8 Sulfur Recovery in O i l Refineries Using IFP Processes YVES BARTHEL, ANDRE DESCHAMPS, SIGISMUND FRANKOWIAK, and PHILLIPE RENAULT
Downloaded by COLUMBIA UNIV on March 14, 2013 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch008
Institut Français du Pétrole, Rueil-Malmaison, France PIERRE BONNIFAY and JOHN W. ANDREWS Institut Franiçais du Pétrole, New York, N. Y. 10022 The IFP-1500 process converts mixed hydrogen
sulfide/sul-
fur dioxide streams to sulfur and water by a liquid-phase Claus reaction using a proprietary
catalyst.
The exit gas
from the reactor contains 1000-2000 ppm sulfur
dioxide
after incineration. Plant investment and operating costs are both relatively low, and there is no problem with corrosion. The IFP-150 process takes sulfur dioxide streams down to 150-250 ppm sulfur dioxide by ammonia scrubbing and reaction with hydrogen
sulfide-containing
gas in a scheme
similar to the IFP-1500. Nineteen IFP-1500 plants and four IFP-150 are now operating or under construction. A scheme is shown for converting all solid, liquid, and gaseous sulfur wastes in a refinery to water and sulfur, reducing
sulfur
dioxide concentration to 150—250 ppm.
V I T T h e n control of sulfur emission became an urgent concern of refineries and other plants operating on hydrocarbon feeds, a host of processes were developed on paper ( I ) .
The past 2 yrs have seen a
shakedown and thinning of these processes. O f the more than 60 originally proposed, only about half a dozen have been developed commercially. This paper concerns itself with two of those commercially proved processes developed by the French Petroleum Institute (2, 3);
one for
taking emissions down to about 1500 ppm sulfur dioxide after incineration and the other for reducing sulfur dioxide to one tenth that level. At this time 19 IFP-1500 plants are licensed as are four of the IFP-150 plants. 100
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8.
BARTHEL E T AL.
The IFP-1500
Sulfur Recovery
in Oil
101
Refineries
Process
Process D e s c r i p t i o n . T h e I F P - 1 5 0 0 process is best u s e d to c l e a n u p C l a u s u n i t t a i l gas. T h e t e c h n o l o g y i n v o l v e d is essentially a n extension of t h e C l a u s r e a c t i o n itself b u t c a r r i e d out i n the l i q u i d p h a s e as s h o w n i n F i g u r e 1.
T h e t a i l gas at C l a u s u n i t exit pressure is i n j e c t e d i n t o
TREATED GAS TO INCINERATOR
TAIL GAS
Downloaded by COLUMBIA UNIV on March 14, 2013 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch008
FROM CLAUS PLANT
STEAM CONDENSATE
SOLVENT MAKE-UP
STEAM FOR START UP
LIQUID S U L F U R PRODUCT
Figure 1.
IFP Claus tail gas clean-up
process
the b o t t o m of a p a c k e d t o w e r w h i c h p r o v i d e s h i g h contact area b e t w e e n gaseous a n d l i q u i d phases.
T h e t o w e r is s i z e d to m a i n t a i n
d r o p w i t h i n a c c e p t a b l e l i m i t s , a v o i d i n g the n e e d for a b l o w e r .
pressure A
low
v a p o r pressure p o l y e t h y l e n e g l y c o l solvent w h i c h contains a p r o p r i e t a r y c a r b o x y l i c a c i d salt catalyst i n s o l u t i o n circulates c o u n t e r c u r r e n t the
gas.
The
catalyst forms
a complex
with
hydrogen
sulfide
to and
s u l f u r d i o x i d e w h i c h i n t u r n reacts w i t h m o r e of t h e gases to regenerate t h e catalyst a n d f o r m e l e m e n t a l sulfur. T h e r e a c t i o n is e x o t h e r m i c , a n d the heat is r e m o v e d
by
i n j e c t i n g a n d v a p o r i z i n g steam
T e m p e r a t u r e is m a i n t a i n e d a b o u t
condensate.
2 5 0 - 2 7 0 ° F , sufficient t o k e e p
the
s u l f u r m o l t e n b u t not h i g h e n o u g h to cause m u c h loss of s u l f u r or g l y c o l o v e r h e a d . T h e s u l f u r a c c u m u l a t e s i n the b o o t of t h e t o w e r a n d is d r a w n off c o n t i n u o u s l y t h r o u g h a seal l e g . P u r i t y of t h e p r o d u c t s u l f u r is v e r y g o o d as s h o w n i n T a b l e I.
