15 Removal and Reduction of Sulfur Dioxides
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on November 10, 2016 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch015
from Polluted Gas Streams P. STEINER, H . JÜNTGEN,
and K. K N O B L A U C H
Foster Wheeler Corp., Livingston, N . J. 07039
This new, second generation process was primarily designed to remove sulfur dioxide from polluted gas streams. front
end
Forschung
of
the
process was
developed
and operates as a sulfur dioxide
placing the sulfur dioxide-containing a special carbon.
Following
by
The
Bergbau
concentrator,
gases in contact with
the preferential
adsorption
of
sulfur dioxide, the special carbon adsorbent is regenerated by thermal treatment to yield a concentrated sulfur dioxide off-gas which is converted to sulfur in a coal bed by Foster Wheeler Corporation's
Resox process. This process repre-
sents a new way to achieve the desired reaction rate between sulfur
dioxide and crushed coal at approximately
650-
760°F.
>"phe idea to use the various forms of coal to remove sulfur dioxide is not new and was described in an English patent as early as 1879
(I).
However, massive research and development programs to develop commercially viable sulfur dioxide removal processes were not initiated until 80 years later, when ecological considerations forced public concern. The Bergbau Forschung-Foster Wheeler
sulfur dioxide
removal
process was originally developed for the utility industry. However, the basic system can, and will, be used to meet the specific requirements of other industries as well. This second generation sulfur dioxide removal process consists of three basic steps.
The first step removes the sulfur
dioxide from polluted gas streams by adsorption on carbon (activated coke).
The second step regenerates the adsorbent (coke), producing a
gas stream with high sulfur dioxide concentration. The third step treats the sulfur dioxide-rich stream by reducing it to elemental sulfur. 180
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
15.
STEiNER E T AL.
Sulfur Dioxide
Removal and Reduction
Sulfur Dioxide Removal and Adsorbent
181
Regeneration
Physical Chemistry and Process Technology of the Sulfur Dioxide Removal System.
T h e s u l f u r d i o x i d e r e m o v a l system w a s d e v e l o p e d
by
B e r g b a u F o r s c h u n g i n E s s e n , W e s t G e r m a n y a n d is b a s e d o n a n d d e s i g n e d for a s p e c i a l a c t i v a t e d coke adsorbent.
T h e a c t i v a t e d coke, t h e
most c r i t i c a l i n g r e d i e n t i n the system, is the result of a research a n d
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on November 10, 2016 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch015
d e v e l o p m e n t p r o g r a m i n i t i a t e d i n the late 1950s.
It has excellent s u l f u r
d i o x i d e a d s o r p t i o n , h i g h i g n i t i o n t e m p e r a t u r e , a n d g o o d p h y s i c a l strength. T h e b a s i c system consists of a g a s / s o l i d c o n t a c t i n g d e v i c e ( t h e a d s o r b e r ) a n d a regenerator ( t h e d e s o r b e r ) .
W i t h i n t h e a d s o r b e r the a c t i -
v a t e d coke moves d o w n w a r d i n the p l u g flow w h i c h is c o n t a i n e d
by
p e r m a n e n t l y fixed steel louvers o n the gas e n t r a n c e a n d exit sides of t h e unit. T h e p o l l u t e d gas stream is passed i n t h r o u g h the louvers, t h r o u g h the adsorbent, a n d out t h r o u g h louvers o n t h e opposite side of t h e a d sorber.
T h e s u l f u r d i o x i d e c o n t a i n e d i n the gas stream is a d s o r b e d
on
the i n n e r surface of the a c t i v a t e d coke a n d is t h e n o x i d i z e d to s u l f u r i c a c i d i n the presence of the o x y g e n a n d w a t e r v a p o r w h i c h are also i n the p o l l u t e d gas ( 2 ) .
C o i n c i d e n t a l l y , the a d s o r b e r f u n c t i o n s as a p a n e l b e d
filter to r e m o v e p a r t i c u l a t e s e n t r a i n e d i n the gas stream. T h e s u l f u r i c a c i d content of the a c t i v a t e d c o k e increases as a f u n c t i o n of coke d w e l l t i m e i n the adsorber.
