Subject Index - ACS Publications

cross-flow filtration apparatus, schematic diagram, 229f. Cu-charged ... radial concentration distribution, schematic diagram, 146f ... Cu50Pd43.75Al6...
1 downloads 6 Views 190KB Size
Subject Index A

variable surface concentration profile, schematic diagram, 144f

Aromatic/aliphatic mixtures, separation pervaporation, 82 Aromatic substitution mechanism nitrated via electrophilic, 114

C

Downloaded by 79.98.107.90 on March 31, 2016 | http://pubs.acs.org Publication Date (Web): October 31, 2011 | doi: 10.1021/bk-2011-1078.ix002

B Benzene exposure tests, 87 Sohxlet extractor, 99t Benzene/n-heptane system materials and data, 93 separation, 95t Biofilm polysaccharides, concentration, 235f thickness, filtration hour, 234f Biofouling, 165, 225 biofilm polysaccharides concentration, 235f thickness, 234f cell removal, membranes fouled, 231f cross-flow filtration apparatus, schematic diagram, 229f Cu-charged feedspacer performance, 227, 232 Cu(II) charged PP-graft-GMA-IDA characterization, 227 preparation, 227 fouled membranes FTIR spectroscopy, 228, 235 live/dead cell counts, 228 SEM imaging, 228, 234 FTIR spectra, 229f live/dead cell counts, 233 materials, 226 membranes filtration permeability versus time, 230f membranes fouling, 225 SEM images, 233f pseudomonas fluorescens biofilms, 230t Boundary layer superposition concentration predictions, 142 diluent volume fraction, 148f FIDAP solution, two-dimensional, 147f predicted surface diluent volume fraction, 147f radial concentration distribution, schematic diagram, 146f

Carbon nanofiber (CNF) atomic percentage, 73t functionalization, 69 dihydroxyl based IL, 71s IL [Br], 71s Carbon nanotube/polyethersulfone composite membranes water filtration, 257 Cellulose acetate ultrafiltration (CAUF) membranes, 247 adhesion force analysis, 252 membrane surface roughness, 252 AFM force curve analysis, 249 crossflow membrane filtration unit, 249 feed water characteristics, flux decline measurements, 251 hydrophobicity, mapping, 250 Cellulose diacetate (CDA), 272 Chemical stability, 96 CH3-functionalized tip CFM images membrane surfaces using DI water, 254f membrane surfaces using tap water, 255f Clean membranes, performance behavior, 161 CNF- IL [Br] CO2/CH4, selectivity, 77f CO2/H2, selectivity, 77f CNF- IL (Taurine) CH4 (barrer), permeability, 76f CO2 (barrer), permeability, 75f CO2/CH4, selectivity, 77f CO2/H2, selectivity, 77f H2 (barrer), permeability, 75f CO2 capture, membrane, 2 Cu50Pd43.75Al6.25 alloys DSC plots, 35f Cu50Pd43.75M6.25 alloys, B2-containing DSC plots, 35f EDS/XRD results, 34t SEM back-scattered electron images, 33f XRD plots, 31f

329 Escobar and Van der Bruggen; Modern Applications in Membrane Science and Technology ACS Symposium Series; American Chemical Society: Washington, DC, 2011.

Downloaded by 79.98.107.90 on March 31, 2016 | http://pubs.acs.org Publication Date (Web): October 31, 2011 | doi: 10.1021/bk-2011-1078.ix002

