Studies on vitamin D (calciferol) and its analogs. 37. A-Homo-11

A-Homo-11-hydroxy-3-deoxy vitamin D: ring size and .pi.-facial selectivity effects on the [1,7]-sigmatropic hydrogen shift of previtamin D to vitamin ...
0 downloads 0 Views 1MB Size
J . Am. Chem. SOC.1991, 113, 1355-1363

1355

A-Homo- 1 1-hydroxy-3-deoxyvitamin D: Ring Size and .Ir-Facial Selectivity Effects on the [ 1,7]-Sigmatropic Hydrogen Shift of Previtamin D to Vitamin D' Joel D. Enas, J. Antonio Palenzuela, and William H. Okamura* Contribution from the Department of Chemistry, University of California. Riverside, California 92521. Received May 9, I990

Abstract: The previtamin D-vitamin D interconversion, a [ 1,7]-sigmatropic hydrogen shift, provides a convenient system with which to evaluate the structural requirements of this hydrogen migration process. Thus, the A-homoprevitamin D analogues 7a,b and 8a,b were synthesized and their thermal [ 1 ,7]-sigmatropic hydrogen rearrangements studied. Relative to the parent previtamin D3system, the presence of the seven membered A-ring not only accelerates the rate of the rearrangement but also shifts the equilibrium to lie completely in favor of the vitamin. In addition, the 1 I-hydroxyl group was found to exert a modest effect (-2:l to -5:l) on the preferred helicity of the antarafacial rearrangement (a .rr-facialselectivity effect). I n both cases a syn directive effect by the 1 I-hydroxyl was observed.

Chart I

Introduction

The thermal [ 1,7]-sigmatropic hydrogen shift of previtamin D3 D3(2,2')2is of continuing interest in our laboratory because of its role in the biosynthesis of the biologically active forins of vitamin D (Scheme For the thermal [1,7]-sigmatropic hydrogen shift: the antarafaciality of the process as depicted by Woodward and Hoffmann5 has recently been demonstrated by appropriate deuterium labeling experiments.6 Although antarafaciality for the conversion of the parent previtamin D3 (1) to vitamin D3 (2) has not been explicitly established, the intramolecular nature of this process has been demonstrated by isotopic labeling,7 and the activation enthalpy and entropy were estimated to be 19.2 kcal/mol and -19.6 cal/mol K, respectively.8 (1) to vitamin

