Sulfoximidoyl-Containing Hypervalent Iodine(III ... - ACS Publications

Jul 26, 2017 - This article is part of the Hypervalent Iodine Reagents special issue. ... Electron-Deficient Chiral Lactic Acid-Based Hypervalent Iodi...
0 downloads 0 Views 394KB Size
Note pubs.acs.org/joc

Cite This: J. Org. Chem. 2017, 82, 11854-11858

Sulfoximidoyl-Containing Hypervalent Iodine(III) Reagents: 1‑Sulfoximidoyl-1,2-benziodoxoles Han Wang, Duo Zhang, He Sheng, and Carsten Bolm* Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany S Supporting Information *

ABSTRACT: Treatment of NH-sulfoximines with pseudocyclic benziodoxole triflate results in N−I bond formation leading to a new type of sulfoximidoyl-containing hypervalent iodine(III) reagents in high yields. Degradation studies revealed a pronounced stability in both the solid state and in solution.

M

With D, we achieved direct metal-free electrophilic sulfoximidations of alkynes.11 Encouraged by the aforementioned results, we intended to prepare new sulfoximidoyl derivatives, in particular those with a benziodoxole core as in A and C. The common procedures for synthesizing such type of reagent start from 2-iodosylbenzoic acid derivatives 1 and involve a ligand exchange process (Scheme 2).7,10,12 Focusing on our goal, we envisaged S-

edicinal and crop protection chemists consider sulfoximines as an interesting class of compounds with relevance for their respective research fields.1 In organic synthesis such molecules have proven useful since their discovery.2 For the preparation of sulfoximines various methods are know, and recently, a number of developments have significantly accelerated the progress in this area.3 Hypervalent iodine compounds have found numerous applications in organic synthesis, and various λ3-iodane reagents have been developed as green oxidants or key components for selective group transfer reactions.4,5 In this context, compounds with iodine/nitrogen linkages are particularly noteworthy because they can serve as nonbasic precursors of azides, amines, or amides. As many of them are unstable, hypervalent iodine(III) reagents containing (formal) I−N single bonds are still rare.5a,6 In 1994, Zhdankin reported access to azidobenziodoxole A (IBA-N3), which was the first stable azidoiodinane of this type (Scheme 1).7 Noteworthy, A revealed a high potential

Scheme 2. Unsuccessful Attempts to Prepare 1Sulfoximidoyl-1,2-benziodoxole 3a

Scheme 1. Selected Stable Hypervalent Iodine(III) Compounds Containing I−N Single Bonds

methyl-S-phenyl sulfoximines 2a and 2b bearing N(SiMe3) and NH groups, respectively, as substrates for the preparation of 1sulfoximidoyl-1,2-benziodoxole 3a. Unfortunately, all attempts along these lines were unsuccessful, and compound 3a remained inaccessible. Inspired by Zhdankin’s work on pseudocyclic hypervalent iodine compounds,13 benziodoxole triflate (IBA-OTf, 4) was applied as precursor next. To our delight, this approach was successful. With 1 equiv of 2a as sulfoximine source in dichloromethane (DCM), 1-[(methyl(oxo)(phenyl)-λ 6 sulfaneylidene)amino]-1λ3-benzo[d][1,2]iodaoxol-3(1H)-one (3a) was obtained in 33% (Table 1, entry 1). The addition of KF to a combination of 2a and 4 did not significantly affect the yield of 3a (35%; Table 1, entry 2). Switching from Ntrimethylsilyl-protected sulfoximine 2a to NH-derivative 2b as coupling partner for 4 improved the yield of 3a to 48%. A

in azidation reactions.8 Muñiz developed hypervalent iodine(III) reagents B containing bissulfonimide groups and characterized the compounds by X-ray crystallography. These novel iodine reagents were effective in oxidative aminations and diaminations.9 Hypervalent iodine(III) molecules, such as C containing a phthalimiadate group, were prepared by Kiyokawa and co-workers. Compound C was utilized in oxidative aminations of tertiary amines and enamines.10 Recently, we reported sulfoximidoyl-containing hypervalent iodine(III) salts D and examined their structural details by NMR spectroscopy, X-ray single crystal structure analysis, and DFT calculations. © 2017 American Chemical Society

Special Issue: Hypervalent Iodine Reagents Received: June 21, 2017 Published: July 26, 2017 11854

