12 S u l f o n i c Acid a n d S u l f o m e t h y l - C o n t a i n i n g G r a f t C o - P o l y m e r s of X a n t h a n Gum I. W. COTTRELL, J. L. SHIM, and G. H. BEST
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch012
Kelco Division of Merck & Co., Inc., 8225 Aero Drive, San Diego, CA 92123 R. A. EMPEY Kelco Division of Merck & Co., Inc.,P . O.Box 998, Okmulgee, OK 74447 Xanthan gum i s a h i g h m o l e c u l a r weight p o l y saccharide produced in a pure culture fermentation process by the microorganism Xanthomonas c a m p e s t r i s [1]. The structure of the polysaccharide is shown in Figure 1. As detailed in this figure, each repeating u n i t c o n t a i n s f i v e sugar u n i t s c o n s i s t i n g of two g l u c o s e u n i t s , two mannose u n i t s , and one g l u c u r o n i c acid unit. The main c h a i n of xanthan gum i s built up of ß-D-glucose u n i t s l i n k e d through the 1- and 4positions; i.e., the c h e m i c a l s t r u c t u r e of the main chain is identical to the c h e m i c a l s t r u c t u r e of cellulose. The s i d e c h a i n comprises the two mannose u n i t s and the g l u c u r o n i c a c i d u n i t . The t e r m i n a l ß - D - m a n n o s e unit is linked glycosidically to the 4 - p o s i t i o n of β-D-glucuronic a c i d , which i n t u r n i s l i n k e d glycosidically to the 2 - p o s i t i o n of ot-D-mannose. T h i s three– sugar s i d e c h a i n i s l i n k e d to the 3 - p o s i t i o n of every o t h e r g l u c o s e r e s i d u e i n the main c h a i n . A l s o , about h a l f of the t e r m i n a l D-mannose r e s i d u e s c a r r y a pyru vic a c i d r e s i d u e ketalically l i n k e d to the 4- and 6positions. The n o n t e r m i n a l D-mannose u n i t c o n t a i n s an a c e t y l group at the 6 - p o s i t i o n [2]. Xanthan gum was c o m m e r c i a l i z e d by K e l c o Company, now K e l c o D i v i s i o n of Merck & C o . , I n c . , i n 1964 and has found widespread u t i l i t y i n food and i n d u s t r i a l a p p l i c a t i o n s because of i t s unique p r o p e r t i e s . Attempts have been made to a l t e r the p r o p e r t i e s of xanthan gum by c h e m i c a l d e r i v a t i z a t i o n and m o d i f i c a t i o n . These d e r i v a t i v e s and m o d i f i c a t i o n s i n c l u d e d e a c e t y l a t e d xanthan gum [_3] , carboxymethy 1 e t h e r s [4.1 , c a t i o n i c d e r i v a t i v e s Γ 5 ,6] , p r o p y l e n e g l y c o l e s t e r s L Z L h y d r o x y a l k y l e t h e r s [8] , s u l f a t e s [9.] , and g r a f t c o polymers [10]. However, w i t h the e x c e p t i o n of d e a c e t y l a t e d xanthan gum, none of these d e r i v a t i v e s have been c o m m e r c i a l i z e d to d a t e .
0-8412-0426-8/78/47-077-193$05.00/0 © 1978 American Chemical Society
Schweiger; Carbohydrate Sulfates ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch012
Figure 1. Structure of xanthan gum
Schweiger; Carbohydrate Sulfates ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
12.
COTTRELL E T A L .
