Kampf, J. W.; Hatfield, W. E.;. Pecoraro, V. L Inorg. Chem. 1993, 32, 3034-3040. (i) Calogero, S.; Stievano, L.; Diamandescu, L.; Mihaila-Tarabasanu, D.; Valle, G. Polyhedron 1997, 16, 3953-3966. (j) Gil de Muro, I.; Insausti, M.; Lezama, L.; Pizarro, J. L.; Urtiaga, M. K.; Arriortua, M. I.; Rojo, T. J. Chem. Soc. Dalton Trans. 2000, 3360-3364. (k) Seguatni, A.; Fakhfakh, M.; Smiri, L. S.; Gressier, P.; Boucher, F.; Jouini, N. J. Solid State Chem. 2012, 187, 7-14. (l) Keene, T. D.; Zimmermann, I.; Neels, A.; Sereda, O.; Hauser, J.; Liu, S.-X.; Decurtins, S. Crystal Growth Des. 2010, 10, 1854-1859. (m) Li, B.; Wang, X.; Zhang, Y.; Gao, S.; Zhang, Y. Inorg. Chim. Acta 2005, 358, 3519-3524. (n) Zheng, Y. -Q.; Zhai, X. -S.; Jin, L.; Zhu, H. L.; Lin, J. -L.; Xu, W. Polyhedron 2014, 68, 324-333. 31. (a) Towle, D. K.; Hoffmann, S. K.; Hatfield, W. E.; Singh, P.; Chaudhuri, P. Inorg. Chem. 1988, 27, 394-399. (b) Levstein, P. R.; Calvo, R. Inorg. Chem. 1990, 29, 1581-1583. (c) Sapina, F.; Escriva, E.; Folgado, J. V.; Beltran, A.; Beltran, D.; Fuertes, A.; Drillon, M. Inorg. Chem. 1992, 31, 3851-3858. (d) Colacio, E.; Domınguez-Vera, J. M.; Ghazi, M.; Kivekas, R.; Kivekkas, M.; Klinga, M.; Moreno, J. M. Eur. J. Inorg. Chem. 1999, 441-445. (e) Ruiz-Perez, C.; Hernandez-Molina, M.; Lorenzo-Luis, P.; Lloret, F.; Cano, J.; Julve, M. Inorg. Chem. 2000, 39, 3845-3852. (f) Sanchiz, J.; Rodriguez-Martin, Y.; Ruiz-Perez, C.; Mederos, A.; Lloret, F.; Julve, M. New J. Chem. 2002, 26, 1624-1628. 32. Wang, Y. Y.; Wang, X.; Shi, Q. Z. Transition Met. Chem. 2002, 27, 481-484. 33. (a) Bakalbassis, E. G.; Korabik, M.; Michailides, A.; Mrozinski, J.; Raptopoulou, C.; Skoulika, S.; Terzis, A.; Tsaousis, D. J. Chem. Soc. Dalton Trans. 2001, 850-885. (b) Zheng, Y. -Q.; Cheng, D. -Y.; Lin, J. -L.; Li, Z. -F.; Wang, X. -W. Eur. J. Inorg. Chem. 2008, 4453-4461. (c) Fatima, S.; Abdelaziz, B.; Jean, S. -P.; Jean-Yves, S.; Smail, T. Inorg. Chim. Acta 2006, 359, 3269-3274. (d) Xie, H. -Z.; Zhang, Y. -G. Acta Crystallogr. 2010, 66E, m934. (e) Zheng, Y.-Q.; Cheng, D. -Y.; Lin, J. -L.; Li, Z. -F.; Wang, X. -W. Eur. J. Inorg. Chem. 2008, 4453-4461. 34. (a) Culpepper, M. A.; Cutsail, G. E.; Gunderson, W. A.; Hoffman, B. M.; Rosenzweig, A. C. J. Am. Chem. Soc. Doi. 10.1021/ja5053126. (b) Gherman, B. F.; Cramer, C. J. Coord. Chem. Rev. 2009, 253, 723-753. (c) Pavlova, S. V.; C. Chen, K. 30 ACS Paragon Plus Environment
Page 30 of 33
Page 31 of 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
H. -C., Chan S. I., Dalton Trans. 2004, 3261-3274. (d) Lubben, M.; Hage, R.; Meetsma, A.; Bÿma, K.; Feringa, B. L. Inorg. Chem. 1995, 34, 2217-2224. (e) Ferreira, A. M. D. C.; Santos, M. L. P. D.; Pereira, E.M.; Damasceno, M.O.; Alves, W.A.; An. Acad. Bras. Ci., 2000, 72, 51-57. (f) Chasteen, N.D.; Belford, R.L. Inorg. Chem. 1970, 9, 169-175. (g) Gonzalez-Alvareza, M.; Alzueta G.; Borrasa, J.; GarciaGrand, S.; Montejo-Bernardo, J. M. J. Inorg. Biochem. 2003, 96, 443-451. 35. (a) Mondal, A.; Dassie, P. I. ; Chamoreau, L. M.; Journaux, Y. ; Julve, M.; Lisnard, L.; Lescouezec, R. Cryst. Growth Des. 2013, 13, 4190-4194. (b) Paz, F. A. A.; Klinowski, J.; Vilela, S. M. F.; Tome, J. P. C.; Cavaleiroc, J. A. S.; Rocha, J. Chem. Soc. Rev.