DOI: 10.1021/acs.joc.7b01535 J. Org. Chem. 2017, 82, 11854−11858

Note

The Journal of Organic Chemistry Table 1. Optimization of the Reaction Conditionsa

entry sulfoximine 2 1 2b 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2a 2a 2b 2b 2b 2b 2b 2b 2b 2b 2b 2b 2b 2b 2b 2b 2b

ratio of 4 to 2a or 2b

solvent

1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1.5:1 2:1 1:1.5 1:2 1:3

DCM DCM DCM MeCN THF Et2O acetone CF3CH2OH toluene MeCN MeCN MeCN MeCN MeCN MeCN MeCN MeCN

base

Na2CO3 NaHCO3 NaOH

conditions involving acetonitrile as solvent and both reaction components in a 1:3 ratio (Table 1, entry 17). Having established the reaction conditions, various sulfoximines were applied with the aim to explore the substrate scope when reacted with IBA-OTf (4). The results are summarized in Scheme 3.14 In general, the substitution pattern of the sulfoximine had only a minor influence on the reaction outcome. Both S-alkyl- and S-aryl-containing substrates bearing various functional groups reacted well affording the corresponding 1,2-benziodoxole 3 in high yields. Furthermore, steric hindrance induced by branching in the α position of the S-alkyl group (as in 3c, where R = isopropyl) or ortho-substitution on the S-aryl (as in 2-bromo and 2-chloro aryl derivatives 3i and 3j, respectively) had essentially no effect on the yield of 3. Finally, symmetrically substituted S,S-diphenyl sulfoximine (2o) and S,S-dimethyl sulfoximine (2p) were applied, and also those substrates reacted well affording the corresponding 1,2-benziodoxoles in 88% (for 3o) and 90% (for 3p) yield. Being surprised by the ease of preparation of 1,2benziodoxoles 3 we decided to investigate the stability of a representative derivative in the solid state and various solvents. With 3a as substrate, 1H NMR spectroscopy was chosen as analytical tool for the detection of potential degradation products. Keeping a solid sample of 3a at ambient temperature for 5 days or heating it to 50 °C for 12 h did not result in any detectable decomposition. An analogous treatment of solutions of 3a in d6-DMSO, D2O, CD3CN, CDCl3, CD3OH, and d6acetone led to the same result confirming the pronounced stability of the first prepared products. Although at first glance, this property appears beneficial for the handling the reagent, it might also hamper future chemical applications and limit its use in organic synthesis. In summary, we developed a protocol for the generation of 1sulfoximidoyl-1,2-benziodoxoles. When treated with pseudocyclic benziodoxole triflate, various NH-sulfoximines underwent a rapid and efficient N−I coupling affording the corresponding products in high yields after short reaction times. Further investigations showed that these new hypervalent iodine(III) reagent have a high stability in both solid state and solution.

yield (%) 33 35 48 58 25 14 trace 40 trace 55 59 50 43 31 70 79 85

a Reaction conditions: benziodoxole triflate (4, 0.2 mmol), sulfoximine 2a or 2b (0.2 mmol), base (0.2 mmol), and solvent (1 mL) for 30 min, sealed tube. bUse of KF (0.1 mmol).

solvent screening showed that acetonitrile was superior over DCM, THF, diethyl ether, acetone, 2,2,2-trifluororethanol, and toluene (Table 1, entries 3−9) giving 3a in 58% yield. While the addition of base (Na2CO3, NaHCO3, and NaOH) showed almost no effect on the efficiency in the formation of 3a (Table 1, entries 10−12), a significant increase in the yield of 3a was observed when the ratio between 2b and 4 was optimized (Table 1, entries 13−17). Finally, 3a was isolated in 85% under

Scheme 3. Synthesis of 1-Sulfoximidoyl-1,2-Benziodoxoles (0.60 mmol Scale; Yields after Column Chromatography)