O v e r h e a d s f r o m the t o w e r are sent to the
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
102
SULFUR
Table I.
REMOVAL
AND RECOVERY
T y p i c a l Analysis of Sulfur from IFP-1500 Claus T a i l Gas Clean-up Plants
P u r i t y (% S) H y d r o c a r b o n (ppm) A s h (ppm) Color
Design
Actual"
99.7 100 200 yellow
99.96 100 130 bright yellow
° From I F P unit serving a 270 long tons/day ( L T / D ) Claus plant. s a m e i n c i n e r a t o r u s e d to i n c i n e r a t e C l a u s t a i l gases w e r e the I F P u n i t absent.
S i n c e there is n o w a t e r b u i l d u p i n t h e I F P process, c o r r o s i o n is
Downloaded by COLUMBIA UNIV on March 14, 2013 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch008
no p r o b l e m .
T h e w h o l e u n i t is f a b r i c a t e d f r o m c a r b o n steel.
Sulfur Dioxide and Hydrogen Sulfide Concentration and Ratio. D e s i g n c o n v e r s i o n of I F P - 1 5 0 0 units d e p e n d s o n c o n c e n t r a t i o n of h y d r o g e n sulfide a n d s u l f u r d i o x i d e i n the C l a u s p l a n t t a i l gas a n d o n the a m o u n t of p a c k i n g i n the I F P t o w e r .
F i g u r e 2 s h o w s curves for plants
w i t h t w o different amounts of p a c k i n g .
F o r a given IFP-1500 plant,
c o n v e r s i o n varies w i t h the c o n c e n t r a t i o n of h y d r o g e n sulfide i n the f e e d . T h i s is r e s p o n s i b l e for t h e b a l a n c i n g effect w h i c h I F P - 1 5 0 0 u n i t s exert to a c e r t a i n extent o n C l a u s p l a n t o p e r a t i o n : as the C l a u s catalyst b e -
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8.
BARTHEL E T AL.
Sulfur Recovery
103
in Oil Refineries
cornes spent, t h e t a i l gas contains i n c r e a s i n g l y h i g h e r concentrations of h y d r o g e n sulfide w h i c h i n t u r n increases conversions i n t h e I F P - 1 5 0 0 u n i t . F i g u r e 3 shows a c t u a l p e n traces f r o m t h e stack s u l f u r d i o x i d e m o n i tor of a r e c e n t l y c o m m i s s i o n e d I F P - 1 5 0 0 u n i t .
S u l f u r d i o x i d e at t h e
2000 PPM 1000 PPM 2000 PPM
Downloaded by COLUMBIA UNIV on March 14, 2013 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch008
1000 PPM 2000 PPM 1000 PPM 28
42
2000 PPM 1000 PPM 2000 PPM 1000 PPM 56
63
Figure 3.
Stack sulfur dioxide
concentration
stack m o u t h r e a c h e d as l o w as 1000 p p m u s i n g o n l y a c o n v e n t i o n a l n o n b a u x i t e catalyst i n t h e t w o stage C l a u s u n i t . F i g u r e 4 is a c o m p o s i t e of readings m a d e d u r i n g t h e start-up of t h e same p l a n t , s h o w i n g that s u l f u r d i o x i d e emissions w e r e b r o u g h t as l o w as 800 p p m . E x t r a p o l a t i n g these results to 1 0 0 % c o n v e r s i o n shows t h a t a b o u t 4 0 0 p p m s u l f u r d i o x i d e a r e left. T h i s corresponds to e q u i l i b r i u m s u l f u r a n d to c a r b o n y l sulfide a n d c a r b o n d i s u l f i d e generated i n t h e C l a u s u n i t . react i n t h e I F P - 1 5 0 0 process.
These compounds
do not
T o keep t h e m at a m i n i m u m o n e c a n r u n
the first reactor of t h e C l a u s p l a n t s o m e w h a t hotter t h a n u s u a l a n d use a n u m b e r of c o m m e r c i a l l y a v a i l a b l e catalysts ( 4 , 5 ) . T h e r a t i o of h y d r o g e n sulfide to s u l f u r d i o x i d e is e s p e c i a l l y i m p o r t a n t at h i g h conversions.