D Dairy industry, membranes, 171 electrodialysis (ED), 202 lactose fermentation, removal, 205 protein fractions, production, 204 whey and milk, 203 maintenance and cleaning, 206 membranes, uses, 208f microfiltration (MF), 172 bacteria removal, 173 fat and casein removal, 177 increased shelf life, 173 milk separation, 172f milk/cheeses, recombination, 175 serum proteins removal, 177f spore removal process, 174f nanofiltration (NF), 194 demineralization, 195 lactose, recovery, 200 milk UF permeate, 199 mineral reductions, 197t nutritional benefits made, 198f uses, 201 reverse osmosis (RO), 189 milk concentration, 193f versus evaporation, 192 waste reduction, 189 whey and milk concentration, 190 ultrafiltration (UF), 179 cheese manufacture, 182f cheese production, 180 diafiltration (DF), 182 farm, 188 milk, demineralized, 201f protein fractationation processes, 184, 187f whey, batch diafiltration, 184t whey proteins, properties, 186t Dead-end method. See Filtration instrument Density functional theory (DFT) calculations, 28 hypothetical B2 Cu8Pd8-xMx, formation enthalpy, 29f 1, 3-Di(3-aminopropyl)-imidazolium bromide [C3-NH2 C3-NH2 Im][Br], 67 2,6-Diaminotriptycene (DATri) 1H-NMR spectrum, 115f synthesis, 110, 112f 1,4-Di[3-ethanol-imidazolium]butane taurate ([C4 [C2OHim][taurine]) synthesis, 68 2,6-Dinitrotriptycene (DNTri), 114 FT-IR spectrum, 115f

1H-NMR spectrum, 115f Dry-wet hollow fiber spinning process, schematic drawing, 131f

E EDCH molecular structures, 308f Electrodialysis (ED), 202 lactose fermentation, removal, 205 protein fractions, production, 204 whey and milk, 203 Energy hydrogen, 28 membrane, 2

F 6FDA-based polyimide membranes CO2 permeability, 124f gas permeabilities, 120t physical properties, 118t, 120t 6FDA-DATI polyimide (6FDA-DATri), synthesis, 110 6FDA-DATri membrane, gas separation performances, 126f 6FDA-DATri polyimide membranes diffusion coefficient, 125f DSC thermogram, 121f FT-IR spectrum, 116f gas permeability, 122f 1H-NMR spectrum, 116f physical properties, 116t solubility, 122t coefficients, 125f synthesis, 112f TGA curve, 121f Feed water concentrations average adhesion forces, 253t crossflow filtration experiments, 250t Film casting knife, 273f Filtration instrument, 274f Food industry, membrane contacts, 209t Functional nanocomposite network material cartoon depicting, 64f Functional nanofiber network (FNN) materials, 64 film formation, 70 interfacial region, functional molecules, 65 nanofiber network, 65 polymer matrices, 66

330 Escobar and Van der Bruggen; Modern Applications in Membrane Science and Technology ACS Symposium Series; American Chemical Society: Washington, DC, 2011.

G

Downloaded by 79.98.107.90 on March 31, 2016 | http://pubs.acs.org Publication Date (Web): October 31, 2011 | doi: 10.1021/bk-2011-1078.ix002

Gas permeability, 126f Gas permeation, 74 ionic liquid-functionalized nanocomposite membranes, characterization, 71 oxidized carbon nanofiber (CNF- OX), 74 permeation cell, 71f Gas separation membrane, 2 See also Membrane gas separation

H HDI-PEG600 polyurethane isothermal TGA, 97f thermal stability, 96 thermogravimetric analysis (TGA), 97f Hollow fiber spinning base spinning conditions, 138t bore fluid flow computational domain/boundary conditions, 138f recirculation, 137 die exit, flow axial velocity contour plot, 140f streamline contour plot, 139f Lrec/L, contour plot, 141f outer/inner radii TFA, two-dimensional simulation, 142f polyethylene-dodecanol system material properties, 139t regions, 132f simulation, overview, 129 theoretical models, 134 Homogeneous membrane construction, 158f Hydrogen separation membranes alloy compositions, 31t density functional theory (DFT) calculations, 28 hypothetical B2 Cu8Pd8-xMx, enthalpy, 29f experimental procedures, 30 chemical analysis, 30 DSC, 34 SEM/EDS and XRD results, 30 Hydrophobicity diffusion rate, 46t selectivity, variation Mes versus Phl, 47f