11855

DOI: 10.1021/acs.joc.7b01535 J. Org. Chem. 2017, 82, 11854−11858

Note

The Journal of Organic Chemistry



2250, 2118, 1992, 1655, 1270, 1220, 1024, 822, 761, 686. HRMS m/z: calcd for [C20H16INO3S+Na]+: 499.9788, found: 499.9786. 1-{[Hexyl(oxo)(phenyl)-λ6-sulfaneylidene]amino}-1λ3-benzo[d][1,2]iodaoxol-3(1H)-one (3e). Colorless oil; 88 mg, 93% yield. 1H NMR (600 MHz, d6-DMSO) δ 8.06 (dd, J = 8.3, 0.9 Hz, 1H), 8.00− 7.95 (m, 3H), 7.84 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.78−7.71 (m, 1H), 7.69−7.65 (m, 3H), 3.78−3.69 (m, 2H), 1.66−1.60 (m, 1H), 1.52− 1.46 (m, 1H), 1.35−1.27 (m, 2H), 1.18−1.14 (m, 4H), 0.81−0.76 (m, 3H). 13C{1H} NMR (151 MHz, d6-DMSO) δ 167.3, 139.5, 134.4, 134.3, 132.9, 131.4, 130.8, 130.1, 128.5, 126.9, 119.1, 57.1, 31.0, 27.4, 23.6, 22.2, 14.2. MS (EI): m/z = 248 (10), 231 (10), 181 (20), 141 (12), 127 (31), 125 (79), 97 (28), 95 (29), 94 (33), 93 (63), 91 (43), 77 (100), 66 (57). IR (ATR): ν = 3444, 2667, 2320, 2251, 2114, 1997, 1906, 15547, 1444, 1370, 1275, 1208, 1150, 1023, 820, 759, 686. HRMS m/z: calcd for [C19H22INO3S+Na]+: 494.0257, found: 494.0265. 1-{[Octyl(oxo)(phenyl)-λ6-sulfaneylidene]amino}-1λ3-benzo[d][1,2]iodaoxol-3(1H)-one (3f). Colorless oil; 90 mg, 90% yield. 1H NMR (600 MHz, d6-DMSO) δ 8.06 (dd, J = 8.2, 0.9 Hz, 1H), 7.98− 7.94 (m, 3H), 7.84 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.78−7.73 (m, 1H), 7.68−7.65 (m, 3H), 3.78−3.68 (m, 2H), 1.66−1.60 (m, 1H), 1.52− 1.46 (m, 1H), 1.32−1.27 (m, 2H), 1.20−1.14 (m, 8H), 0.80 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (151 MHz, d6-DMSO) δ 167.3, 139.5, 134.3, 134.3, 132.9, 131.4, 130.8, 130.1, 128.5, 126.9, 119.1, 57.1, 31.5, 28.8, 28.8, 27.8, 23.7, 22.5, 14.4. MS (EI): m/z = 248 (7), 180 (15), 127 (22), 126 (13), 125 (39), 97 (19), 95 (24), 93 (53), 91 (31), 77 (95), 74 (33), 69 (29), 65 (74), 55 (66), 49 (100). IR (ATR): ν = 3445, 2929, 2666, 2322, 2250, 2112, 1996, 1905, 1646, 1445, 1369, 1274, 1211, 1150, 1025, 821, 758. HRMS m/z: calcd for [C21H26INO3S +Na]+: 522.0570, found: 522.0580. 1-{[(4-Bromophenyl)(methyl)(oxo)-λ6-sulfaneylidene]amino}-1λ3benzo[d][1,2]iodaoxol-3(1H)-one (3g). White solid; 86 mg, 90% yield; mp: 179−183 °C. 1H NMR (600 MHz, d6-DMSO) δ 8.06 (d, J = 8.1 Hz, 1H), 7.98 (dd, J = 7.5, 1.6 Hz, 1H), 7.93 (d, J = 8.7 Hz, 2H), 7.90−7.81 (m, 3H), 7.67 (t, J = 7.3 Hz, 1H), 3.65 (s, 3H). 13C{1H} NMR (151 MHz, d6-DMSO) δ 167.4, 140.8, 134.5, 132.9, 132.9, 131.5, 130.9, 129.9, 128.2, 127.0, 119.1, 45.9. MS (EI): m/z = 248 (14), 203 (15), 172 (27), 170 (26), 157 (11), 127 (14), 91 (24), 77 (100). IR (ATR): ν = 3441, 2928, 2095, 1909, 1734, 1617, 1206, 982, 742. HRMS m/z: calcd for [C14H11BrINO3S+Na]+: 501.8580, found: 501.8584. 1-{[(4-Fluorophenyl)(methyl)(oxo)-λ6-sulfaneylidene]amino}-1λ3benzo[d][1,2]iodaoxol-3(1H)-one (3h). White solid; 73 mg, 87% yield; mp: 175−177 °C. 1H NMR (600 MHz, d6-DMSO) δ 8.09−8.06 (m, 3H), 7.99−7.98 (m, 1H), 7.97−7.94 (m, 1H), 7.69−7.66 (m, 1H), 7.51 (t, J = 9 Hz, 1H), 3.65 (s, 3H). 13C{1H} NMR (151 MHz, d6DMSO) δ 167.4, 166.2, 164.5, 137.7, 134.4, 132.9, 131.5, 131.1, 131.0, 130.9, 127.0, 119.1, 117.2, 117.1, 46.2. MS (EI): m/z = 419 (6, M+), 231 (4), 172 (17), 158 (7), 104 (4), 95 (5). IR (ATR): ν = 3448, 2657, 2331, 2249, 2118, 1994, 1649, 1272, 1154, 1026, 821, 758, 681. HRMS m/z: calcd for [C14H11FINO3S+Na]+: 441.9381, found: 441.9381. 1-{[(2-Bromophenyl)(methyl)(oxo)-λ6-sulfaneylidene]amino}-1λ3benzo[d][1,2]iodaoxol-3(1H)-one (3i). White solid; 85 mg, 89% yield; mp: 180−182 °C. 1H NMR (600 MHz, d6-DMSO) δ 8.17 (dd, J = 7.8, 1.8 Hz, 1H), 8.09 (dd, J = 8.2, 1.0 Hz, 1H), 7.99 (dd, J = 7.5, 1.6 Hz, 1H), 7.94 (dd, J = 7.8, 1.4 Hz, 1H), 7.86 (ddd, J = 8.5, 7.1, 1.6 Hz, 1H), 7.70−7.61 (m, 3H), 3.78 (s, 3H). 13C{1H} NMR (151 MHz, d6DMSO) δ 167.4, 140.5, 136.4, 135.7, 134.6, 132.8, 131.5, 131.3, 130.9, 129.2, 127.1, 120.4, 119.2, 44.7. MS (EI): m/z = 248 (11), 231 (13), 172 (23), 170 (25), 157 (12), 139 (13), 96 (15), 91 (34), 76 (100). IR (ATR): ν = 3444, 2665, 2251, 2113, 1999, 1911, 1649, 1215, 1024, 820, 759, 679. HRMS m/z: calcd for [C14H11BrINO3S+Na]+: 501.8580, found: 501.8566. 1-{[(2-Chlorophenyl)(methyl)(oxo)-λ6-sulfaneylidene]amino}-1λ3benzo[d][1,2]iodaoxol-3(1H)-one (3j). White solid; 80 mg, 92% yield; mp: 181−183 °C. 1H NMR (600 MHz, d6-DMSO) δ 8.12 (dd, J = 7.9, 1.4 Hz, 1H), 8.07 (dd, J = 8.3, 0.9 Hz, 1H), 7.99 (dd, J = 7.5, 1.6 Hz, 1H), 7.86 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.78−7.72 (m, 2H), 7.68 (td, J = 7.4, 1.0 Hz, 1H), 7.63 (ddd, J = 7.9, 6.6, 2.1 Hz, 1H), 3.78 (s, 3H).