( I ) This is paper No. 37 in the series, Studies on Vitamin D (Calciferol) and Its Analogues. For paper No. 36, see: Wu, K.-M.; Okamura, W. H. J . Org. Chem. 1990, 55, 4025. (2) (a) Velluz, L.; Amiard, G.; Petit, A,, Bull. SOC.Chim. Fr. 1949, 501. (b) Velluz, L.; Amiard, G.; Goffinet, B. Bull. SOC.Chim. Fr. 1955, 1341. (c) Legrand, M.; Mathieu, J. Compt. Rend. Seances Acad. Sci. 1957, 245,2502. (d) Schlatmann, J. L. M. A.; Pot, J.; Havinga, E. Red. Trav. Chim. Pays-Bas 1964, 83, 1 173. (e) Havinga, E. Experientia 1973, 29, 1 I8 I . (3) For general reviews of the biochemistry of vitamin D, see: (a) Norman, A. W. Vitamin D, the Calcium Homeostatic Steroid Hormone; Academic Press: New York, 1979. (b) De Luca, H. F.; Paaren, H. E.: Schnoes, H. K. Top. Curr. Chem. 1979,83, 1. For general reviews of the chemistry of vitamin D, see: (c) Georghiou, P. E. Chem. SOC.Rev. 1977,6, 83. (d) Fieser, L. F.; Fieser, M. Steroids; Reinhold: New York, 1959. For papers related to the early steps of vitamin D metabolism including the previtamin D-vitamin D conversion, see: (e) Holick, M. F.; MacLaughlin, J. A.; Clark, M. B.; Holick, S. A.; Potts, J. T., Jr.; Anderson, R. R.; Blank, I. H.; Parrish, J. A,; Elias, P. Science 1980, 210, 203. (0Holick, M. F. J . Investigative Dermatology 1981, 76, 51. (4) Spangler, C. W. Chem. Reu. 1976, 76, 187. (5) Woodward, R. B.; Hoffmann, R. J . Am. Chem. SOC.1965, 87, 251 1. (6) (a) Hoeger, C. A.; Johnston, A. D.; Okamura, W. H. J . Am. Chem. SOC.1987, 109, 4690. (b) Hoeger, C. A,; Okamura, W. H. J . Am. Chem. SOC.1985, 107,268. (c) Leyes, G. A.; Okamura, W. H. J . Am. Chem. Soc. 1982, 104, 6099. (7) (a) Akhtar, M.; Gibbons, C. J. Tetrahedron Lett. 1965, 509. (b) Akhtar, M.; Gibbons, C. J. J . Chem. SOC.1965, 5964. (8) (a) Hanewald, K . H.; Rappoldt, M. P.; Roborgh, J. R. R e d . Trav. Chim. Pays-Bas. 1961,80, 1003. For other studies of the previtamin D-vitamin D transformation, see: (b) Okamura, W. H.; Hoeger, C. A,; Miller, K . J.; Reischl, W. J . Am. Chem. SOC.1988, 110, 973. (c) Yamamoto, J. K.; Borch, R. F. Biochemistry 1985, 24, 3338. (d) Moriarty, R. M.; Schwartz, R. N.; Lee, C.; Curtis, V. J . Am. Chem. SOC.1980, 102, 4257. (e) Cassis, E. G., Jr.; Weiss, R. G. Photochem. Photobiol. 1982, 35, 439. (0Hobbs, R. N.; Hazel, C. M.; Smith, S.C.; Carney, D. A,; Howells, A. C.; Littlewood, A. J.; Pennock, J. F. Chem. Scr. 1987, 27, 199. (9) Pelc, B.; Marhsall, D. H. Steroids 1978, 31, 23.

0002-7863/91/1513-1355$02.50/0

7

8,

X

= H; b, X = D

8

Recently, Daubenga has provided computational evidence, supported by 'HNMR (NOESY) studies,9b for the existence of two main triene types (5-s-cis,7-s-cis conformers 3 and 4; 5-strans,7-s-cis conformers 5 and 6) of ground-state conformations of previtamin D3 in solution as depicted in Scheme I . Each of the conformers 3-6 may also exist in the opposite half-chair like conformer, resulting in a pseudoaxial orientation of the hydroxyl. Dauben's molecular mechanics calculations (MMP2) indicate that there exist eight lowest energy minima, and conformer 6 is the global minimum. This conformer places the C19methyl group in the A-ring below the plane defined by Cs-C6-C7-C8. The 5,6-single bond is in the s-trans conformation, and the C3 hydroxyl is pseudoequatorially oriented. At the time of the [ 1,7]-shift however, the triene portion of the previtamin 1 must assume either one of the two possible doubly cisoid, helical conformations depicted approximately by 3 or 4. Mazur'O has shown that an inherent preference exists in the previtamin for the triene to assume the right-handed helical transition-state topography 4 as opposed to the left-handed one 3 by a ratio of -2:l a t the time of the (9) (a) Dauben, W. G.; Funhoff, D. J. H. J . Org. Chem. 1988,53,5070. (b) Dauben, W. G.; Funhoff, D. J. H. J . Org. Chem. 1988, 53, 5376. (c) Delaroff, V.; Rathle, P.; Legrand, M. Bull. SOC.Chim. Fr. 1963, 1739. (d) La Mar, G. N.; Budd, D. L. J . Am. Chem. SOC.1974, 96, 7317. (e) Wing, R. M.; Okamura, W. H.; Rego, A,; Pirio, M. R.; Norman, A. W. J . Am. Chem. SOC.1975, 97, 4980. ( f ) Wing, R. M.; Okamura, W. H.; Pirio, M. R.; Sine, S. M.; Norman, A. W. Science 1974, 186,939. (9) Kotovych, G.; Aarts, G. H. M.; Bock, K. Can. J . Chem. 1980, 58, 1206. (h) Kotowycz, G.; Nakashima, T. T.; Green, M. K.; Aarts, G. H. M. Can. J . Chem. 1980, 58, 45. (i) Helmer, B.; Schnoes, H. K.; De Luca, H. F. Arch. Biochem. Biophys. 1985, 241,608. 6 ) Hodgkin, D. C.; Rimmer, B. M.; Dunitz, J. D.; Trueblood, K. N. J . Chern. SOC.1963.4945. (k) Knobler, C.; Romers, C.; Braum, P. B.; Hornstra, J. Acta Crystallogr., Sect. B 1972, 28, 2097. (I) Hull, S. E.; Leban, 1.; Main, P.; White, P. S.; Woolfson, M. M. Acta Crystallogr., Sect B 1976, 32, 2374. (m) Ikekawa, N.; Egushi, T.; Hirano, Y.; Tanaka, Y . ; De Luca, H. F.; Itai, A.; litaka, Y . J . Chem. SOC.,Chem. Commun. 1981, 1157. (n) Trinh, T.; Ryan, R. C.; Simon, G. L.; Calabrese, J. C.; Dahl, L. F.; De Luca, H. F. J . Chem. SOC.,Perkin Trans. 2 1977, 393. (0)Trinh, T.; De Luca, H. F.; Dahl, L. F. J . Org. Chem. 1976, 41, 3476. (IO) Sheves, M.; Berman, E.; Mazur, Y . ;Zaretskii, 2. V . I. J . Am. Chem. Soc. 1979, 101, 1882.

