Supramolecular Architectures of Macrocyclic Nickel(II) Complexes with

Read OnlinePDF (349 KB) ... of two [NiL]2+ units bridged by one BDC2- anion, 3 forms a two-dimensional layer structure of BDCH2 molecules hydrogen bon...
0 downloads 0 Views 349KB Size
CRYSTAL GROWTH & DESIGN

Supramolecular Architectures of Macrocyclic Nickel(II) Complexes with Defined Structures of Cis and Trans Configurations

2005 VOL. 5, NO. 4 1469-1475

Long Jiang, Xiao-Long Feng, and Tong-Bu Lu* School of Chemistry and Chemical Engineering, and Instrumentation Analysis & Research Center, Sun Yat-Sen University, Guangzhou 510275, China Received December 28, 2004;

Revised Manuscript Received March 24, 2005

ABSTRACT: Two isomers of [Ni(R-rac-L)](ClO4)2 and [Ni(β′-rac-L)](ClO4)2 were prepared, and their configurations and reaction properties were investigated (L ) 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Reactions of [Ni(R-rac-L)](ClO4)2 isomer with HBDC-, BDC2-, and pyca- ligands give six-coordinated cis-nickel(II) complexes of cis-[Ni(f-rac-L)(HBDC)](ClO4) 1, cis-{[Ni(f-rac-L)]2(BDC)(H2O)}(H2O)2(ClO4)2 2, and cis-[Ni(f-rac-L)(pyca)](ClO4) 4, where BDC ) trans-butene dicarboxylate and pyca ) 4-pyridinecarboxylate. Reactions of [Ni(β′rac-L)](ClO4)2 isomer with HBDC- and pyca- lead to six-coordinated trans-nickel(II) complexes of {trans-[Ni(mesoL)(BDC)](H2BDC)}n 3 and trans-[Ni(meso-L)(pyca)2] (H2O)2 5. Single-crystal X-ray diffraction analyses reveal that 1 and 4 form one-dimensional (1D) zigzag chains via the intermolecular hydrogen bonds, 2 is a dimer of two [NiL]2+ units bridged by one BDC2- anion, 3 forms a two-dimensional layer structure of BDCH2 molecules hydrogen bonded with 1D chains of [Ni(meso-L)(BDC)]n, and 5 is an extended hydrogen-bonded three-dimensional network. Introduction

Scheme 1

Recently, macrocyclic metal complexes are often used as building blocks to construct clusters1 and coordination polymers2-5 with interesting structures and properties. Part of the coordination sites of the metal ions can be blocked by the macrocyclic ligands, so these building blocks can form clusters and coordination polymers with defined geometries. The tridentate macrocyclic ligand L1 (Scheme 1) can block three coordination sites of the six-coordinated metal ions [Cr(III), Co(II), Ni(II), Ru(III), etc.] in cis-position only due to its small cavity, so the remaining three coordination sites of cis-ML1 can form clusters with a cubic geometry with bifunctional linkers such as a cyanide anion.1a-e The tetradentate macrocyclic ligands L2,3 and L (Scheme 1) can block four coordination sites of the six-coordinated metal ions in trans- or cis-position. In most cases, [ML2,3]2+ [M ) Ni(II), Co(II), or Cu(II)] forms coordination polymers with different bridging ligands in the trans-conformation,2-5 except for the reaction with oxalate and ethylenediamine, in which L2,3 adopts the cis-conformation.6 For [ML]2+, both cis- and trans-conformations can be adopted in the six-coordinated metal complexes depending on the experimental conditions.7 It’s important to control the geometries of ML2,3 and ML with cis- or trans-conformation, since they form different structures with bridging ligands and show different properties. For example, trans-ML2,3 and transML always form coordination polymers with onedimensional (1D) chains,2 two-dimensional (2D) brick wall,3 2D honeycomb,4 and three-dimensional (3D) structures,5 while cis-ML2,3 and cis-ML usually form discrete multinuclear clusters.6,7c-p The macrocyclic ligand, 5,5,7,12,12,14-hexamethyl1,4,8,11-tetraazacyclotetradecane (L), exhibits several

Scheme 2

* To whom correspondence should be addressed. Tel: +86-2084112921. Email: [email protected].

configuration isomers in [NiL]2+ cations, depending on the configurations of the two asymmetric carbon atoms and the four asymmetric nitrogen atoms. Typical configurations are shown in Scheme 2. The different configuration isomers can interconvert with each other, so precise control of the experimental conditions in order

10.1021/cg049559r CCC: $30.25 © 2005 American Chemical Society Published on Web 04/26/2005

1470

Crystal Growth & Design, Vol. 5, No. 4, 2005

Jiang et al.