EXPERIMENTAL SECTION

All chemicals were purchased from commercial suppliers. The product mixtures were analyzed by thin layer chromatography using TLC silica gel plates (Merck-Schuchardt) with fluorescent indicator (λ = 254 nm). The purification of the products was performed by flash column chromatography using silica gel 60 (63−200 μm) from Merck. NMR spectra were recorded on Agilent VNMRS 600, Agilent VNMRS 400 or Varian Mercury 300 in deuterated solvents. The IR spectra were recorded with a PerkinElmer Spectrum 100 spectrometer with an attached UATR device Diamond KRS-5. Mass spectra were recorded on a Finnigan SSQ Finnigan 7000 spectrometer (EI, 70 eV). High resolution mass spectra (HRMS) were recorded on a Thermo Scientific LTQ Orbitrap XL spectrometer. Melting points (mp) were measured on a Büchi B-540 melting point apparatus. The NHsulfoximines were prepared in accordance with previously published synthetic strategies.15 Pseudocyclic benziodoxole triflate was prepared by literature procedures.13b General Procedure for Synthesis of 1-Sulfoximidoyl-1,2benziodoxoles 3a−p. A round-bottomed flask equipped with a Teflon-coated stir bar was charged with 2-[hydroxy(trifluoromethanesufonyloxy)]iodobenzoic acid (4, 0.2 mmol, 83 mg) and MeCN (1 mL). A solution of sulfoximine 2 (0.6 mmol) in MeCN (1 mL) was added slowly by syringe, and the mixture was stirred at room temperature for 1 h. Then, the solvent was removed under reduced pressure to give a white oily residue. Purification by silica gel column chromatography (EtOAc:acetone = 2:1) afforded the corresponding 1-sulfoximidoyl-1,2-benziodoxole 3. 1-{[Methyl(oxo)(phenyl)-λ6-sulfaneylidene]amino}-1λ3-benzo[d][1,2]iodaoxol-3(1H)-one (3a). White solid; 68 mg, 85% yield; mp: 169−171 °C. 1H NMR (600 MHz, d6-DMSO) δ 8.07−8.05 (m, 1H), 8.02−8.00 (m, 2H), 7.98−7.95 (m, 1H), 7.86−7.83 (m, 1H), 7.75− 7.72 (m, 1H), 7.68−7.65 (m, 3H), 3.63 (s, 3H). 13C{1H} NMR (151 MHz, d6-DMSO) δ 167.4, 141.3, 134.4, 134.1, 133.0, 131.4, 130.8, 130.0, 127.7, 127.0, 119.1, 46.1. MS (EI): m/z = 401 (4, M+), 248 (31), 203 (12), 154 (3), 140 (57), 109 (2), 104 (1), 77 (100). IR (ATR): ν = 3441, 3074, 2907, 2655, 2086, 1962, 1916, 1606, 1440, 1329, 1200, 988, 829, 742, 686. HRMS m/z: calcd for [C14H12INO3S +H]+: 401.9655, found: 401.9649. 1-{[Ethyl(oxo)(phenyl)-λ6-sulfaneylidene]amino}-1λ3-benzo[d][1,2]iodaoxol-3(1H)-one (3b). White solid; 73 mg, 88% yield; mp: 166−167 °C. 1H NMR (600 MHz, d6-DMSO) δ 8.06−8.04 (m, 1H), 7.98−7.94 (m, 3H), 7.87−7.84 (m, 1H), 7.77−7.74 (m, 1H), 7.68− 7.651 (m, 3H), 3.75−3.68 (m, 2H), 1.15 (t, J = 9 Hz 3H). 13C{1H} NMR (151 MHz, d6-DMSO) δ 167.3, 138.9, 134.4, 134.3, 132.9, 131.4, 130.8, 130.1, 128.6, 126.9, 119.1, 52.0, 8.6. MS (EI): m/z = 415 (1, M+), 172 (35), 171 (20), 150 (15), 86 (100), 84 (45), 77 (34). IR (ATR): ν = 3236, 2661, 2329, 2250, 2117, 1997, 1802, 1650, 1375, 1199, 1025, 822, 759, 686. HRMS m/z: calcd for [C15H14INO3S +Na]+: 437.9631, found: 437.9629. 1-{[Isopropyl(oxo)(phenyl)-λ6-sulfaneylidene]amino}-1λ3-benzo[d][1,2]iodaoxol-3(1H)-one (3c). White solid; 81 mg, 94% yield; mp: 179−181 °C. 1H NMR (600 MHz, d6-DMSO) δ 8.05−8.02 (m, 1H), 7.98−7.97 (m, 1H), 7.91−7.85 (m, 3H), 7.78 (t, J = 7.4 Hz, 1H), 7.69−7.66 (m, 3H), 3.90−3.83 (m, 1H), 1.36 (d, J = 6.7 Hz, 3H), 1.21 (d, J = 6.7 Hz, 3H). 13C{1H} NMR (151 MHz, d6-DMSO) δ 167.3, 137.6, 134.4, 134.4, 132.9, 131.4, 130.9, 130.1, 129.5, 126.8, 119.2, 57.7, 17.0, 15.9. MS (EI): m/z = 429 (2, M+), 248 (43), 231 (29), 140(72), 125 (80), 97 (23), 77 (100). IR (ATR): ν = 3441, 2677, 2337, 2101, 1740, 1373, 1224, 1025, 766. HRMS m/z: calcd for [C16H16INO3S+H]+: 429.9968, found: 429.9971. 1-{[Benzyl(oxo)(phenyl)-λ6-sulfaneylidene]amino}-1λ3-benzo[d][1,2]iodaoxol-3(1H)-one (3d). White solid; 87 mg, 91% yield; mp: 173−174 °C. 1H NMR (600 MHz, d6-DMSO) δ 7.95−7.94 (m, 1H), 7.83−7.81 (m, 2H), 7.73−7.71 (m, 1H), 7.67−7.59 (m, 5H), 7.39− 7.37 (m, 1H), 7.34−7.31 (m, 2H), 7.25−7.23 (m, 2H), 5.05 (dd, J = 15 Hz, 27 Hz, 2H). 13C{1H} NMR (151 MHz, d6-DMSO) δ 167.3, 139.5, 134.3, 132.8, 132.1, 131.4, 131.4, 130.7, 129.8, 129.3, 128.9, 128.8, 128.8, 126.7, 119.4, 63.5. MS (EI): m/z = 477 (1, M+), 170 (43), 150 (29), 86 (42), 84 (100), 77 (66). IR (ATR): ν = 3428, 2661, 11856