PADPA versus AY, 47f versus size, 48 by total polar surface area (tPSA), 48f Hydrophobicity-based diffusion selectivity, 45 Hydrophobicity-based separations initiated chemical vapor deposition (iCVD) coating characterization, 41 diffusion experiments, 42 diffusion selectivity, 45 electron probe microanalysis (EPMA), 42 mechanism selectivity, 48 membrane pore size characterization, 41 nanopore membranes formation, 41, 42 overview, 39 nanotube membranes, 39

I IL (Taurine), synthesis, 69s Initiated chemical vapor deposition (iCVD) coating characterization, 41 schematic, 43f hydrophobicity-based separations diffusion experiments, 42 diffusion selectivity, 45 electron probe microanalysis (EPMA), 42 mechanism selectivity, 48 membrane pore size characterization, 41 nanopore membranes formation, 41, 42 overview, 39 Ion exchange capacities, 241t Ionic liquid-functionalized nanocomposite membranes characterization gas permeation, 71 X-ray photoelectron spectroscopy (XPS), 70 surface functionalization, confirmation, 72

L Lactose fermentation, 205 LiCl

331 Escobar and Van der Bruggen; Modern Applications in Membrane Science and Technology ACS Symposium Series; American Chemical Society: Washington, DC, 2011.

properties, 264t pure water fluxes, 264f solute permeation fluxes, 265f membrane characterization, 259, 261 membrane filtration procedures, 260 membrane preparation, 259 membranes, contact angles, 263f permeability and solute rejection, 263 SEM images, 262f

filtration flux data, 281t NaCl solution, 281t, 282t polysulfone (PSf) membranes, 278t, 279t precompaction, 281t precompaction flux data, 280f PSf solution, 281t solution accompanying, 280f Liquid separations, membrane, 3

M

Downloaded by 79.98.107.90 on March 31, 2016 | http://pubs.acs.org Publication Date (Web): October 31, 2011 | doi: 10.1021/bk-2011-1078.ix002

N Membrane filtration, rejection characteristics, 158f Membrane fouling, 163 biofouling, 165 inorganic, 164 limitations/functioning, 166 organic, 164 prevention, 166 Membrane gas separation bibliometric analysis, 16 challenges, 16 CO2 capture, 2, 9 competing technologies, 8 gas separation, 8 history, 10 overview, 8 publications, percentages articles, 18t category, 17f ISI Web, 11f rank, 18t search term study, 20f Membrane pore size characteristics, and application, 159t Membranes dairy industry, 171 preparation, 86, 111 water treatment, 156 Membrane separation technologies, 1, 257 Microfiltration (MF), 172 bacteria removal, 173 fat and casein removal, 177 increased shelf life, 173 milk separation, 172f milk/cheeses, recombination, 175 serum proteins removal, 177f spore removal process, 174f Milk concentration, reverse osmosis (RO), 193f Milk separation, pressure driven flow, 172f Monomers, chemical structures, 44f Multi-walled carbon nanotube (MWCNT) C/P composite membranes

NaCl, permeability data, 243f Nanofiltration (NF), 194 demineralization, 195 lactose, recovery, 200 milk UF permeate, 199 mineral reductions, 197t nutritional benefits made, 198f uses, 201 Nanopore membranes formation diffusion rate, dependence, 48f formation, 43f iCVD coating, 41 schematic, 43f Nanotube membranes, samples properties, 44t NHS molecular structures, 308f NMP, polyimides, inherent viscosity, 88t

O Oxidized carbon nanofiber (CNF- OX), 66 confirmed using XPS analysis, 72 functional groups, 65t functionalization, 69 [C4[C2OHim][taurine], 70 [C3-NH2 C3-NH2 Im][Br], 69 gas permeation, 74 XPS spectrum, 73f

P PBI virgin membrane CMBA activation, 307f EDCH/NHS reaction, 308f PC membrane diffusion rate, 46t samples properties, 44t Pd composition, high/low, 31t Pd27.75M6.25Cu66 alloys

332 Escobar and Van der Bruggen; Modern Applications in Membrane Science and Technology ACS Symposium Series; American Chemical Society: Washington, DC, 2011.