Table 1. Crystallographic Data for [Ni(β′-rac-L)](ClO4)2 and 1-5 complex

[Ni(β′-rac-L)](ClO4)2

1

2

3

4

5

formula Fw crystal size (mm) crystal system space group a (Å) b (Å) c (Å) R (°) β (°) γ (°) volume (Å3) Z Dc (g cm-3) µ (mm-1) reflections collected unique reflns (Rint) parameters S on F2 R1 [I > 2σ (I)] wR2 [I > 2σ (I)] ∆Fmin and ∆Fmax (e/Å3)

C16H36Cl2N4NiO8 542.10 0.42 × 0.37 × 0.33 monoclinic C2/c 11.988(4) 11.842(4) 16.886(6) 90 93.240(7) 90 2393.4(14) 4 1.504 1.081 7066 2632 (0.0272) 145 1.041 0.0518 0.1298 0.815 and -0.545

C20H39ClN4NiO8 557.71 0.41 × 0.38 × 0.14 monoclinic P2(1) 9.921(4) 13.286(5) 10.0682(4) 90 92.781(7) 90 1327.3(9) 2 1.395 0.880 8335 5207(0.0204) 314 1.012 0.396 0.0930 0.419 and -0.295

C36H80Cl2N8Ni2O15 1053.40 0.44 × 0.29 × 0.23 monoclinic P2(1)/n 17.546(5) 16.176(5) 18.594(6) 90 107.700(6) 90 5028(3) 4 1.392 0.923 27900 9807(0.0246) 600 1.019 0.0433 0.1111 0.887 and -0.625

C24H42N4NiO8 573.33 0.38 × 0.17 × 0.15 triclinic P1 h 8.165(4) 8.526(4) 11.109(5) 78.098(7) 85.757(8) 67.334(7) 698.3(6) 1 1.363 0.746 5997 3010(0.0165) 177 1.098 0.0330 0.0773 0.339 and -0.222

C22H40ClN5NiO6 564.75 50 × 0.47 × 0.33 orthorhombic Pna2(1) 13.888(4) 13.929(4) 14.021(4) 90 90 90 2712.4(15) 4 1.383 0.858 16842 5661(0.0189) 320 1.058 0.0407 0.1165 0.620 and -0.5002

C28H48N6NiO6 623.43 0.48 × 0.44 × 0.41 triclinic P1 h 10.705(4) 11.023(4) 15.201(6) 97.339(6) 92.823(6) 118.856(5) 1545.4(10) 2 1.340 0.677 1322 6651(0.0199) 395 1.054 0.0339 0.0797 0.284 and -0.307

to form the defined structures with the bridging ligands still remains difficult. The searching results from the Cambridge Crystallographic Database indicate there are only two types of configurations in six-coordinated Ni(II) complexes (no matter what kinds of starting materials are used): meso-L in trans-ML and folded-rac-L in cis-ML. This indicates that all other types of metastable configurations of L will convert into the above two stable configurations during the formation of six-coordinated Ni(II) complexes. However, to a given bridging ligand, how to control the experimental conditions to let the configuration of the macrocyclic ligand L convert into the defined trans- or cis-configuration in six-coordinated Ni(II) complexes has not been investigated. Herein, we report on how to control the experimental conditions to get the six-coordinated nickel(II) complexes with defined cis- or trans-configurations. Experimental Section Materials and General Methods. The macroyclic ligand of L was prepared according to the reported method.8 All of the other chemicals are commercially available and used without further purification. Elemental analyses were determined using Elementar Vario EL elemental analyzer. The IR spectra were recorded in the 4000 to 400 cm-1 region using KBr pellets and a Bruker EQUINOX 55 spectrometer. Caution! Perchlorate salts of metal complexes with organic ligands are potentially explosive and should be handled in small quantities with care. [Ni(r-rac-L)](ClO4)2 and [Ni(β′-rac-L)](ClO4)2. To a stirring solution of nickel(II) acetate (2.72 g 0.012 mol) in 50 mL of methanol was added the ligand (L) (3.02 g, 0.01 mol), sodium perchlorate (2.50 g, 0.02 mol), and two drops of perchloric acid. After the solution mixture was heated at 60 °C for 1 h, it was cooled to room temperature. Blue crystals of [Ni(rac-L)(Ac)](ClO4) formed from the blue-violet solution. The crystals were filtered off, washed with methanol for several times, and then washed with a small amount of perchloric acid and methanol. A pale yellow powder of [Ni(R-rac-L)](ClO4)2 was formed directly in the filter. When the blue crystals were dissolved in the aqueous solution of NaClO4 and acidified with 2 M perchloric acid, a yellow-orange precipitate of [Ni(β′-rac-L)](ClO4)2 was formed. It was washed with methanol for several times and dried in air, then dissolved in the acidic solution of water/acetonitrile (10:1), and evaporated slowly at room temperature to get yellow-orange crystals of [Ni(β′-rac-L)](ClO4)2.

