2456
Langmuir 2009, 25, 2456-2460
Superoleophobic Cotton Textiles Boxun Leng,†,‡ Zhengzhong Shao,† Gijsbertus de With,‡ and Weihua Ming*,‡,§ Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, AdVanced Materials Laboratory, Department of Macromolecular Science, Fudan UniVersity, Shanghai 200433, China, Laboratory of Materials and Interface Chemistry, EindhoVen UniVersity of Technology, P.O. Box 513, 5600 MB EindhoVen, The Netherlands, and Nanostructured Polymers Research Center, Materials Science Program, UniVersity of New Hampshire, Durham, New Hampshire 03824 ReceiVed September 22, 2008. ReVised Manuscript ReceiVed December 4, 2008 Common cotton textiles are hydrophilic and oleophilic in nature. Superhydrophobic cotton textiles have the potential to be used as self-cleaning fabrics, but they typically are not super oil-repellent. Poor oil repellency may easily compromise the self-cleaning property of these fabrics. Here, we report on the preparation of superoleophobic cotton textiles based on a multilength-scale structure, as demonstrated by a high hexadecane contact angle (153° for 5 µL droplets) and low roll-off angle (9° for 20 µL droplets). The multilength-scale roughness was based on the woven structure, with additional two layers of silica particles (microparticles and nanoparticles, respectively) covalently bonded to the fiber. Superoleophobicity was successfully obtained by incorporating perfluoroalkyl groups onto the surface of the modified cotton. It proved to be essential to add the nanoparticle layer in achieving superoleophobicity, especially in terms of low roll-off angles for hexadecane.
Introduction Through millions of years of evolution, nature has developed many interesting superhydrophobic surfaces, such as various plant leaves (a typical example being the lotus leaf),1,2 legs of the water strider,3 troughs of the Namib desert beetle,4 and a gecko’s feet.5 Surface roughness at a dual or multilength scale has shown to be the key in generating the surprising nonwetting behavior. Inspired by this finding, biomimetic artificial superhydrophobic surfaces have been produced via various methods,6-17 targeting a broad range of potential applications including self-cleaning and anti-biofouling coatings.9 On the other hand, it is highly desirable for superhydrophobic surfaces to be also oil-repellent to maintain their superhydrophobicity. For instance, in an industrial or household environment, a superhydrophobic surface with poor oil repellency can be easily contaminated by * To whom correspondence should be addressed. E-mail:
[email protected]. † Fudan University. ‡ Eindhoven University of Technology. § University of New Hampshire.
(1) Herminghaus, S. Europhys. Lett. 2000, 52, 165–170. (2) Barthlott, W.; Neinhuis, C. Planta 1997, 202, 1–8. (3) Gao, X. F.; Jiang, L. Nature 2004, 432, 36–36. (4) Parker, A. R.; Lawrence, C. R. Nature 2001, 414, 33–34. (5) Autumn, K.; Liang, Y. A.; Hsieh, S. T.; Zesch, W.; Chan, W. P.; Kenny, T. W.; Fearing, R.; Full, R. J. Nature 2000, 405, 681–685. (6) Han, W.; Wu, D.; Ming, W.; Niemantsverdriet, H.; Thune, P. C. Langmuir 2006, 22, 7956–7959. (7) Ming, W.; Wu, D.; van Benthem, R.; de With, G. Nano Lett. 2005, 5, 2298–2301. (8) Roach, P.; Shirtcliffe, N. J.; Newton, M. I. Soft Matter 2008, 4, 224–240. (9) Zhang, X.; Shi, F.; Niu, J.; Jiang, Y. G.; Wang, Z. Q. J. Mater. Chem. 2008, 18, 621–633. (10) Li, X. M.; Reinhoudt, D.; Crego-Calama, M. Chem. Soc. ReV. 2007, 36, 1350–1368. (11) Feng, X. J.; Jiang, L. AdV. Mater. 2006, 18, 3063–3078. (12) Liu, H.; Zhai, J.; Jiang, L. Soft Matter 2006, 2, 811–821. (13) Zhai, L.; Berg, M. C.; Cebeci, F. C.; Kim, Y.; Milwid, J. M.; Rubner, M. F.; Cohen, R. E. Nano Lett. 2006, 6, 1213–1217. (14) Sun, T. L.; Feng, L.; Gao, X. F.; Jiang, L. Acc. Chem. Res. 2005, 38, 644–652. (15) Shirtcliffe, N. J.; McHale, G.; Newton, M. I.; Chabrol, G.; Perry, C. C. AdV. Mater. 2004, 16, 1929–1932. (16) Zhai, L.; Cebeci, F. C.; Cohen, R. E.; Rubner, M. F. Nano Lett. 2004, 4, 1349–1353. (17) Erbil, H. Y.; Demirel, A. L.; Avci, Y.; Mert, O. Science 2003, 299, 1377– 1380.