DOI: 10.1021/acs.joc.7b01535 J. Org. Chem. 2017, 82, 11854−11858

Note

The Journal of Organic Chemistry

(56), 78 (19), 76 (51), 74 (42), 54 (100), 49 (78). IR (ATR): ν = 3774, 3467, 3223, 3009, 2921, 2327, 2179, 2081, 1998, 1934, 1742, 1628, 1436, 1314, 1190, 1032, 971, 829, 744, 687. HRMS m/z: calcd for [C9H10INO3S+H]+: 339.9499, found: 339.9495.

C{1H} NMR (151 MHz, d6-DMSO) δ 167.4, 138.8, 135.7, 134.5, 132.9, 132.8, 131.6, 131.5, 131.0, 130.9, 128.6, 127.1, 119.3, 45.0. MS (EI): m/z = 248 (36), 231 (41), 203 (19), 176 (13), 174 (37), 159 (31), 126 (100), 111 (36), 77(18). IR (ATR): ν = 3482, 2660, 2324, 2249, 2119, 1994, 1651, 1442, 1273, 1212, 1026, 821, 758. HRMS m/ z: calcd for [C14H11ClINO3S+Na]+: 457.9085, found: 457.9079. 1-{[(3-Bromophenyl)(methyl)(oxo)-λ6-sulfaneylidene]amino}-1λ3benzo[d][1,2]iodaoxol-3(1H)-one (3k). White solid; 82 mg, 85% yield; mp: 183−188 °C. 1H NMR (600 MHz, d6-DMSO) δ 8.17 (t, J = 1.9 Hz, 1H), 8.07 (dd, J = 8.3, 0.9 Hz, 1H), 7.99 (ddd, J = 7.5, 2.8, 1.3 Hz, 2H), 7.95−7.91 (m, 1H), 7.86 (ddd, J = 8.5, 7.1, 1.6 Hz, 1H), 7.68 (td, J = 7.3, 1.0 Hz, 1H), 7.60 (t, J = 7.9 Hz, 1H), 3.69 (s, 3H). 13 C{1H} NMR (151 MHz, d6-DMSO) δ 167.4, 143.6, 136.9, 134.5, 132.9, 132.0, 131.5, 130.9, 130.3, 127.1, 126.8, 122.9, 119.1, 45.8. MS (EI): m/z = 248 (16), 231 (17), 220 (11), 203 (19), 170 (20), 155 (18), 96 (13), 77 (100). IR (ATR): ν = 3849, 3480, 33257, 2660, 2334, 2249, 2121, 1996, 1930, 1650, 1211, 1026, 821, 758, 683. HRMS m/z: calcd for [C14H11BrINO3S+Na]+: 501.8580, found: 501.8589. 1-{[Methyl(naphthalen-2-yl)(oxo)-λ6-sulfaneylidene]amino}-1λ3benzo[d][1,2]iodaoxol-3(1H)-one (3l). White solid; 79 mg, 88% yield; mp: 173−175 °C. 1H NMR (600 MHz, d6-DMSO) δ 8.67 (d, J = 1.9 Hz, 1H), 8.19 (dd, J = 8.4, 4.0 Hz, 2H), 8.14 (d, J = 8.2 Hz, 1H), 8.09 (d, J = 8.2 Hz, 1H), 8.02 (dd, J = 8.7, 2.0 Hz, 1H), 7.98 (dd, J = 7.5, 1.6 Hz, 1H), 7.86 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.76−7.72 (m, 1H), 7.71−7.64 (m, 2H), 3.72 (s, 3H). 13C{1H} NMR (151 MHz, d6DMSO) δ 167.4, 138.4, 135.1, 134.4, 133.0, 132.2, 131.4, 130.8, 130.1, 130.0, 129.8, 129.1, 128.3, 128.2, 127.1, 123.0, 119.1, 46.0. MS (EI): m/z = 248 (22), 231 (16), 205 (11), 175 (25), 142 (79), 127 (97), 126 (23), 115 (100), 77 (20). IR (ATR): ν = 3441, 2668, 2251, 2113, 1997, 1653, 1509, 1435, 1365, 1214, 1023, 821, 758, 680. HRMS m/z: calcd for [C18H14INO3S+Na]+: 473.9631, found: 473.9626. 