T h e r e f o r e , the coke d i s c h a r g e d at the b o t t o m of
the
a d s o r b e r contains the highest possible a m o u n t of s u l f u r i c a c i d for the g i v e n c o n d i t i o n s a n d a d s o r b e r geometry. T h e adsorbent is regenerated after i t is d i s c h a r g e d f r o m the a d s o r b e r a n d is separated f r o m p a r t i c u l a t e s b y a v i b r a t i n g sieve. T h e r e g e n e r a t i o n is effected t h e r m a l l y b y h e a t i n g the s u l f u r i c a c i d - l o a d e d adsorbent i n a n inert atmosphere. T h e r e g e n e r a t i o n c o n d i t i o n s cause a d i r e c t i o n a l c h a n g e i n the d r i v i n g forces o f the reactions i n this system.
T h e participants
u n d e r g o a m o d i f i e d r e v e r s a l of t h e a d s o r p t i o n r e a c t i o n i n w h i c h the fixed c a r b o n of the adsorbent reduces the s u l f u r i c a c i d to s u l f u r d i o x i d e . T e c h n i c a l l y , the r e g e n e r a t i o n is c a r r i e d out i n a m o v i n g b e d reactor u s i n g s a n d as a d i r e c t heat c a r r i e r to heat the a d s o r b e n t to 6 0 0 - 6 5 0 ° C . T h e effluent gas of the r e g e n e r a t i o n contains 2 0 - 3 0 % v o l u m e as w e l l as w a t e r a n d c a r b o n d i o x i d e .
sulfur dioxide b y
It c a n b e f e d d i r e c t l y to
F o s t e r W h e e l e r s Resox process w h i c h converts the s u l f u r d i o x i d e content to s u l f u r . Mechanism of Adsorption.
T h e m e c h a n i s m of the s u l f u r d i o x i d e
a d s o r p t i o n a n d o x i d a t i o n o n c a r b o n shows t h a t the s u l f u r d i o x i d e p i c k - u p c a n b e d i v i d e d i n t o three subsequent phases i n w h i c h phase c h a n g e is a f u n c t i o n of t i m e . I n phase one, t h e a d s o r p t i o n rate is c o n t r o l l e d b y t h e rate of s u l f u r d i o x i d e d i f f u s i o n i n t o the i n n e r surface of t h e adsorbent. A s the a d s o r p t i o n proceeds, the n u m b e r of locations a v a i l a b l e for a d s o r p -
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
182
SULFUR
t i o n declines, a n d finally most becomes
REMOVAL
of the easily accessible
AND
RECOVERY
inner
surface
occupied.
It is necessary
to create vacancies
o n t h e i n n e r surface to a l l o w
c o n t i n u e d a d s o r p t i o n . V a c a n c i e s , h o w e v e r , are c r e a t e d b y s u l f u r d i o x i d e o x i d a t i o n a n d t h e subsequent
transport of t h e generated
to r e a d i l y accessible i n n e r pores.
sulfuric acid
T h e r e f o r e , t h e a d s o r p t i o n rate is n o w
c o n t r o l l e d b y t h e rate of o x i d a t i o n a n d transport.
This
interdependent
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on November 10, 2016 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch015
r e l a t i o n s h i p is c h a r a c t e r i s t i c of this phase o f a d s o r p t i o n . I n t h e t h i r d phase, t h e accessible i n n e r pores start to fill u p t o c a p a c i t y a n d , therefore,
t h e transport rate approaches
zero causing a n
excess o f s u l f u r i c a c i d to b u i l d u p s l o w l y o n the i n n e r surface. t i n u o u s presence of s u l f u r i c a c i d poisons
T h e con-
t h e active centers, a n d t h e
a d s o r p t i o n a c t i v i t y declines. S i n c e t h e b u l k of the a d s o r p t i o n is a c c o m p l i s h e d i n the s e c o n d phase u n d e r stationary c o n d i t i o n s , t h e adsorbent w a s d e v e l o p e d to o b t a i n h i g h s u l f u r d i o x i d e - t o - s u l f u r i c a c i d c o n v e r s i o n rates f o r a l a r g e p o r t i o n of its i n n e r surface. T h e r e l a t i o n s h i p b e t w e e n p o r e structure a n d s u l f u r d i o x i d e a d s o r p t i o n is s h o w n i n F i g u r e 1. T h e o r d i n a t e is t h e t i m e , i n hours, after w h i c h 1 0 % of t h e i n l e t s u l f u r d i o x i d e w i l l pass t h r o u g h t h e c a r b o n w i t h out b e i n g a d s o r b e d .