Xanthan
Gum
195
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch012
T h i s paper d e s c r i b e s the p r e p a r a t i o n of g r a f t c o p o l y m e r s o f x a n t h a n gum containing sulfonic acid g r o u p s a t t a c h e d by e i t h e r g r a f t c o p o l y m e r i z i n g acrylam i d e and 2 - a c r y l a m i d o - 2 - m e t h y l p r o p a n e s u l f o n i c a c i d (AMPSA) o n t o x a n t h a n gum, o r by sulfomethylating xanthan gum-polyacrylamide. T h e s e r e a c t i o n s a r e shown schematically in Figure 2. Results
and
Discussion
The s u l f o n i c a c i d and sulfomethy1-containing g r a f t c o p o l y m e r was p r e p a r e d by g r a f t i n g acrylamide (AM) and 2 - a c r y l a m i d o - 2 - m e t h y l p r o p a n e s u l f o n i c a c i d (AMPSA) o n t o x a n t h a n gum i n an a q u e o u s medium w i t h a eerie s a l t present (Figure 2). The r a t i o o f a c r y l a m i d e t o AMPSA was a d j u s t e d to give g r a f t polymers with v a r y i n g degrees of a n i o n i c c h a r a c t e r . A l s o , the r a t i o o f t o t a l monomer t o x a n t h a n gum was v a r i e d t o g i v e polymers with a range of v i s c o s i t i e s (Table I ) . Prel i m i n a r y s c r e e n i n g o f the p r o d u c t p o l y m e r from example 5 i n T a b l e I ( P o l y m e r I) h a s r e v e a l e d t h a t i t i s p s e u d o p l a s t i c , i s s t a b l e b e t w e e n pH 4^12, and e x h i b i t s a s y n e r g i s t i c v i s c o s i t y i n c r e a s e w i t h guar gum. E f f e c t o f pH and t e m p e r a t u r e on v i s c o s i t y and the shear-stress/shear-rate r e l a t i o n s h i p a r e shown i n F i g u r e s 3, 4, and 5, r e s p e c t i v e l y . These polymers a l s o p o s s e s s g o o d s a l t s t a b i l i t y , w h i c h makes them s u i t a b l e f o r o i l f i e l d u s e s , s u c h as f l o o d i n g and drilling. I n a d d i t i o n , t h e y c a n be u s e d i n o t h e r a p p l i c a t i o n s where t h i c k e n e d w a t e r i s d e s i r a b l e , such as t e x t i l e p r i n t i n g p a s t e t h i c k e n i n g , s l u r r y explosive f o r m u l a t i o n s , and c o a t i n g t e c h n o l o g y . The a f o r e m e n t i o n e d p o l y m e r was a l s o p r e p a r e d by i n t r o d u c i n g s u l f o n i c a c i d g r o u p s i n t o x a n t h a n gum by c o m b i n i n g g r a f t p o l y m e r i z a t i o n and c h e m i c a l modification techniques. F i r s t , polyacrylamide was grafted o n t o x a n t h a n gum a t 1:1 r a t i o by w e i g h t , t h e n t h e a m i d e f u n c t i o n was sulfomethylated with formaldehyde and s o d i u m m e t a b i s u l f i t e ( F i g u r e 2) [11] . P r e l i m i n a r y s c r e e n i n g of t h i s a n i o n i c polymer (Polymer II) has shown t h a t i t i s p s e u d o p l a s t i c ( F i g u r e 5 ) , has good high-temperature s t a b i l i t y ( F i g u r e 4 ) , and i s s t a b l e b e t w e e n pH 6 and 11 ( F i g u r e 3 ) . The p o l y m e r a l s o exh i b i t s a s y n e r g i s t i c v i s c o s i t y e f f e c t with guar gum. P o s s i b l e a p p l i c a t i o n s o f t h i s p o l y m e r a r e u s e as a d i s p e r s a n t and s t a b i l i z e r i n s l u r r i e s ; i n p e t r o l e u m recovery ( d r i l l i n g and f l o o d i n g ) , as an a n t i - s t a t i c f i l m f o r m e r ; and p o s s i b l y i n t e x t i l e s .
Schweiger; Carbohydrate Sulfates ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
CARBOHYDRATE
196
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch012
1)
2
)
XANTHAN
GUM-POLY(ACRYLAMIDE-CO-AMPSA)
SULFOMETHYLATED
Figure 2.
Z N : AM
(1:1)
GRAFT
COPOLYMER
Polymerization reaction scheme
Schweiger; Carbohydrate Sulfates ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
SULFATES
Schweiger; Carbohydrate Sulfates ACS Symposium Series; American Chemical Society: Washington, DC, 1978. 7.5 12 .5 16.7
42. 5 37.5 33. 3 25 16.7 12. 5 0
26 . 4 25.7 26.2 27.1 28.1 26.5 23.4
1.9
3.1
4.2
6.2
8.4
9.3
12. 5
10. 6
9. 3
8. 4
6.2
4.2
3.1
4
5
6
7
8
9
0
22
11
19 .2
4.2
2.1
3
10
11
22
18. 9
2.1
4.2
2
50
37. 5
33. 3
25
9
25
19.1
1.7
4.6
Weight (gm) copolymer
Content (%) 2-acrylamidoContent (%) 2-methylpropane Monomer sulfonic acid
340 200 250 230 300 290
350
250 250 300 300
50 50 50 50
340 350
50
250
480 500
66
50
480 520
66
50
480
Viscosity of Copolymer (1% KC1 solution)
520
V i s c o s i t y of Copolymer (distilled water)
66
Content (%) Xanthan gum
o f AMPSA and A c r y l a m i d e onto Xanthan Gum
1
Example
Acrylic Monomer Weight (gm)
of Graft Polymerization
Weight (gm) 2-acrylamido2-methylpropane Sulfonic Acid
Results
TABLE I
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch012
CARBOHYDRATE SULFATES
198
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch012
(CPS)
lOr
il
,
.