Downloaded by 79.98.107.90 on March 31, 2016 | http://pubs.acs.org Publication Date (Web): October 31, 2011 | doi: 10.1021/bk-2011-1078.ix002

XRD plots, 32t PDMS membranes basic pervaporation performance, 54 characterization, 54 contact angle measurements, 53 diffusion coefficient, 125f experiments, ethanol/water, 53 fermentation medium, 53 solubility coefficients, 125f ZSM-5, membrane performance, 55t Permeability data sulfonated hydrocarbon polymers membrane magnesium chloride (MgCl2), 242 single-salt, 243f sodium chloride (NaCl), 242 Pervaporation, 86 aromatic/aliphatic mixture separation, 82 benzene/n-heptane mixture separation, 96f by-product influence, 54 carboxylic acid concentration influence, 56f dianhydride moiety effect, 93t ethanol/water mixtures, 54 versus fermentation broth, 55t fermentation broth, 53 overview, 52 polyimides preparation, 95t toluene/n-heptane mixture separation, 94f Polybenzimidazole membranes ethylene diamine, 310f FTIR functional group location, 313t FTIR results, 313f membrane characterization contact angle, 311, 315 environmental scanning electron microscopy (ESEM), 314 Fourier transform infrared spectroscopy (FTIR-ATR), 309, 312 ζ potential, 309, 314 membrane modification, 306 CMBA membrane activation, 306 EDCH/NHS chemistry, 307 modifying agents, 310f pH 7, sodium chloride rejection, 318f preparation, 306 pure water permeability, 317f salt permeability coefficients versus z potential, 319f surface functionalization, 303 transport properties monovalent salt solutions, 312, 315 pure water permeability, 311, 315

virgin membrane contact angle measurements, 316f SEM image, 316f ζ potential versus pH, 303 Polyethylene-dodecanol system material properties hollow fiber spinning, 139t Poly(1H,1H,2H,2H-perfluorodecyl acrylate) (pPFDA) chemical structures, 44f membrane samples properties, 44t Polyimide membranes diffusion coefficient, 103t gas separation, 108 NMP, 88t inherent viscosity, 88t toluene kinetic sorption curves, 102f permeability, 103t Polyimide synthesis, 83 FTIR spectra, 89f 1H NMR spectra, 90f Polymer characterization, 84, 88 Polymer films, photographs, 98f Polymeric ionic liquids (PILs), 63 Polymers hydrocarbons, equilibrium uptake, 101f 2,6/2,7-triptycene linked, 111f 9,10-triptycene linked, 111f Polymer synthesis, 83 diamines, 84f dianhydrides, 83f schematic route, 85f Polysulfone (PSf) membranes filtration/precompaction flux data, 75f, 276f, 277f, 278f, 278t, 279f flat sheet, 273f NaCl solution, 282t Pore formers, 276 Pristine, 66 Pure hydrocarbons, equilibrium uptake, 101f Pure-liquid sorption, 87, 99

R Reverse osmosis (RO), 189 milk concentration, 193f versus evaporation, 192 waste reduction, 189 whey and milk concentration, 190 Reverse osmosis (RO) membrane flat-leaf test apparatus, photograph, 294f flux, 295f

333 Escobar and Van der Bruggen; Modern Applications in Membrane Science and Technology ACS Symposium Series; American Chemical Society: Washington, DC, 2011.