F i g u r e 5 shows a c t u a l traces f o r s u l f u r d i o x i d e ,
h y d r o g e n sulfide, a n d t h e h y d r o g e n s u l f i d e / s u l f u r d i o x i d e r a t i o f o r t h e f e e d to a n I F P - 1 5 0 0 p l a n t w i t h a d e s i g n c o n v e r s i o n of 9 0 % . F i g u r e 6 shows t h e effect of v a r y i n g t h e r a t i o o n c o n v e r s i o n f o r a p l a n t of 9 3 % d e s i g n c o n v e r s i o n . T h e d e s i g n r a t i o here is a b o u t 2.2. A r a t i o that is t o o h i g h or too l o w cuts conversions s h a r p l y . O n e that is too l o w also reduces
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
104
SULFUR
REMOVAL
AND RECOVERY
Downloaded by COLUMBIA UNIV on March 14, 2013 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch008
1900
60
65
70
75
80
85
90
95
100
CONVERSION (%) Figure 4.
Conversion vs. stack sulfur dioxide concentration for an IFP unit with 93% design conversion
the q u a l i t y of t h e p r o d u c t sulfur.
C a r e f u l c o n t r o l of the C l a u s u n i t to
m a i n t a i n p r o p e r r a t i o not o n l y o p t i m i z e s c o n v e r s i o n i n the I F P - 1 5 0 0 u n i t , b u t also i n the C l a u s p l a n t itself. Operating Factors.
A n a d v a n t a g e of the I F P - 1 5 0 0 process is its
i n s e n s i t i v i t y to changes i n gas flow rates. W h e n the first i n d u s t r i a l scale u n i t w a s s t a r t e d u p i n J a p a n , it o p e r a t e d o n flows as l o w as 3 0 % d e s i g n w i t h o u t adverse effect.
of
A n o t h e r a d v a n t a g e of the I F P - 1 5 0 0 p r o c -
ess is t h a t s t r e a m factor is l o n g , g e n e r a l l y i n t h e r a n g e of 2 yrs. A f t e r
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
BARTHEL E T AL.
Sulfur Recovery
105
in Oil Refineries
Downloaded by COLUMBIA UNIV on March 14, 2013 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch008
8.
1.8
2.0
2.2
24
2.6
2.8
3.0
3.2
34
3.6
3.8
4.0
H S / S 0 RATIO IN FEED GAS 2
Figure
6.
2
Conversion vs. H S/S0 ratio in feed gas for IFF unit with 93% design conversion 2
2
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
106
SULFUR
REMOVAL
AND
RECOVERY
a b o u t 24 months a s h u t d o w n is n e e d e d to w a s h a w a y catalyst w h i c h has b e e n c o n v e r t e d to sulfates a n d d e p o s i t e d o n the p a c k i n g i n the t o w e r . A s i m p l e w a s h w i t h w a t e r is u s e d .
T h e r e is n o e x t r a o r d i n a r y m a i n t e
n a n c e r e q u i r e d , a n d there is n o l a b o r n e e d e d since the C l a u s p l a n t oper ator h i m s e l f runs the I F P - 1 5 0 0 u n i t . Feed Specifications for a Two-stage 100 L T / D Claus Plant at 9 5 % Conversion
Table II.
Lb-mol/hr H S SOo Sx COS + C S Balance
8.5 4.2 1.9 0.3 879.4
Downloaded by COLUMBIA UNIV on March 14, 2013 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch008
2
2
Total Economics.
894.0
T a b l e I I gives specifications for f e e d f r o m a two-stage
100 L T / D C l a u s p l a n t w i t h 9 5 % c o n v e r s i o n . T a b l e I I I shows the o v e r a l l Claus +
I F P - 1 5 0 0 conversions possible for plants t r e a t i n g t a i l gas f r o m
t h a t C l a u s u n i t , w i t h I F P - 1 5 0 0 plants of v a r y i n g d e s i g n c o n v e r s i o n : 8 0 % , 7 0 % , and 6 0 % .