cis-[Ni(f-rac-L)(HBDC)](ClO4), 1. trans-Butene dicarboxylic acid (H2BDC, 0.116 g, 1 mmol) was mixed with NaOH (0.040 g, 1 mmol) dissolved in 10 mL of water. To this solution was added [Ni(R-rac-L)](ClO4)2 (0.541 g, 1 mmol) dissolved in a minimum amount of CH3CN. Slow evaporation of the resulting blue solution gave large blue crystals of compound 1. Yield: 35%. Anal. found: C, 42.81; H, 7.30; N, 10.02%. Calcd for C20H39N4ClO8Ni: C, 43.07; H, 7.05; N, 10.05%. IR (KBr, cm-1): 3248(s), 2967(s), 2882(m), 1704(s), 1560(s), 1405(s), 1287(m), 1247(m), 1183(m), 1168(m), 1120(vs), 980(s), 623(m). cis-{[Ni(f-rac-L)]2(BDC)(H2O)}(H2O)2(ClO4)2, 2. transButene dicarboxylic acid (H2BDC, 0.116 g, 1 mmol) was mixed with NaOH (0.080 g, 2 mmol) dissolved in 10 mL of water. To this solution was added [Ni(R-rac-L)](ClO4)2 (0.541 g, 1 mmol) dissolved in a minimum amount of CH3CN. Slow evaporation of the resulting blue solution gave large blue crystals of compound 2. Yield: 42%. Anal. found: C, 41.31; H, 7.90; N, 10.72%. Calcd for C36H80N8O15Cl2Ni2: C, 41.05; H, 7.66; N, 10.64%. IR (KBr, cm-1): 3267(s), 2967(s), 2882(m), 1557(s), 1460(s), 1405(vs), 1214(s), 1268(m), 1187(s), 1090(vs), 960(m), 695(s), 624(m). {trans-[Ni(meso-L)(BDC)](H2BDC)}n, 3. trans-Butene dicarboxylic acid (0.232 g, 2 mmol) was mixed with NaOH (0.080 g, 2 mmol) dissolved in 10 mL of water. To this solution was added [Ni(β′-rac-L)](ClO4)2 (0.541 g, 1 mmol) dissolved in a minimum amount of CH3CN. Slow evaporation of the resulting yellow solution gave pink crystals of compound 3. Yield: 60%. Anal. found: C, 49.64; H, 7.67; N, 9.72%. Calcd for C24H42N4O8Ni: C, 50.28; H, 7.38; N, 9.77%. IR (KBr, cm-1): 3259(s), 3180(m), 2966(m), 1696(s), 1573(m), 1462(m), 1377(s), 1273(s), 1216(m), 1119(m), 1054(m), 980(m), 804(m), 688(m). cis-[Ni(f-rac-L)(pyca)](ClO4), 4. The procedure is similar to that of the synthesis of compound 1 except that 4-pyridinecarboxylic acid (Hpyca) was used instead of trans-butene dicarboxylic acid. Slow evaporation of the resulting blue solution gave blue crystals of compound 4. Yield: 40%. Anal. found: C, 46.62; H, 7.23; N, 12.34%. Calcd for C22H40N5ClO6Ni: C, 46.79; H, 7.14; N, 12.40%. IR (KBr, cm-1): 3256(s), 2973(m), 2884(w), 1581(s), 1538(s), 1459(m), 1426(vs), 1170(m), 1119 (vs), 963(m), 774(m), 686(m), 623(m). trans-[Ni(meso-L)(pyca)2] (H2O)2, 5. The procedure is similar to that of the synthesis of compound 3 except that Hpyca was used instead of trans-dicarboxylic acid. Slow evaporation of the resulting yellow solution gave large pink crystals of compound 5. Yield: 30%. Anal. found: C, 54.01; H, 8.06; N, 13.49%. Calcd for C28H48N6O6Ni: C, 53.95; H, 7.76; N, 13.48%. IR (KBr, cm-1): 3258(s), 2973(m), 2875(w), 1606(s), 1551(s), 1375(s), 1191(m), 873(m), 769(s), 1712(m), 679(s). X-ray Crystallography. Single-crystal data of [Ni(β′-racL)](ClO4)2 and 1-5 were collected at 293(2) K on a Bruker Smart 1000 CCD diffractometer with Mo KR radiation (λ )