T h e m e a n p o r e d i a m e t e r of a d s o r p t i o n pores w a s
selected f o r t h e abscissa as t h e p a r a m e t e r t o c h a r a c t e r i z e t h e adsorbent structure
( 3 ) . Adsorbents
produced
w i t h o u t catalyst i m p r e g n a t i o n w e r e
from
bituminous coal w i t h a n d
tested.
I n b o t h cases, t h e s u l f u r
Time of 10% Break Thraugh
with Catalyst
Average Diameter of Adsorption Figure 1.
6
fjj
Sulfur dioxide sorption of various active carbons
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
15.
STEiNER E T AL.
Sulfur Dioxide
Removal and
183
Reduction
Reaction Parameters: / E*ôkca(/mol
ε * 17 kcal/moi k * 10 min-'
Reaction Rate .s X s2
far the format/on
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on November 10, 2016 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch015
CO
s
0
2.Q\4
dV fNcm*\ dTL#.grdJ __ „ /5
measured calculated
-
3
m-SV/min i.o
0.0+/
ο
Figure 2.
y 200 300 400 femperature C°c) Nonisothermal
kinetics of thermal
regeneration
d i o x i d e a d s o r p t i o n increases i n i t i a l l y w i t h i n c r e a s i n g m e a n p o r e
size
d i a m e t e r a n d t h e n declines after r e a c h i n g a m a x i m u m at a b o u t
8A
a n d 7.2A, r e s p e c t i v e l y . T h e d a t a f u r t h e r i n d i c a t e that a n adsorbent w i t h catalyst adsorbs m o r e s u l f u r d i o x i d e a n d therefore that p o r e diameters are less c r i t i c a l .
U n f o r t u n a t e l y , this difference
sufficient to offset e c o n o m i c
i n performance
is not
a n d process considerations w h i c h f a v o r a n
a d s o r b e n t w i t h o u t catalyst. T h e net result of the research a n d d e v e l o p m e n t w o r k is a n adsorbent for c o m m e r c i a l use, w h i c h is p r o d u c e d f r o m p r e o x i d i z e d b i t u m i n o u s c o a l a n d w h i c h has a p a r t i c l e d i a m e t e r of 9 m m , a hardness of over 9 0 % , an i g n i t i o n t e m p e r a t u r e over 4 0 0 ° C , a n d a s u l f u r d i o x i d e a d s o r p t i o n of 8 - 1 5 % Adsorbent Regeneration.
(4). A t temperatures a b o v e 2 0 0 ° C a c t i v a t e d
c o k e c o n t a i n i n g s u l f u r i c a c i d undergoes t h e f o l l o w i n g r e a c t i o n : H S0 2
4
+
1/2C
•> 1 / 2 C 0
2
+
H 0 + 2
S0
2
T o o b t a i n the n o n i s o t h e r m a l r e a c t i o n k i n e t i c s , the s u l f u r i c a c i d - c o n t a i n i n g coke as h e a t e d at a constant rate of 5 ° C / m i n a n d the v o l u m e of e v o l v i n g i n d i v i d u a l r e a c t i o n p r o d u c t s w a s m o n i t o r e d vs. the c h a n g e i n temperature.
U n d e r the c o n d i t i o n s of this e x p e r i m e n t the r e g e n e r a t i o n
r e a c t i o n starts a r o u n d 200 ° C a n d is p r a c t i c a l l y c o m p l e t e d at 450 ° C as i n d i c a t e d b y the e v o l u t i o n of the r e a c t i o n p r o d u c t s as s h o w n i n F i g u r e 2.
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
184
SULFUR
REMOVAL
AND
RECOVERY
T h e s l o w h e a t i n g rate u s e d i n this e x p e r i m e n t w o u l d b e i m p r a c t i c a l for a c o m m e r c i a l o p e r a t i o n as the regenerator vessel w o u l d be q u i t e large. C o m m e r c i a l l y , the r e g e n e r a t i o n heat is o b t a i n e d b y m i x i n g the adsorbent w i t h a h o t s o l i d . S a n d has b e e n f o u n d to b e a satisfactory s o l i d . A c c o r d i n g to the l a w s of n o n i s o t h e r m a l r e a c t i o n k i n e t i c s , the t e m p e r a t u r e r a n g e at w h i c h a g i v e n r e a c t i o n proceeds b e c o m e s h i g h e r as the h e a t i n g rate is i n c r e a s e d .