,
,
.
,
1
2
4
6
8
10
12
14
Ρ Η Figure 3.
Viscosity vs. pH for xanthan gum and both polymers
Figure 4.
Viscosity vs. temperature for xanthan gum and both polymers
Schweiger; Carbohydrate Sulfates ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
COTTRELL E T A L .
Xanthan
Gum
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch012
10,
0.1
PO
SHEAR RATE
(sec-) 0.01
0.001
Ίο
-4-
loo
1000
SHEAR STRESS (dynes/cm ) 2
Figure 5. Low shear rate rheological properties of xanthan gum and both polymers. (These data were obtained using the Wells-Micro Brookfield Viscometer and the relaxation technique of Patton (12).)
Schweiger; Carbohydrate Sulfates ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
CARBOHYDRATE
200
SULFATES
Experimental
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch012
Xanthan
Gum-Poly(aerylamide-co-AMPSA)
The s a m p l e s w e r e p r e p a r e d i n a 1000 m l r e a c t i o n v e s s e l equipped w i t h a n i t r o g e n i n l e t tube, a thermo m e t e r , a n d an a d d i t i o n f u n n e l . For the f i r s t three samples ( s e e T a b l e 1 ) , 500 ml o f a f e r m e n t a t i o n b e e r and 6.3 g o f t o t a l monomer ( a c r y l i c p l u s 2 - a e r y l a m i d o 2-methylpropane s u l f o n i c a c i d ) were combined. Examples 4-9 u s e d 500 ml f e r m e n t a t i o n b e e r a n d 12.5 g t o t a l monomer. E x a m p l e 10 c o m b i n e d 12.5 g o f 2 - a c r y l a m i d o 2-methylpropane s u l f o n i c a c i d a n d 500 ml o f f e r m e n t a t i o n beer. The monomer was d i s s o l v e d i n 50 ml w a t e r . The f e r m e n t a t i o n b e e r c o n t a i n e d 2.50 w e i g h t p e r c e n t o f X a n t h o m o n a s c a m p e s t r i s c o l l o i d , as d e t e r m i n e d by i s o p r o p y l a l c o h o l p r e c i p i t a t i o n o f c o l l o i d from a sample of the f e r m e n t a t i o n beer. The r e a c t i o n m i x t u r e was t h e n h e a t e d t o 7 5 ° C , w h i l e t h e r e a c t i o n v e s s e l was p u r g e d w i t h n i t r o g e n g a s f o r one h o u r . Thereafter, the r e a c t i o n v e s s e l was c o o l e d t o room t e m p e r a t u r e a n d 20 ml o f a c a t a l y s t s o l u t i o n d i l u t e d w i t h 50 ml o f w a t e r was a d d e d o v e r a p e r i o d o f 15 m i n u t e s w h i l e t h e c o n t e n t s were s t i r r e d . The c a t a l y s t s o l u t i o n was com p o s e d o f 0.1 Ν e e r i e ammonium n i t r a t e d i s s o l v e d i n 1 Ν n i t r i c acid. T h i s s o l u t i o n was made by d i s s o l v i n g 54.8 g o f e e r i e ammonium n i t r a t e i n 1 Ν n i t r i c a c i d and d i l u t i n g t o make 1 l i t e r o f s o l u t i o n . Following the a d d i t i o n o f the c a t a l y s t , s t i r r i n g o f the r e a c t i o n m i x t u r e was c o n t i n u e d f o r two h o u r s a t a r e a c t i o n t e m p e r a t u r e o f 20 t o 2 5 ° C , a f t e r w h i c h 2 g o f p - m e t h o x y p h e n o l d i s s o l v e d i n 50 ml o f i s o p r o p y l a l c o h o l w e r e added. T h e p r o d u c t was p r e c i p i t a t e d by t h e a d d i t i o n o f e x c e s s i s o p r o p y l a l c o h o l a n d was t h e n c o l l e c t e d a n d d r i e d a t 4 5 - 5 0 ° C f o r two h o u r s . The f i n a l w e i g h t s o f t h e p r o d u c t s a r e shown i n T a b l e I . V i s c o s i t y o f t h e c o p o l y m e r s was d e t e r m i n e d a t 1% by w e i g h t s o l u t i o n i n d i s t i l l e d w a t e r , u s i n g a B r o o k f i e l d L V F v i s c o m e t e r a t 60 rpm, No. 2 s p i n d l e . F o r p u r p o s e s o f c o m p a r i s o n , Xanthomonas c a m p e s t r i s c o l l o i d , w h i c h was o b t a i n e d d i r e c t l y f r o m t h e f e r m e n t a t i o n b e e r , h a d a v i s c o s i t y a t a c o n c e n t r a t i o n o f 1% by w e i g h t i n d i s t i l l e d w a t e r o f 840 cps. Sulfomethylated Polymer I I
ZN: AM
(1:1) G r a f t
Copolymer
-
A g r a f t c o p o l y m e r i s p r e p a r e d by r e a c t i n g e q u a l p a r t s b y w e i g h t o f x a n t h a n gum a n d a c r y l a m i d e a c c o r d i n g t o t h e p r o c e d u r e g i v e n i n E x a m p l e 1 o f U. S. p a t e n t
Schweiger; Carbohydrate Sulfates ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
12.