1-{[Benzyl(3-fluorophenyl)(oxo)-λ6-sulfaneylidene]amino}-1λ3benzo[d][1,2]iodaoxol-3(1H)-one (3m). Colorless oil; 92 mg, 93% yield. 1H NMR (600 MHz, d6-DMSO) δ 8.02−7.86 (m, 1H), 7.72− 7.52 (m, 7H), 7.42−7.38 (m, 1H), 7.35 (t, J = 7.4 Hz, 2H), 7.30−7.25 (m, 2H), 5.12 (q, J = 13.4 Hz, 2H). 13C{1H} NMR (151 MHz, d6DMSO) δ 167.4, 163.0, 161.3, 142.1, 142.0, 134.3, 132.8, 132.1, 132.0, 131.9, 131.5, 130.8, 129.4, 128.8, 128.6, 126.7, 125.1, 125.1, 121.5, 121.3, 119.4, 116.1, 116.0, 63.1. MS (EI): m/z = 234 (15), 246 (19), 120 (6), 104 (19), 95 (67), 91 (100), 76 (7). IR (ATR): ν = 3445, 2667, 2250, 2116, 1996, 1898, 1650 1369, 1219, 1021, 820, 759, 677. HRMS m/z: calcd for [C20H15FINO3S+H]+: 495.9874, found: 495.9873. 1-{[Benzyl(4-methoxyphenyl)(oxo)-λ6-sulfaneylidene]amino}-1λ3benzo[d][1,2]iodaoxol-3(1H)-one (3n). White solid; 91 mg, 90% yield; mp: 184−189 °C. 1H NMR (600 MHz, d6-DMSO) δ 7.95 (dd, J = 7.4, 1.6 Hz, 1H), 7.74−7.58 (m, 5H), 7.43−7.29 (m, 3H), 7.26−7.19 (m, 2H), 7.12−7.07 (m, 2H), 5.00 (q, J = 13.5 Hz, 2H), 3.84 (s, 3H). 13 C{1H} NMR (151 MHz, d6-DMSO) δ 167.3, 163.8, 134.2, 132.9, 132.0, 131.4, 131.1, 130.7, 130.6, 129.2, 129.2, 128.7, 126.7, 119.3, 115.0, 63.7, 56.3. MS (EI): m/z = 258 (10), 155 (6), 106 (19), 91 (100), 77 (22). IR (ATR): ν = 3845, 3448, 2667, 2320, 2250, 2112, 1996, 1907, 1645, 1371, 1215, 1025, 821, 758, 682. HRMS m/z: calcd for [C21H18INO4S+H]+: 508.0074, found: 508.0068. 1-[(Oxodiphenyl-λ6 -sulfaneylidene)amino]-1λ 3-benzo[d][1,2]iodaoxol-3(1H)-one (3o). White solid; 82 mg, 88% yield; mp: 183− 184 °C. 1H NMR (600 MHz, d6-DMSO) δ 8.09 (d, J = 8.2 Hz, 1H), 8.05−8.01 (m, 4H), 7.99 (dd, J = 7.5, 1.6 Hz, 1H), 7.89−7.85 (m, 1H), 7.73−7.68 (m, 3H), 7.66−7.63 (m, 4H). 13C{1H} NMR (101 MHz, d6-DMSO) δ 167.3, 141.6, 134.8, 134.2, 132.6, 131.6, 131.0, 130.4, 128.2, 127.1, 119.1. MS (EI): m/z = 261 (22), 167 (10), 125 (12), 97 (15), 92 (23), 77 (100). IR (ATR): ν = 3400, 2256, 2126, 1995, 1648, 1446, 1267, 1157, 1093, 996, 824, 752, 690. HRMS m/z: calcd for [C19H14INO3S+H]+: 463.9812, found: 463.9802. 1-[(Oxodimethyl-λ6-sulfaneylidene)amino]-1λ3 -benzo[d][1,2]iodaoxol-3(1H)-one (3p). Colorless oil; 61 mg, 90% yield. 1H NMR (600 MHz, d6-DMSO) δ 8.01−7.98 (m, 2H), 7.82 (ddd, J = 8.4, 7.1, 1.6 Hz, 1H), 7.65 (td, J = 7.3, 1.0 Hz, 1H), 2.98 (s, 6H). 13C{1H} NMR (151 MHz, d6-DMSO) δ 167.5, 134.2, 133.3, 131.4, 130.6, 126.8, 119.2, 44.8. MS (EI): m/z = 248 (3), 231 (15), 203 (18), 127 13