Downloaded by 79.98.107.90 on March 31, 2016 | http://pubs.acs.org Publication Date (Web): October 31, 2011 | doi: 10.1021/bk-2011-1078.ix002

milk concentration, 193f salt rejection, 297f Reversible ion exchange-membrane (RIX-M) desalination process, 292f different sulfate salts, solubility, 287 overview, 285 RO membrane flat-leaf test apparatus, photograph, 294f flux, 295f salt rejection, 297f scale forming ions, 291f scaling potential, solubility, 287 seawater, 289t sodium chloride, osmotic pressure, reduction, 293f sulfate salts, solubility products, 289t supersaturation index (SI) values, sulfate salts, 290f synthetic seawater solution barium concentration, 298f calcium concentration, 297f ions, breakthrough profile, 295f underlying process concept, 289 Room temperature ionic liquids (RTIL), 62 synthesis, 67

T Tailor-made ultrafiltration polysulfone membranes, 271 casting solution concentration, 274 LiCL additive effect, 276 materials and casting instrument, 272 membrane preparation, 272 precompaction and filtration, 273 rejection measurements, NaCl solutions, 281 Thermal stability, 95 HDI-PEG600 polyurethane, 96 Thermogravimetric analysis (TGA), 84 Thin-film composite (TFC) membranes, 272 construction, 158f Transport properties, 89 diamine moiety effect, 90 dianhydride moiety effect, 92 Triptycene, 108, 110 based polyimide membranes material characterizations, 111 membrane preparation, 111 nitrated via electrophilic aromatic substitution mechanism, 114 polymer structures, 109f three-dimensional structure, 109f

S U Serum proteins removal, 177f Solid fiber spinning, theoretical models, 132 Solute molecules chemical parameters, 46t diffusion rate, 46t Spinning processes, 130 Sulfonated hydrocarbon polymers membrane, 239 ion exchange capacity (IEC), 240 permeability data magnesium chloride (MgCl2), 242 single-salt, 243f sodium chloride (NaCl), 242 polymer film samples, 241 Sulfonated pentablock copolymer, structure, 241f Sulfonated styrenic pentablock copolymer, material, 240 Sulfonation fractions, 241t

Ultrafiltration polysulfone (PSf) membranes, 272 Ultrafiltration (UF), 179 cheese manufacture, 182f cheese production, 180 diafiltration (DF), 182 farm, 188 milk, demineralized, 201f protein fractationation processes, 184, 187f whey, batch diafiltration, 184t whey proteins, 186t Ultrafiltration (UF) membranes, 248 on farm, 188 milk cheese manufacture, 182f demineralized, 201f protein fractationation processes, 187f See also Cellulose acetate ultrafiltration (CAUF) membranes

334 Escobar and Van der Bruggen; Modern Applications in Membrane Science and Technology ACS Symposium Series; American Chemical Society: Washington, DC, 2011.

Downloaded by 79.98.107.90 on March 31, 2016 | http://pubs.acs.org Publication Date (Web): October 31, 2011 | doi: 10.1021/bk-2011-1078.ix002

W Water filtration. See Multi-walled carbon nanotube (MWCNT) carbon nanotube/polyethersulfone composite membranes, 257 C/P-0, SEM images, 262f C/P composite membranes contact angles, 263f hydraulic resistances, 266t pure water fluxes, 264f relative fluxes, 267f solute permeation fluxes and rejections, 265f membrane characterization, 259, 261 membrane filtration procedures, 260 membrane preparation, 259 membranes, antifouling properties, 265 multi-walled carbon nanotube (MWCNT) permeability, 263 solute rejection, 263 Water treatment, 156 asymmetric membrane construction, 158f

clean membranes, performance behavior, 161 mass transport, 162 rejection principals, 162 homogeneous membrane construction, 158f materials, accumulation, 165f membrane filtration, rejection characteristics, 158f membrane fouling, 163 biofouling, 165 inorganic, 164 limitations/functioning, 166 organic, 164 prevention, 166 membrane separations, 156 materials, 157 module configurations, 160 permeate flux over time, reduction, 166f pressure-driven separations, 157 thin film composite membrane construction, 158f WDXRF chemical analysis, 32t Whey proteins, properties, 186t

335 Escobar and Van der Bruggen; Modern Applications in Membrane Science and Technology ACS Symposium Series; American Chemical Society: Washington, DC, 2011.