T h e l i b e r a t i o n curves of s u l f u r d i o x i d e
for
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on November 10, 2016 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch015
different h e a t i n g rates b e t w e e n 5 a n d 1 0 , 0 0 0 ° C / m i n are s h o w n i n F i g u r e 3.
T h e c a l c u l a t i o n s are b a s e d o n parameters e s t a b l i s h e d i n l a b o r a t o r y
experiments a n d s h o w n i n F i g u r e 2. A t a n a p p r o x i m a t e d h e a t i n g rate of 5 0 0 ° C / m i n i n the s a n d regenerator, t h e m a x i m u m r e a c t i o n rate w o u l d b e expected at 5 2 0 ° C w i t h a n e n d p o i n t of 6 8 0 ° C .
dr
£ k
fiate of Heating = 5 10 50 /0*fx/O*/O
5x/0 I0 3
3
100
ZOO 300
400
500
*I7 kcal/moi - Sx to* //min
0
600
700
°C/min
4
800
900
Temperature t°C) Figure 3. Pilot Plant
Liberation
of sulfur dioxide for different heating rates
Testing
T h e process d e s c r i b e d here has b e e n tested for 2 yrs i n a c o n t i n u ously
operating
(ACFH)
(5).
p i l o t p l a n t processing
over
100,000
actual cu
D u r i n g 1969 the p i l o t u n i t processed 528 Χ
gas i n 6000 o p e r a t i n g h r . T h e d e s u l f u r i z a t i o n efficiency r a n g e d 60 a n d 9 5 % .
ft/hr
1 0 A C F of 6
between
T h e s e differences w e r e c a u s e d b y d e l i b e r a t e changes i n
o p e r a t i n g parameters s u c h as the gas a n d c o k e residence times i n the adsorber, t e m p e r a t u r e of a d s o r p t i o n a n d r e g e n e r a t i o n , etc.
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
15.
STEiNER E T AL.
Sulfur Dioxide
Removal and Reduction
185
S i n c e the p i l o t u n i t a n d t h e d a t a o b t a i n e d f r o m i t are d e s c r i b e d i n n u m e r o u s p u b l i c a t i o n s o n l y some k e y c o n c l u s i o n s are m e n t i o n e d here. T h e p i l o t o p e r a t i o n e s t a b l i s h e d the t e c h n o l o g i c a l f e a s i b i l i t y of the process i n g e n e r a l a n d has s h o w n t h a t t h e assumptions, c a l c u l a t i o n s , a n d l a b o r a t o r y d a t a - b a s e d c o n c l u s i o n s c o n c e r n i n g p a r t i c u l a r features of the process s u c h as a d s o r p t i o n , r e g e n e r a t i o n at h i g h h e a t i n g rate, etc. are correct. D a t a o b t a i n e d d u r i n g the 2 yrs of o p e r a t i o n also has p r o v e d the ecoDownloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on November 10, 2016 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch015
n o m i c a l v i a b i l i t y of the process. Reduction
of Sulfur
Dioxide
by
Coal
T h e Resox process uses c o a l as a r e d u c i n g agent to p r o d u c e e l e m e n t a l sulfur.
It w a s d e v e l o p e d i n F o s t e r W h e e l e r C o r p o r a t i o n ' s J o h n B l i z a r d
R e s e a r c h C e n t e r a n d is the result of a research p r o g r a m i n i t i a t e d i n the late 1960s. T h i s process is d e s i g n e d to r e d u c e the s u l f u r d i o x i d e i n a n off-gas stream to s u l f u r a n d to condense the s u l f u r p r o d u c t f r o m the gas stream. It is c a p a b l e of h a n d l i n g a w i d e range of i n l e t gas c o m p o s i t i o n s a n d does not r e q u i r e gas c l e a n i n g , d r y i n g , or dust r e m o v a l systems. C r u s h e d c o a l is the o n l y m a t e r i a l a n d the o n l y catalyst c o n s u m e d .
T h e process r e p r e -
sents a n e w w a y to a c h i e v e the d e s i r e d degree of r e a c t i o n b e t w e e n s u l f u r d i o x i d e a n d c r u s h e d c o a l at temperatures as l o w as 600 ° C . T h e major process e q u i p m e n t consists of a reactor vessel a n d a s u l f u r condenser.