2012, 41, 1088-1110. (c) Takashima, Y.; Martinez, V.
M.;
Furukawa, S.; Kondo, M.; Shimomura, S.; Uehara, H.; Nakahama, M.; Sugimoto, K.; Kitagawa, S. Nat. Commun. 2011, 2, 168. (d) Doty, F. P.; Bauer, C. A.; Skulan, A. J.; Grant, P. G.; Allendorf, M .D. Adv. Mater. 2009, 21, 95-101. 36. He, K. H.; Song, W. C.; Li, Y. W.; Chen, Y. Q.; Bu, X. H. Cryst. Growth Des., 2012, 12, 1064-1068. 37. (a) Fang, H. C.; Zhu, J. Q.; Zhou, L. J.; Jia, H. Y.; Li, S. S.; Gong, X.; Li, S. B.; Cai, Y. P.; Thallapally, P. K.; Liu, J.; Exarhos, G. J. Cryst. Growth Des. 2010, 10, 3277-3284. (b) Dai, J. C.; Wu, X. T.; Fu, Z. Y.; Cui, C. P.; Hu, S. M.; Du, W. X.; Wu, L. M.; Zhang, H. H.; Sun R. Q. Inorg. Chem. 2002, 41, 1391-1396. (c) Zang, S. Q.; Cao, L. H.; Liang, R.; Hou, H. W.; Mak, T. C. W. Cryst. Growth Des. 2012, 12, 1830-1837. (d) Zheng, S. L.; Yang, J. H.; Yu, X. L.; Chen, X. M.; Wong W. T. , Inorg. Chem. 2004, 43, 830-838. (e) Li, J. R.; Tao, Y.; Yu, Q.; Bu X. H., Chem.Commun. 2007, 1527-1529. (f) Tzeng, B. C.; Chiu, T. H.; Chen, B. S.; Lee, G. H. Chem. Eur. J. 2008, 14, 5237-5245. (g) Ding, B.; Yi, L.; Wang, Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H.; Song, H. B.; Wang, H. G. Dalton Trans. 2006, 665-675. 38. Fang, S. -M.; Zhang, Q.; Hu, M.; Yang, X. -G.; Zhou, L. -M.; Du, M.; Liu, C. -S. Cryst. Growth Des. 2010, 10, 4773-4785. 39. (a) Valeur, B. Molecular Fluorescence: Principles and Applications;Wiley-VCH: Weinheim, Germany, 2002. (b) Adamson, A. W.; Fleischauer, P. D. Concepts of Inorganic Photochemistry; John Wiley & Sons: New York, 1975. 40. Zhang, L.Y.; Liu, G. F.; Zheng, S. L.; Ye, B. H.; Zhang, X. M.; Chen, X. M. Eur. J. Inorg. Chem. 2003, 2965-2971. 41. Nath, J. K.; Baruah, J. B. New J. Chem. 2013, 37, 1509-1519. 31 ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
42. CrysAlisPro, Oxford Diffraction Ltd., version 1,171. 33. 34d (release crysAlis 171.NET), 2009. 43. Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement; University of Gottingen, Germany, 1997 program package. 44. Sarma, R. J.; Tamuly, C.; Barooah, N.; Baruah, J. B. J. Mol. Struct. 2007, 829, 2936.
32 ACS Paragon Plus Environment
Page 32 of 33
Page 33 of 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
For Table of Contents Use Only Structures, magnetic properties and photoluminescence of dicarboxylate coordination polymers of Mn, Co, Ni, Cu having N-(4-pyridylmethyl)-1,8naphthalimide J. K. Nath, A. Mondal, A. K. Powell, J. B. Baruah
Synopsis Structural variations caused by ancillary ligands N-(4-pyridylmethyl)-1,8naphthalimide in various first row transition metal dicarboxylate coordination polymers are described. Solid state magnetic properties and photoluminescence properties are discussed. Single chain magnetic property in a manganese coordination polymer is observed. Photoluminescence properties are related to structural motifs.
33 ACS Paragon Plus Environment