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.7b01535. 1 H NMR and 13C NMR spectra of all products (PDF)



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. ORCID

Carsten Bolm: 0000-0001-9415-9917 Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS H.W. and D.Z. are grateful to the China Scholarship Council for predoctoral stipends. We also express our gratitude to Prof. Dr. Viktor V. Zhdankin (University of Minnesota Duluth) for helpful discussions on October 28, 2016.



REFERENCES

(1) For comprehensive recent presentations, see: (a) Lücking, U. Angew. Chem., Int. Ed. 2013, 52, 9399. (b) Frings, M.; Bolm, C.; Blum, A.; Gnamm, C. Eur. J. Med. Chem. 2017, 126, 225. (c) Sparks, T. C.; Loso, M. R.; Babcock, J. M.; Kramer, V. J.; Zhu, Y.; Nugent, B. M.; Thomas, J. D. In Modern Crop Protection Compounds; Kraemer, W., Schirmer, U., Jeschke, P., Witschel, M., Eds.; Wiley-VCH: Weinheim, 2012; p 1226. (2) Reviews: (a) Johnson, C. R. Aldrichimica Acta 1985, 18, 3. (b) Reggelin, M.; Zur, C. Synthesis 2000, 1. (c) Gais, H.-J. Heteroat. Chem. 2007, 18, 472. (d) Bizet, V.; Kowalczyk, R.; Bolm, C. Chem. Soc. Rev. 2014, 43, 2426. (e) Shen, X.; Hu, J. Eur. J. Org. Chem. 2014, 4437. (3) (a) Review: Bizet, V.; Hendriks, C. M. M.; Bolm, C. Chem. Soc. Rev. 2015, 44, 3378. For selected recent contributions, see: (b) Wang, J.; Frings, M.; Bolm, C. Angew. Chem., Int. Ed. 2013, 52, 8661. (c) Bizet, V.; Buglioni, L.; Bolm, C. Angew. Chem., Int. Ed. 2014, 53, 5639. (d) Dong, S.; Frings, M.; Cheng, H.; Wen, J.; Zhang, D.; Raabe, G.; Bolm, C. J. Am. Chem. Soc. 2016, 138, 2166. (e) Zenzola, M.; Doran, R.; Luisi, R.; Bull, J. A. J. Org. Chem. 2015, 80, 6391. (i) Zenzola, M.; Doran, R.; Degennaro, L.; Luisi, R.; Bull, J. A. Angew. Chem., Int. Ed. 2016, 55, 7203. (4) For selected reviews, see: (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523. (b) Singh, F. V.; Wirth, T. Chem. - Asian J. 2014, 9, 950. (c) Ochiai, M. Chem. Rec. 2007, 7, 12. (d) Uyanik, M.; Ishihara, K. ChemCatChem 2012, 4, 177. (e) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299. (f) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328. (5) (a) Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Application of Polyvalent Iodine Compounds; Wiley: New York, 2013. (b) Hypervalent Iodine Chemistry, Top. Curr. Chem.; Wirth, T., Ed.; Springer: Switzerland, 2015; Vol. 373. (6) Selected reviews: (a) Samanta, R.; Matcha, K.; Antonchick, A. P. Eur. J. Org. Chem. 2013, 5769. (b) Samanta, R.; Antonchick, A. P. Synlett 2012, 23, 809. For selected examples, see: (c) Magnus, P.; Lacour, J.; Evans, P. A.; Roe, M. B.; Hulme, C. J. Am. Chem. Soc. 1996, 118, 3406. (d) Tohma, H.; Egi, M.; Ohtsubo, M.; Watanabe, H.; Takizawa, S.; Kita, Y. J. Chem. Soc., Chem. Commun. 1998, 173. (e) Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J. Angew. Chem., Int. Ed. 2011, 50, 8605. 11857