I n the reactor vessel, s u l f u r d i o x i d e - r i c h gases react
with
c r u s h e d c o a l to y i e l d gaseous e l e m e n t a l sulfur. T h i s s u l f u r is c o n d e n s e d f r o m the gas stream i n the s u l f u r condenser.
T h e high-purity l i q u i d sulfur
effluent of the process is a n o n p o l l u t i n g b y - p r o d u c t . F o s t e r W h e e l e r C o r p o r a t i o n s efforts t o w a r d f u l l c o m m e r c i a l i z a t i o n of this process are e x t e n d e d i n the f r a m e w o r k of a three phase p r o g r a m of process research a n d b e n c h - s c a l e f e a s i b i l i t y studies, p i l o t p l a n t o p e r a t i o n , a n d large scale d e m o n s t r a t i o n . O n l y the conclusions d i r e c t l y p e r t a i n i n g to the process are discussed here. A d e t a i l e d d i s c u s s i o n of the m e c h a n i s m a n d k i n e t i c s of this r a t h e r i n v o l v e d system is b e y o n d the scope of this p a p e r a n d w i l l b e r e p o r t e d at a later date. Research and Bench-Scale Feasibility Studies. T h e r e a c t i o n b e t w e e n c a r b o n a n d s u l f u r d i o x i d e at e l e v a t e d t e m p e r a t u r e s is w e l l k n o w n a n d has b e e n u s e d for n u m e r o u s processes.
F o r example, sulfur was produced
at T r a i l , B r i t i s h C o l u m b i a f r o m 1935 to 1943 b y b l o w i n g s u l f u r d i o x i d e a n d o x y g e n into the b o t t o m of a coke-fired r e d u c t i o n f u r n a c e . C o k e w a s c h a r g e d at the t o p a n d ash w a s r e m o v e d o n a r o t a r y grate at the b o t t o m of the f u r n a c e . T h e hot z o n e of the f u r n a c e w a s k e p t at 1 3 0 0 ° C to m a i n t a i n r a p i d r e a c t i o n rates a n d s m o o t h o p e r a t i o n . Sufficient s u l f u r d i o x i d e was a d d e d to the gas to react w i t h the c a r b o n m o n o x i d e a n d c a r b o n oxysulfide c o n t a i n e d i n the r e d u c t i o n f u r n a c e off-gas.
C o a l was
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
con-
186
SULFUR
REMOVAL
s i d e r e d unsatisfactory as a r e d u c i n g agent because of
AND
RECOVERY
the
hydrogen
sulfide f o r m a t i o n . C a r b o n w i l l also react w i t h s u p e r h e a t e d steam at elev a t e d temperatures to y i e l d c a r b o n m o n o x i d e a n d h y d r o g e n . F o s t e r W h e e l e r C o r p o r a t i o n ' s research p r o g r a m w a s b a s e d o n the a s s u m p t i o n that w h i l e h i g h temperatures are necessary to o b t a i n a c o m m e r c i a l l y p r a c t i c a l r e a c t i o n rate w h e n s u l f u r d i o x i d e or steam reacts i n d i v i d u a l l y w i t h c o a l , the t w o reactions w o u l d i n t e r a c t s y n e r g i s t i c a l l y w h e n Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on November 10, 2016 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch015
c o m b i n e d i n a single i n t e g r a t e d system. A s a result of this i n t e r a c t i o n , b o t h reactions w o u l d b e p r o m o t e d , a n d c o m m e r c i a l l y p r a c t i c a l rates for s u l f u r d i o x i d e r e d u c t i o n c o u l d be o b t a i n e d at s i g n i f i c a n t l y l o w e r t e m p e r a tures t h a n those r e p o r t e d i n the l i t e r a t u r e or u s e d c o m m e r c i a l l y .
A
s i m i l a r b e h a v i o r f o r the c o a l gasification r e a c t i o n is n o w b e i n g s t u d i e d i n a separate research p r o g r a m . T h e bench-scale study was conducted i n a small pilot plant designed for the r e a c t i o n of c r u s h e d c o a l w i t h s u l f u r d i o x i d e at c a r e f u l l y trolled conditions.
con-
T h e i n l e t gas c o m p o s i t i o n , r e a c t i o n t e m p e r a t u r e , a n d
gas residence t i m e w e r e selected as the i n d e p e n d e n t v a r i a b l e s f o r the study. T h e outlet gas c o m p o s i t i o n a n d r e a c t i o n rate w e r e m o n i t o r e d as dependent
variables.