0 1991 American Chemical Society

Enas et al.

1356 J . Am. Chem. SOC., Vol. 113. No. 4, 1991 Scheme I

Ho

H

6 7

3

5

HO Ho

4

6

Scheme I1 % -*,

I

LDA, PhSeCl; MCPBA (69%)

gH 9

O H

10

[ I,7]-shift. This ratio can be explained by the notion that the right-handed helix permits the migrating hydrogen to be delivered axially to C9 of the As,9 double bond of the six-membered C-ring (4) and the left-handed helix (3) allows for only formal, equatorial delivery of the migrating hydrogen. Axial delivery of hydrogen from C19 to C9 should be preferred since this would lead directly to the ring C chair conformer of 2, the latter then equilibrating to the more stable s-trans conformer.9c* Other studies have shown that an allylic hydroxyl group flanking the heptatriene network in cis-isotachysterol analogues directs the antarafacial hydrogen migration so that the hydrogen prefers to migrate in a syn fashion relative to the allylic hydroxyl (a-facial seIectivity).6b*c,'1 I n an effort to develop a more detailed understanding of [ 1,7]-sigmatropic hydrogen shifts, this paper describes a synthesis of the A-homo- 1 1 -hydroxy-3-deoxyprevitaminD3analogues 7 and 8 (Chart I ) and a study of their thermal [1,7]-sigmatropic hydrogen shifts. The presence of the enlarged A-ring (seven-membered) was expected to help assess the topographical demands of [ 1,7]-shifts through a change in ring size in the previtamin-vitamin system. The strategic positioning of an a- or 0-hydroxyl group at C l l was anticipated to allow an assessment of any directing effect by the hydroxyl on the [ I ,7]-shift (r-facial selectivity). A viable method for incorporation of a trideuteriomethyl group at C I 9in 7 and 8 was a necessary goal of this study as a means of assessing the latter effects. Finally, it should be noted that 1 la-hydroxyvitamin D3I2and the 1 la- and 1 Ip-hydroxylated epimers of la,25-dihydroxyvitamin