90%,
T a b l e I V gives i n v e s t m e n t a n d o p e r a t i n g costs
for these I F P u n i t s . It is i n t e r e s t i n g to e x a m i n e the e c o n o m i c s of the I F P - 1 5 0 0 process f r o m another p o i n t of v i e w .
Starting w i t h a
fixed
a m o u n t of
money
a v a i l a b l e for I F P p l a n t i n v e s t m e n t , one c a n d e t e r m i n e h o w m a n y c a t a l y t i c stages s h o u l d b e i n s t a l l e d i n a C l a u s p l a n t to r e a c h v a r i o u s s u l f u r d i o x i d e e m i s s i o n levels. T a b l e V shows t y p i c a l analyses for t a i l gas f r o m the
first,
second,
and third
converters
of
a 100
L T / D Claus plant.
T a b l e V I shows conversions p o s s i b l e i n a n I F P - 1 5 0 0 u n i t after t r e a t i n g Table III. Overall Recovery as a Function of IFP U n i t Design Conversion a
Feed T o t a l free a n d c o m bined S (lb-mol/hr) Overall Claus + I F P r e c o v e r y (%)
14.9 —
% IFP
Design Conversion,
HS 2
+
S0
2
90
80
70
60
1.7
2.9
4.2
5.5
99.4
99.0
98.6
98.1
« Total feed = 894.0 lb-mol/hr e a c h of these three effluent gas streams, expressed as p e r c e n t I F P c o n v e r s i o n a n d p p m s u l f u r d i o x i d e g o i n g to t h e i n c i n e r a t o r . T h e s e
figures
are b a s e d o n s p e n d i n g h a l f a m i l l i o n dollars o n the I F P - 1 5 0 0 u n i t i n e a c h case. W h e r e r e g u l a t i o n s s p e c i f y 1500-2000 p p m ( β ) , a C l a u s p l a n t m a y
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8.
BARTHEL
Sulfur Recovery in Oil
ET AL.
Table IV.
107
Refineries
Investment and Operating Costs % IFP
Overall recovery Claus + I F P (%) Battery limits investment ($000) Solvent and catalyst con sumption ($/hr) Utilities Condensate (lb/hr) Power ( K W H r / h r )
Design Recovery (H S 2
S0 ) 2
90
80
70
60
99.4
99.0
98.6
98.1
510
a
+
330
1.67
280
1.65
370 21
240
1.57
320 17
1.54
280 16
250 15
Erected project cost including engineering, royalties, process data book, and solvent inventory (January 1973)
Downloaded by COLUMBIA UNIV on March 14, 2013 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch008
α
Table V . Analysis
Analyses of T a i l Gas 100 L T / D Claus Plant
(mol %)
Converter No. 1
H S S0 S H 0 COS CS Balance 2
2
2
2
F l o w rate ( l b - m o l / h r )
Table V I .
Converter No. 2
Converter No. 3
1.48 0.74 1.26 28.58 .02 .01 67.91
0.59 0.29 0.14 29.96 .02 .01 68.99
0.34 0.17 0.13 30.25 .02 .01 69.08
1025.27
1009.13
1007.77
Conversions Possible with Fixed $500,000 Investment in IFP Unit for a 100 L T / D Claus P l a n t 0
Treating
I F P unit conversion, H S + S0 (%) S u l f u r c o m p o u n d s to the i n c i n e r a t o r (as p p m S 0 ) Solvent and catalyst consumption ($/hr) Utilities Condensate (lb/hr) Power ( K W H r / h r ) 2
2
2
Tail Gas After
Converter No. 1
Converter No. 2
Converter No. 3
90
86
85
3000
2000
1700
1.67 400 25
1.66 180 25
° Battery limits investment including solvent inventory, 1973 basis
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.65 100 25
108
SULFUR
o n l y n e e d t w o stages.
REMOVAL
AND RECOVERY
T h i s w a s a c t u a l l y the case w h e r e a n I F P - 1 5 0 0
u n i t w a s i n s t a l l e d to c l e a n u p t a i l gas f r o m a l a r g e two-stage C l a u s p l a n t . The
IFP-150 Process T h e I F P - 1 5 0 process is b a s i c a l l y a v a r i a t i o n of t h e I F P - 1 5 0 0 process
for h a n d l i n g s u l f u r d i o x i d e streams. I n i t , t h e I F P - 1 5 0 0 process is c o u p l e d
TO STACK INCINERATOR
NH MAKE-UP,
Downloaded by COLUMBIA UNIV on March 14, 2013 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch008
3
AMMONIA
SCRUBBER H S-CONTAINING GAS 2
INCINERATOR
SULFITE EVAPORATOR AND SO2 REGENERATOR
TAIL GAS
SULFATE REDUCER
Figure 7.