T h e r e l a t i o n s h i p b e t w e e n s u l f u r d i o x i d e c o n v e r s i o n a n d the w a t e r - t o s u l f u r d i o x i d e r a t i o is s h o w n i n F i g u r e 4.
S i n c e the gas residence t i m e ,
t h e r e a c t i o n t e m p e r a t u r e , a n d the d r y i n l e t gas c o m p o s i t i o n w e r e h e l d constant, i t is e v i d e n t that t h e r e a c t i o n rate increases w i t h the p a r t i a l
SO in -SO2out z
X/ÛO All other parameters constant
Mol. H Ο ~4 Mol.S0 2
ο
/
2
Ratio H 0 2
Figure 4.
to SO.
3
2
Relationship between sulfur dioxide conversion and the water-to-sulfur dioxide ratio
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
15.
STEINER
Sulfur Dioxide
ET AL.
Mot, product Mol* SO consumed
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on November 10, 2016 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch015
z
Removal and
Reduction
187
All otherparameters constant
I -
4 6À .5·
/Ιοί. H 0 Moi. SO 2
"J
Ζ
z
Ratio H 0 to S0 2
Figure 5.
Z
Relationship between hydrogen sulfide selectivity and the water-to-sulfur dioxide ratio
pressure of w a t e r i n the system. T h e c h a n g i n g slope of t h e c u r v e shows the different degree of increase of the r e a c t i o n rate effected w h e n t h e w a t e r c o n c e n t r a t i o n of t h e system is i n c r e a s e d over different p r e v i o u s levels o f c o n c e n t r a t i o n . T h e w a t e r , c a r b o n d i o x i d e , s u l f u r d i o x i d e , n i t r o g e n gas, c a r b o n , a n d the n u m e r o u s other c o m p o u n d s r e s u l t i n g f r o m different c o m b i n a t i o n of the elements c o n t a i n e d b y the c o m p o u n d s a b o v e represent a c o m p l e x system. D e p e n d i n g o n t h e r e a c t i o n parameters, different r e a c t i o n routes
will
d o m i n a t e t h e system a n d w i l l y i e l d different c o m p o u n d s as t h e m a j o r reaction products.
T h e recent research effort c o n c e n t r a t e d o n o b t a i n i n g
e l e m e n t a l sulfur or h y d r o g e n sulfide as the p r i n c i p a l r e a c t i o n p r o d u c t s . I n g e n e r a l , i t w a s f o u n d that the s e l e c t i v i t y of the r e a c t i o n t o w a r d s hydrogen
sulfide increases w i t h i n c r e a s i n g r e a c t i o n t e m p e r a t u r e s a n d
w a t e r concentrations.
T h e r e l a t i o n s h i p b e t w e e n h y d r o g e n sulfide selec
t i v i t y a n d the a m o u n t of w a t e r i n the system is s h o w n i n F i g u r e 5. N e a r l y a l l t h e sulfur d i o x i d e e n t e r i n g t h e process w a s c o n v e r t e d s e l e c t i v e l y to h y d r o g e n sulfide b e t w e e n 660 a n d 7 6 0 ° C . T h e process w a s also a p p l i e d to convert s u l f u r d i o x i d e to s u l f u r at l o w e r r e a c t i o n t e m peratures. A s s h o w n i n F i g u r e 6, w h e n 1 0 0 % of the s u l f u r d i o x i d e is c o n v e r t e d , 9 0 % reacts to f o r m e l e m e n t a l s u l f u r w h i l e 1 0 % y i e l d s different by-products
s u c h as h y d r o g e n
sulfide, c a r b o n
oxysulfide, c a r b o n d i
sulfide, etc. N e a r l y 1 0 0 % s e l e c t i v i t y to s u l f u r c a n b e o b t a i n e d at l o w e r conversions c o r r e s p o n d i n g to l o w e r r e a c t i o n temperatures. peratures c a u s e d l o w e r conversions
Lower tem
since t h e m a x i m u m contact
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
time,
188
SULFUR
Vsq*Converted to6
REMOVAL
AND
RECOVERY
.„„
χ
/00-i
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on November 10, 2016 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch015
All other parameters constant
H:
I 50
τ -
60
Figure 6.