11 D3I3are the only 1 I-hydroxylated vitamin D substrates previously reported. Results and Discussion Synthesis of Substrates. The required C D fragment, epoxy ketone 11, was synthesized as shown in Scheme 11. Grundmann's ketone 9 was converted to the known A9s1'-enone1014315 and then diastereoselectively epoxidized with basic peroxide to afford the epoxy ketone 11 as a single diastereomer. Initially, enone 10 itself without epoxidation was envisaged as the requisite CD fragment for preparing 7 and 8. However, as will be seen later, the overall utility of this substrate was limited by purification problems and the low yields obtained in subsequent steps of the synthesis. For the synthesis of the protio A-ring portion 16a, cycloheptanone was transformed to the aldehyde 15a (Scheme I l l ) following the procedure of LugtenburgI6 for the corresponding six-membered ring aldehyde. This involved formation of the acetal 13 followed by addition of methyllithium to yield the alcohol 14a and hydrolysis of the latter to afford the unsaturated aldehyde 15. Wittig reaction of 15a under Corey-Fuchs condition^'^ (13) Pumar, C.; Aurrecoechea, J. M.; Gibbs, R. A.; Norman, A. W.; Okamura, W. H. Vitamin D Molecular, Cellular and Clinical EndocriHerrath, D. V., Eds.; nology; Norman, A. W.; Schaffer, K., Grigoleit, H.-G., Walter de Gruyter and Co.: Berlin, 1988; pp 54-57. (14) (a) Okamura, W. H.; Aurrecoechea, J. M.; Gibbs, R. A,; Norman, A. W. J . Org. Chem. 1989, 54, 4072. (b) Gibbs, R. A. Ph.D. Thesis, University of California, Riverside, 1988. (c) Gibbs, R. A.; Okamura, W. H. Tetrahedron Left. 1987, 28, 6021. (d) Aurrecoechea, J. M.; Okamura, W. H.Tetrahedron Lett. 1987, 28, 4941. (15) Reich, H . J.; Renga, J. M.; Reich, I . L. J . Am. Chem. Sor. 1975, 97, 5434.

( I 1 ) (a) Wu, K.-M.; Ph.D. Thesis, University of California, Riverside, December, 1989. (b) Reference I . ( I 2) (a) Velluz, L.; Amiard, G . Compt. Rend. Hebd. Seances Acad. Sri. 1961, 253,603. (b) Revelle, L.; Solan, V.; Londowski, J.; Bollman, S.; Kumar, R. Biochemistry 1984, 23, 1983.

(16) Courtin, J. M . L.; Verhagen, L.; Biesheuvel, P. L.; Lugtenburg, J.; van der Bend, R. L.; van Dam, K. Red. Trau. Chim. Pays-Bas 1987,106,112. (17) (a) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769. (b) Castedo, L.; MascarenAas, J. L.; MouriRo, A. Tetrahedron Lett. 1987, 28, 2099.

A - Homo- I I - hydroxy-3-deoxyoitamin

D

J . Am. Chem. SOC.,Vol. 113, No. 4, 1991

1357

Scheme 111"

12

14

13

15

16

(a, X = H; b, X

17

= D)

Reagents: (a) NaH, HCOOEt; CH,COCI, MeOH (53%); (b) CH3Li (crude hydrolyzed directly); (c) CD3Mgl (crude hydrolyzed directly); (d)

H,O+ (X = H, 71%; X = D, 48% containing 77.9% d3, 19.9%d2, and 2% d, by MS); (e) Zn, Ph3P, CBr4, CHzCll (X = H, 90%; X = D, 70%);(f) n-BuLi, THF (62%, unstable). produced the requisite vinyl dibromide 16a in good yield. Although the latter could be transformed to the hydrocarbon enyne 17a by using n-butyllithium, the instability of the latter prompted the direct use of 16a (vide infra). Unlike that for the protio A-ring fragment, the synthesis of the deuterio A-ring proved less straightforward. It was initially thought that the trideuteriomethyl group could be introduced by replacing methyllithium in the transformation of 13 to 15bI6 (Scheme 111) with commercially available trideuteriomethylmagnesium iodide. However, while the transformation 13 to 15b could be achieved (48% yield), undesirable deuterium-hydrogen exchange occurred to a significant extent during the subsequent hydrolysis step so that actual deuterium incorporation of 15b was not satisfactory (