DOI: 10.1021/acs.joc.7b01535 J. Org. Chem. 2017, 82, 11854−11858

Note

The Journal of Organic Chemistry (7) (a) Zhdankin, V. V.; Kuehl, C. J.; Krasutsky, A. P.; Formaneck, M. S.; Bolz, J. T. Tetrahedron Lett. 1994, 35, 9677. (b) Krasutsky, A. P.; Kuehl, C. J.; Zhdankin, V. V. Synlett 1995, 1081. (c) Zhdankin, V. V.; Krasutsky, A. P.; Kuehl, C. J.; Simonsen, A. J.; Woodward, J. K.; Mismash, B.; Bolz, J. T. J. Am. Chem. Soc. 1996, 118, 5192. (8) (a) Sharma, A.; Hartwig, J. F. Nature 2015, 517, 600. (b) Zhang, B.; Studer, A. Org. Lett. 2013, 15, 4548. (c) Shinomoto, Y.; Yoshimura, A.; Shimizu, H.; Yamazaki, M.; Zhdankin, V. V.; Saito, A. Org. Lett. 2015, 17, 5212. (9) (a) Souto, J. A.; Zian, D.; Muñiz, K. J. Am. Chem. Soc. 2012, 134, 7242. (b) Souto, J. A.; Becker, P.; Iglesias, Á .; Muñiz, K. J. Am. Chem. Soc. 2012, 134, 15505. (c) Souto, J. A.; Martínez, C.; Velilla, I.; Muñiz, K. Angew. Chem., Int. Ed. 2013, 52, 1324. (10) Kiyokawa, K.; Kosaka, T.; Kojima, T.; Minakata, S. Angew. Chem., Int. Ed. 2015, 54, 13719. (11) Wang, H.; Cheng, Y.; Becker, P.; Raabe, G.; Bolm, C. Angew. Chem., Int. Ed. 2016, 55, 12655. (12) (a) Matoušek, V.; Pietrasiak, E.; Schwenk, R.; Togni, A. J. Org. Chem. 2013, 78, 6763. (b) Matoušek, V.; Václavík, J.; Hájek, P.; Charpentier, J.; Blastik, Z. E.; Pietrasiak, E.; Budinská, A.; Togni, A.; Beier, P. Chem. - Eur. J. 2016, 22, 417. (c) Yoshimura, A.; Koski, S. R.; Fuchs, J. M.; Saito, A.; Nemykin, V. N.; Zhdankin, V. V. Chem. - Eur. J. 2015, 21, 5328. (d) Zhdankin, V. V.; Kuehl, C. J.; Krasutsky, A. P.; Bolz, J. T.; Simonsen, A. J. J. Org. Chem. 1996, 61, 6547. (13) (a) Yoshimura, A.; Klasen, S. C.; Shea, M. T.; Nguyen, K. C.; Rohde, G. T.; Saito, A.; Postnikov, P. S.; Yusubov, M. S.; Nemykin, V. N.; Zhdankin, V. V. Chem. - Eur. J. 2017, 23, 691. (b) Yoshimura, A.; Nguyen, K. C.; Klasen, S. C.; Saito, A.; Nemykin, V. N.; Zhdankin, V. V. Chem. Commun. 2015, 51, 7835. (c) Review: Yoshimura, A.; Yusubov, M. S.; Zhdankin, V. V. Org. Biomol. Chem. 2016, 14, 4771. (14) Here, all sulfoximines were racemic. For well-established synthetic routes towards enantiopure substrates, which could equally be applied here, see ref 3 and references therein. (15) Pandey, A.; Bolm, C. Synthesis 2010, 2922.

11858

DOI: 10.1021/acs.joc.7b01535 J. Org. Chem. 2017, 82, 11854−11858