Flow diagram of the IFP-150
to a n a m m o n i a s c r u b b i n g section.
process
W h e r e refinery s u l f u r d i o x i d e levels
m u s t b e b e l o w 200 p p m at t h e stack m o u t h , scrubbers c a n b e set u p at m a n y p o i n t s to c l e a n flue gases a n d v a r i o u s a c i d a n d sour streams. T h e effluents f r o m t h e scrubbers are t h e n p i p e d to a c e n t r a l I F P - 1 5 0 r e a c t i o n section w h e r e s u l f u r - c o n t a i n i n g c o m p o u n d s s u l f u r a n d aqueous
are c o n v e r t e d to e l e m e n t a l
a m m o n i a is r e c y c l e d to the several s c r u b b i n g sec-
tions. T h e r e is i n t e r m e d i a t e storage at several points i n the refinery so t h a t v a r i o u s units c a n operate at t h e i r o p t i m u m rates i n d e p e n d e n t
of
the o p e r a t i o n rate of the I F P - 1 5 0 r e a c t i o n section. Process Description. F i g u r e 7 shows t h e flow scheme.
T h e t a i l gas
is s c r u b b e d w i t h aqueous a m m o n i a , r e d u c i n g the s u l f u r d i o x i d e
concen-
t r a t i o n to 1 5 0 - 2 5 0 p p m . T h e c l e a n e d gas is h e a t e d a n d v e n t e d to t h e stack.
T h e b r i n e , c o n t a i n i n g m o s t l y a m m o n i u m sulfites, is h e a t e d i n a
f o r c e d - c i r c u l a t i o n e v a p o r a t o r w h e r e sulfites are d e c o m p o s e d to a m m o n i a and sulfur dioxide. 300 ° F .
T h e s e are t a k e n off o v e r h e a d w i t h w a t e r at a b o u t
B o t t o m s f r o m t h e evaporator c o n t a i n t h e r m o s t a b l e sulfates a n d
thiosulfates w h i c h are r e d u c e d a c c o r d i n g to a p r o p r i e t a r y I F P process using submerged
combustion technology
heat transfer p r o b l e m s .
to a v o i d c o r r o s i o n a n d solve
T h e r e a c t i o n is e n d o t h e r m i c a n d uses r e d u c i n g
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8.
BARTHEL E T AL.
Sulfur Recovery in Oil
109
Refineries
gases p r o d u c e d b y b u r n i n g f u e l gas i n a deficiency of a i r . I n the r e d u c t i o n , sulfates a n d thiosulfates are c o n v e r t e d to a m m o n i a , s u l f u r d i o x i d e , a n d w a t e r w h i c h are m i x e d w i t h t h e o v e r h e a d s t r e a m f r o m t h e evaporator. A c i d gas or other h y d r o g e n s u l f i d e - r i c h gas a n d t h e b l e n d e d s u l f u r d i o x i d e - a m m o n i a streams are f e d to the I F P - 1 5 0 reactor at rates sufficient to m a i n t a i n a 2 : 1 r a t i o of h y d r o g e n sulfide : s u l f u r d i o x i d e . I n the reactor the h y d r o g e n sulfide a n d s u l f u r d i o x i d e dissolve i n a h i g h b o i l i n g p o i n t g l y c o l to f o r m e l e m e n t a l s u l f u r a n d w a t e r . T h e r e a c t i o n l i q u o r is m a i n t a i n e d s l i g h t l y a b o v e the m e l t i n g p o i n t of s u l f u r , as i n t h e I F P - 1 5 0 0 process, w i t h l i q u i d s u l f u r a c c u m u l a t i n g i n the b o o t of t h e t o w e r a n d b e i n g d r a w n off to storage t h r o u g h a seal l e g . Downloaded by COLUMBIA UNIV on March 14, 2013 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch008
T h e reactor t o w e r operates i n a flooded c o n d i t i o n , w i t h gases b u b b l i n g u p t h r o u g h t h e s o l u t i o n . P e r f o r a t e d trays are u s e d to i m p r o v e c o n tact.