oily substances, which will in turn compromise the surface superhydrophobicity. Therefore, superlyophobic (or superhygrophobic18) surfaces combining superhydrophobic and superoleophobic properties are desirable for practical applications.19 Despite extensive investigations on superhydrophobic surfaces, studies on superoleophobic surfaces with high repellency against liquids with low surface tensions (150°) and low roll-off angles for oil droplets can be regarded as truly superoleophobic surfaces. Very recently, (18) Marmur, A. Langmuir 2008, 24, 7573–7579. (19) Tuteja, A.; Choi, W.; Ma, M. L.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E. Science 2007, 318, 1618–1622. (20) Zimmermann, J.; Rabe, M.; Artus, G. R. J.; Seeger, S. Soft Matter 2008, 4, 450–452. (21) Cao, L. L.; Price, T. P.; Weiss, M.; Gao, D. Langmuir 2008, 24, 1640– 1643. (22) Yan, H.; Kurogi, K.; Tsujii, K. Colloid Surf., A 2007, 292, 27–31. (23) Tian, Y.; Liu, H. Q.; Deng, Z. F. Chem. Mater. 2006, 18, 5820–5822. (24) Nicolas, M.; Guittard, F.; Geribaldi, S. Angew. Chem., Int. Ed. 2006, 45, 2251–2254. (25) Nakajima, A.; Hoshino, M.; Song, J. H.; Kameshima, Y.; Okada, K. Chem. Lett. 2005, 34, 908–909. (26) Yabu, H.; Takebayashi, M.; Tanaka, M.; Shimomura, M. Langmuir 2005, 21, 3235–3237. (27) Li, H. J.; Wang, X. B.; Song, Y. L.; Liu, Y. Q.; Li, Q. S.; Jiang, L.; Zhu, D. B. Angew. Chem., Int. Ed. 2001, 40, 1743–1746. (28) Shibuichi, S.; Yamamoto, T.; Onda, T.; Tsujii, K. J. Colloid Interface Sci. 1998, 208, 287–294. (29) Tsujii, K.; Yamamoto, T.; Onda, T.; Shibuichi, S. Angew. Chem., Int. Ed. Engl. 1997, 36, 1011–1012. (30) Wu, D.; Vranchen, R. J.; van Loenen, B. G. H.; van Benthem, R. A. T. M.; De With, G.; Ming, W. Polym. Mater.: Sci. Eng. 2007, 97, 418–419.
10.1021/la8031144 CCC: $40.75 2009 American Chemical Society Published on Web 01/22/2009
Superoleophobic Cotton Textiles
Langmuir, Vol. 25, No. 4, 2009 2457
Scheme 1. Schematic Illustration of the Procedure for the Preparation of Dual-Size Structure onto the Surface of Woven Cotton Fibers, Combining an In Situ Sto¨ber Reaction with the Subsequent Adsorption of Silica Nanoparticles
truly superoelophobic surfaces have been achieved on the basis of microhoodoo19 and nanonail31 structures, as exemplified by low contact angle hysteresis for probe liquids of low surface tension (