COTTRELL ET AL.
3,708,446. The r e s u l t i n g copolymer (1.44 g) i s d i s s o l v e d i n 100 ml d i s t i l l e d water i n a t h r e e neck, round bottom f l a s k (250 ml) f i t t e d w i t h a thermometer, s t i r r e r , and r e f l u x condenser. To t h i s s o l u t i o n i s added 0.95 g N a S 0 (0.005 m o l e ) , 0.80 g 50% NaOH (0.01 m o l e ) , and 0.81 g 37% CH2O (0.01 m o l e ) . The s o l u t i o n i s heated to 5 0 ° C and s t i r r e d at t h i s tempera ture for 3 hours. At the end of t h i s p e r i o d , the mixture i s c o o l e d to room temperature ( ^ 2 2 ° C ) , and the r e a c t i o n p r o d u c t i s r e c o v e r e d by a d d i t i o n of the s o l u t i o n to 2 volumes of i s o p r o p a n o l . The p r o d u c t i s d r i e d i n vacuo at 4 0 ° C and m i l l e d through a 60 mesh (U.S. standard) s c r e e n . The r e s u l t s of t h i s experiment are shown i n T a b l e I I . 2
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch012
201
Xanthan Gum
2
5
Table I I . The R e s u l t s of S u l f o m e t h y l a t i o n Gum-Acrylamide G r a f t Copolymer.
Y i e l d (g) T h e o r e t i c a l y i e l d (g) Y i e l d (%) Amide Groups Reacted (%) V i s c o s i t y (cps), 1% KC1 V i s c o s i t y (cps), 1%
of Xanthan
2.13 2.58 82.60 60.53 90 87 B r o o k f i e l d LVF Viscometer, 6 0 rpm
Abstract : Two n o v e l g r a f t copolymers of xanthan gum have been p r e p a r e d by g r a f t c o p o l y m e r i z i n g 2 - a c r y l a mido-2-methylpropane s u l f o n i c a c i d and a c r y l a m i d e onto xanthan gum and by g r a f t p o l y m e r i z i n g a c r y l a m i d e onto xanthan gum f o l l o w e d by s u l f o m e t h y l a t i o n . The p r e p a r a tion and p r o p e r t i e s of these two polymers are d i s c u s s e d. Literature 1. 2. 3. 4. 5. 6. 7. 8. 9.
Cited
Jeanes, A. R . , Pittsley, J. Ε . , and S e n t i , F . R . , J. A p p l . Polymer Sci. (1961), 5, 519-526. J a n s s o n , P. E., Keene, L., and L i n d b e r g , B., Carbohydrate Res. (1975), 45, 275-282. J e a n e s , A . R. and S l o n e k e r , J. H., U. S. Patent 3, 000, 790 (1961). Schweiger, R. G., U . S . P a t . 3,236,831 (1966). Schweiger, R. G., U . S . P a t . 3,244,695 (1966). Schweiger, R. G., U . S . P a t . 3,376,282 (1968). Schweiger, R. G., U . S . P a t . 3,256,271 (1966). Schweiger, R. G., U . S . P a t . 3,349,077 (1967). Schweiger, R. G., U . S . P a t . 3,446,796 (1969).
Schweiger; Carbohydrate Sulfates ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
CARBOHYDRATE SULFATES
202 10. 11. 12.
P e t t i t t , D. J., U.S. Pat. 3,708,446 (1973). S c h i l l e r e t al., Ind. & Eng. Chem., p. 2132-2137 (1956). Patton, T. C., J. o f P a i n t Technology, (19 66), 38 (502), 656. 1978.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0077.ch012
RECEIVED F e b r u a r y 6,
Schweiger; Carbohydrate Sulfates ACS Symposium Series; American Chemical Society: Washington, DC, 1978.