Macrocyclic Nickel(II) Complexes

Crystal Growth & Design, Vol. 5, No. 4, 2005 1471

Table 2. Selected Bond Distances (Å) and Angles (°) for [Ni(β′-rac-L)](ClO4)2 and 1-5a [Ni(β′-rac-L)](ClO4)2 Ni(1)-N(2) 1.915(3) N(2)-Ni(1)-N(1) 89.43(12)

Ni(1)-N(1) N(2)-Ni(1)-N(2)i N(1)-Ni(1)-N(1)i

1.917(3) 169.45(18) 163.73(19)

Ni(1)-N(1) Ni(1)-N(4) N(2)-Ni(1)-N(1) N(2)-Ni(1)-N(3) N(2)-Ni(1)-O(1) O(1)-Ni(1)-N(1) N(3)-Ni(1)-O(2) N(3)-O(3)i N(3)-H(3A)‚‚‚O(3)i

2.132(4) 2.088(3) 85.35(12) 91.83(11) 93.90(10) 84.66(13) 84.92(10) 3.025(4) 156.3

Ni(1)-N(2) Ni(1)-O(1) N(3)-Ni(1)-N(1) N(2)-Ni(1)-N(4) N(4)-Ni(1)-O(1) N(2)-Ni(1)-O(2) O(1)-Ni(1)-O(2) O(4)-O(2)ii O(4)-H(4)‚‚‚O(2)ii

Ni(1)-N(1) Ni(1)-N(4) Ni(2)-N(7) Ni(1)-O(2) N(1)-Ni(1)-N(3) N(1)-Ni(1)-N(2) N(1)-Ni(1)-N(4) N(2)-Ni(1)-N(4) O(1)-Ni(1)-O(2) O(3)-Ni(2)-N(6) O(3)-Ni(2)-N(5) O(3)-Ni(2)-N(7) N(5)-Ni(2)-N(7) N(8)-Ni(2)-O(5) O(5)-O(4) O(5)-H(5E)‚‚‚O(4)

2.083(2) 2.164(3) 2.152(2) 2.170(2) 104.68(10) 85.61(10) 90.78(10) 173.55(10) 61.37(9) 170.42(10) 101.77(9) 85.39(9) 169.59(10) 172.08(9) 2.527(3) 179(6)

2 Ni(1)-N(2) Ni(2)-N(5) Ni(2)-N(8) Ni(2)-O(3) N(1)-Ni(1)-O(1) N(3)-Ni(1)-N(2) N(3)-Ni(1)-N(4) N(1)-Ni(1)-O(2) N(2)-Ni(1)-O(2) O(3)-Ni(2)-N(8) N(6)-Ni(2)-N(5) N(6)-Ni(2)-N(7) O(3)-Ni(2)-O(5) N(5)-Ni(2)-O(5) O(15)-O(1)i O(15)-H(15A)‚‚‚O(1)i

Ni(1)-N(1) N(1)i-Ni(1)-N(1) N(2)-Ni(1)-N(2)i N(1)-Ni(1)-O(1) O(3)-O(2)ii O(3)-H(3)‚‚‚O(2)ii

2.0685(16) 180.00(10) 180.00(10) 93.94(6) 2.565(2) 175.4

Ni(1)-N(2) N(1)-Ni(1)-N(2) N(1)-Ni(1)-O(1)i N(2)-Ni(1)-O(1) N(1)-O(2) N(1)-H(1C)‚‚‚O(2)

Ni(1)-N(1) Ni(1)-N(4) N(2)-Ni(1)-N(4) N(2)-Ni(1)-N(1) N(2)-Ni(1)-O(1) N(1)-Ni(1)-O(1) N(3)-Ni(1)-O(2) N(3)-N(5)i N(3)-H(3A)‚‚‚N(5)i

2.128(3) 2.103(3) 104.56(11) 85.09(11) 95.91(10) 83.32(11) 87.67(11) 3.115(4) 148.7