"—I
1—
70
SO
90
Sfy Conversion %
IOÛ
Sulfur dioxide consumed vs. sulfur
SO tn
v
z
produced
b a s e d o n e m p t y reactor v o l u m e , b e t w e e n s u l f u r d i o x i d e - c o n t a i n i n g gas a n d c a r b o n w a s fixed at 6 sec f o r a l l experiments. T h e v a r y i n g r e a c t i v i t y o f different coals u s e d i n this w o r k necessit a t e d different r e a c t i o n temperatures. T h e temperatures u s e d w e r e 5 5 0 7 0 0 ° C f o r b i t u m i n o u s coals a n d 6 5 0 - 8 0 0 ° C f o r a n t h r a c i t e coals. T h e results o b t a i n e d i n this phase of t h e p r o g r a m e s t a b l i s h e d process f e a s i b i l i t y a n d s h o w e d that t h e i n i t i a l assumptions c o n c e r n i n g process c h e m i s t r y a n d k i n e t i c s w e r e correct. Pilot Plant Operation.
T h e pilot plant operation was the second
phase o f t h e research p r o g r a m a n d w a s d e s i g n e d to d e l i v e r t h e d a t a necessary t o p l a n , b u i l d , a n d operate a c o m m e r c i a l size d e m o n s t r a t i o n p l a n t . I n o r d e r to a c c o m p l i s h these objectives, a p i l o t p l a n t of sufficient c a p a c i t y w a s c o n s t r u c t e d a n d o p e r a t e d f o r a n e x t e n d e d p e r i o d of t i m e . A d i a g r a m o f t h e p i l o t f a c i l i t y is s h o w n i n F i g u r e 7. T h e s u l f u r dioxide, carbon dioxide, nitrogen, a n d water were metered,
blended,
a n d b r o u g h t t o t e m p e r a t u r e b y a fired heater so that the m i x t u r e e n t e r e d the reactor at a t e m p e r a t u r e a n d c o m p o s i t i o n r e p r e s e n t a t i v e o f the off-gas f r o m t h e B e r g b a u F o r s c h u n g process.
T h e reactor of 2 c u f t v o l u m e
c o n t a i n e d a rice-size a n t h r a c i t e c o a l b e d w h i c h m o v e d d o w n w a r d s l o w l y
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
15.
STEINER E T A L .
Sulfur Dioxide
a n d c o u n t e r c u r r e n t to t h e gas stream.
189
Removal and Reduction
T h e coal hopper located above
the reactor g r a v i t y f e d the system w i t h fresh c o a l as the b e d v o l u m e w a s d i m i n i s h e d b y the r e a c t i o n a n d b y t h e r e m o v a l o f spent m a t e r i a l . S a m p l e ports a r r a n g e d at q u a r t e r p o i n t locations a l o n g t h e v e r t i c a l reactor vessel p e r m i t t e d the gas c o m p o s i t i o n to b e m o n i t o r e d a t different reactor locations, r e p r e s e n t i n g different gas residence times.
T h e tem
peratures at e a c h o f these s a m p l e ports, as w e l l as at t h e i n l e t a n d t h e Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on November 10, 2016 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch015
outlet, w e r e
continuously monitored.
T h e effluent gas o f t h e reactor
vessel passed t h r o u g h t h e s u l f u r condenser.
T h e t a i l gases l e a v i n g t h e
s u l f u r condenser w e r e s a m p l e d a n d a n a l y z e d . A n u m b e r of i n d i v i d u a l p i l o t runs w e r e c o n d u c t e d at v a r i o u s process c o n d i t i o n s to d e t e r m i n e t h e cause a n d effect r e l a t i o n s h i p o f process p a rameters s u c h as pressure, t e m p e r a t u r e , a n d residence t i m e o n t h e process behavior.
A q u a n t i t y of 1200-1500 A C F H of s u l f u r d i o x i d e - c o n t a i n i n g
gas w a s processed c o n t i n u o u s l y i n the p i l o t f a c i l i t y . T h e i n t e g r a t e d results o f these i n d i v i d u a l runs h a v e p r o v e d that t h e system is p r a c t i c a l f o r large scale operations a n d c a n treat a v a r i e t y of sulfur d i o x i d e - r i c h effluent gases.