S o l v e n t c i r c u l a t i n g c o u n t e r c u r r e n t to t h e gases is t a k e n f r o m t h e
b o t t o m of t h e t o w e r , p u m p e d t h r o u g h a steam generator a n d b a c k to the t o w e r . T h e heat of r e a c t i o n is thus r e m o v e d , w i t h steam l e a v i n g t h e generator at t w i c e a t m o s p h e r i c pressure. O v e r h e a d s f r o m t h e t o w e r are c o o l e d , a n d aqueous a m m o n i a is c o n d e n s e d
a n d r e c y c l e d b a c k to the
FURNACE GAS, CLAUS TAIL G AS, BOILER OFF-GAS RESIDUES β TARS FUEL GAS
CAUSTIC & SODI CARBONATES
ACID SLUDGE & SODIUM SULFATES CAUSTIC & SODIUM CARBONATES
+
Na / ION
— •
EXCHANGE
SOUR WATER +
Na /NH + ON EXCHANGE 4
EVAPORATOR AMMONIUM SULFATES
Figure 8.
Total sulfur recovery using IFP-150 process in a refinery
s c r u b b e r . S o m e non-condensables c o n t a i n i n g i n e r t gases, traces of s u l f u r v a p o r , a n d h y d r o g e n sulfide are i n c i n e r a t e d a n d r e c y c l e d to t h e a m m o n i a scrubber. F i g u r e 8 shows h o w t h e I F P - 1 5 0 process c a n b e i n t e g r a t e d i n t o a n o v e r a l l scheme f o r r e c o v e r i n g s u l f u r f r o m a l l gaseous, l i q u i d , a n d s o l i d s u l f u r - b e a r i n g refinery wastes.
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
110
SULFUR R E M O V A L A N D RECOVERY
Table VII.
T y p i c a l Performance and Economics of a 200 L T / D Claus Plant
1787 lb-mol/hr to incinerator 29.25 lb-mol/hr S compounds (as S 0 ) 250 ppm SO in treated gas 2
Downloaded by COLUMBIA UNIV on March 14, 2013 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch008
2
Investment Scrubbing ($) Sulfur conversion ($) Solvent inventory ($) Utilities Power ( K W H r / h r ) Circulating cooling water ( U S G P M ) Process water ( U S G P M ) M P steam (lb/hr) Chemicals L P G (lb/hr) N H (lb/hr) Solvent (S/yr)
400,000 600,000 40,000 190 1400 3 5500 220 4 4000
3
Economics.
Table VII gives
economics
for the IFP-150
process
applied to Claus unit gaseous effluent. Industrial
References
Nineteen full scale IFP-1500 units have been licensed to clean up tail gas from Claus plants: five in the U.S., one in Canada, nine in Japan, three in Russia, and one in Belgium. T h e Claus units recover from 45 to 800 L T / D of sulfur. They produce 4.3-68.7 M M S C F D of tail gas with hydrogen sulfide concentrations ranging from 3,0% 0. 9 .
(single stage) to
(three stages). Thirteen units are already in operation. Four IFP-150 units are under construction or already operating in
Japan and France. This paper was originally presented in January, 1974. A t the time of acceptance for publication, September 1974, 24 IFP-1500 plants were in operation or under construction. Literature
Cited
1. Hyne, J. B., Oil Gas J. (Aug. 1972) 70, 64-78. 2. Bonnifay, P., Dutriau, R., Frankowiak, S., Deschamps, Α., Chem. Eng. Progr. (Aug. 1972) 68, 51-52. 3. Barthel, Y., Renault, P., Bonnifay, P., Dutriau, R., Ind. Pet. Europe (431), 49-53 (1972). 4. Pearson, M . J., Hydrocarbon Process. (Feb. 1973) 52, 81-85. 5. Bryant, H . S., Oil Gas J. (Mar. 1973) 71, 70-76. 6. Engdahl, R. B., J. Air Pollut. Contr. Ass. (1973) 23, 364-375. RECEIVED June 11, 1974. Confidentiality agreements prevent disclosure of any other operating temperatures and pressures used in the IFP-1500 or IFP-150 processes.
In Sulfur Removal and Recovery; Pfeiffer, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.