T h e c o m p l e t e d p i l o t test p r o g r a m has
d e m o n s t r a t e d t h a t 9 0 % o f the s u l f u r d i o x i d e i n a t y p i c a l f e e d gas c a n b e c o n v e r t e d to e l e m e n t a l s u l f u r i n a p r o t o t y p e
apparatus h a v i n g design
features c o m p a t i b l e w i t h c o m m e r c i a l r e q u i r e m e n t s .
GAS SYNTHESIS
OFF-GAS TREATMENT
Figure 7.
Commercial
Scale
GAS COOLING
Foster Wheeler Resox pilot unit
Demonstrations
T h e first c o m m e r c i a l - s i z e d e m o n s t r a t i o n p l a n t was c o m p l e t e d i n e a r l y 1974 b y B e r g b a u F o r s c h u n g i n L u n e n , W e s t G e r m a n y . T h e p l a n t , s h o w n i n F i g u r e 8, is s u b s i d i z e d b y the W e s t G e r m a n g o v e r n m e n t . to process 5.3 χ
1 0 s t a n d a r d c u f t / h r of gas. 6
I t is d e s i g n e d
T h i s gas is p a r t o f t h e
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on November 10, 2016 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch015
190
SULFUR
Figure 8.
Bergbau Forschung
REMOVAL
A N D RECOVERY
unit in West Germany
flue gas f r o m a 350 M W coal-fired b o i l e r of t h e Steag. T h e p l a n t consists of a n adsorber, regenerator, a n d a m o d i f i e d C l a u s u n i t to process t h e s u l f u r d i o x i d e - r i c h r e g e n e r a t i o n off-gas. C o n t i n u o u s o p e r a t i o n w a s s c h e d u l e d t o start i n A p r i l 1974. P a r a l l e l w i t h B e r g b a u F o r s c h u n g ' s efforts i n W e s t G e r m a n y , F o s t e r W h e e l e r C o r p . is c o n s t r u c t i n g t h e first d e m o n s t r a t i o n p l a n t i n t h e U n i t e d States. T h e p r o t o t y p e u n i t is b e i n g erected f o r G u l f P o w e r C o . i n C h a t t a hoochee, F l o r i d a a n d is s c h e d u l e d to b e c o m p l e t e d i n S e p t e m b e r 1974. Compared
with
the Bergbau
F o r s c h u n g unit i n L u n e n , the Foster
W h e e l e r p l a n t w i l l substitute t h e Resox process f o r t h e m o d i f i e d C l a u s u n i t a n d c o n s u m e c o a l i n s t e a d of n a t u r a l gas to r e d u c e t h e s u l f u r d i o x i d e r i c h regenerator off-gas. I n conclusion, w h e n sulfur dioxide must be removed from polluted gas streams a n d a c c u m u l a t e d i n some f o r m , r e d u c t i o n to e l e m e n t a l s u l f u r is t h e o p t i m u m f o r m f o r a c c u m u l a t i o n , a n d c r u s h e d c o a l is t h e least expensive r e d u c i n g agent. Literature
Cited
1. British Patent 189 (1879). 2. Dratwa, H . , Jüntgen, H . , Peters, W., Chem. Ing. Tech. Z. (1967) 39, 949965.
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
15.
STEiNER
ET
AL.
Sulfur Dioxide
Removal and Reduction
191
3. Jüntgen, H . , Knoblauch, K., Peters, W., Chem. Ing. Tech. Z. (1969) 41, 798-805. 4. Jüntgen, H . , Knoblauch, K., Zündorf, D., Chem. Ing. Tech. Z. (1973) 45, 1148-1152. 5. Jüntgen, H . , Knoblauch, K., Peters, W., " S O Removal From Flue Gases By Special Carbon 2," Kongr. Reinhalt. Luft, Washington, D . C . , 1970. 2
1974
Downloaded by UNIV ILLINOIS URBANA-CHAMPAIGN on November 10, 2016 | http://pubs.acs.org Publication Date: April 1, 1975 | doi: 10.1021/ba-1975-0139.ch015
R E C E I V E D April 4,
Pfeiffer; Sulfur Removal and Recovery Advances in Chemistry; American Chemical Society: Washington, DC, 1975.