Ni(1)-N(2) Ni(1)-O(1) N(2)-Ni(1)-N(3) N(4)-Ni(1)-N(1) N(4)-Ni(1)-O(1) N(2)-Ni(1)-O(2) N(1)-Ni(1)-O(2)

Ni(1)-N(1) Ni(2)-N(3) N(2)-Ni(1)-N(1)i N(2)-Ni(1)-O(1)i N(1)-Ni(1)-O(1) N(4)-Ni(2)-N(3)ii N(3)-Ni(2)-O(3) O(3)-Ni(2)-O(3)ii O(5)-O(6) O(5)-O(4) N(4)-N(6)v N(3)-H(3D)‚‚‚O(4) O(5)-H(5B)‚‚‚O(4) O(5)-H(5A)‚‚‚O(6)

2.0935(15) 2.0874(15) 85.31(6) 86.85(6) 89.74(6) 94.60(7) 90.95(6) 180.00(5) 2.851(4) 2.909(3) 3.380(3) 159.4 173(4) 171(3)

N(2)i-Ni(1)-N(1)

92.07(12)

2.074(3) 2.108(2) 173.74(13) 104.11(12) 160.95(11) 151.93(10) 59.68(9) 2.659(4) 174.2

Ni(1)-N(3) Ni(1)-O(2) N(4)-Ni(1)-N(1) N(4)-Ni(1)-N(3) N(3)-Ni(1)-O(1) N(4)-Ni(1)-O(2) N(1)-Ni(1)-O(2)

2.106(3) 2.291(2) 90.57(11) 84.69(14) 101.12(10) 103.33(11) 100.18(12)

2.125(3) 2.150(3) 2.138(3) 2.060(2) 94.68(9) 91.02(10) 84.71(11) 155.05(10) 99.77(9) 86.90(10) 85.00(10) 88.85(10) 87.70(9) 86.77(10) 2.877(6) 163(7)

Ni(1)-N(3) Ni(2)-N(6) Ni(1)-O(1) Ni(2)-O5 N(3)-Ni(1)-O(1) O(1)-Ni(1)-N(2) O(1)-Ni(1)-N(4) N(3)-Ni(1)-O(2) N(4)-Ni(1)-O(2) N(6)-Ni(2)-N(8) N(8)-Ni(2)-N(5) N(8)-Ni(2)-N(7) N(6)-Ni(2)-O(5) N(7)-Ni(2)-O(5) O(14)-O(2) O(14)-H(14D)‚‚‚O(2)

2.097(2) 2.112(3) 2.118(2) 2.195(3) 160.56(9) 88.72(10) 96.90(10) 99.59(10) 85.74(9) 100.13(10) 88.66(10) 84.15(10) 85.91(10) 101.19(10) 2.793(5) 146(7)

2.0999(15) 85.52(7) 86.06(6) 95.07(6) 2.917(2) 158.2(18)

Ni(1)-O(1) N(1)-Ni(1)-N(2)i N(2)-Ni(1)-O(1)i O(1)i-Ni(1)-O(1)

2.1279(13) 94.48(7) 84.93(6) 180.00(7)

2.081(3) 2.132(2) 90.78(11) 90.06(11) 157.87(10) 156.01(11) 98.42(11)

Ni(1)-N(3) Ni(1)-O(2) N(4)-Ni(1)-N(3) N(3)-Ni(1)-N(1) N(3)-Ni(1)-O(1) N(4)-Ni(1)-O(2) O(1)-Ni(1)-O(2)

2.119(3) 2.197(3) 85.43(11) 172.94(11) 102.84(11) 99.19(10) 61.25(9)

Ni(1)-N(2) Ni(2)-N(4) N(2)-Ni(1)-N(1) N(1)-Ni(1)-O(1)i N(4)-Ni(2)-N(4)ii N(3)-Ni(2)-N(3)ii N(4)-Ni(2)-O(3)ii

2.0661(15) 2.0748(16) 94.69(6) 90.26(6) 180.00(8) 180.00(9) 85.08(6)

Ni(1)-O(1) Ni(2)-O(3) N(1)i-Ni(1)-N(1) N(2)-Ni(1)-O(1) N(4)-Ni(2)-N(3) N(4)-Ni(2)-O(3) N(3)-Ni(2)-O(3)ii

2.1744(14) 2.1421(14) 180.000(1) 93.15(6) 85.40(7) 94.92(6) 89.05(6)

O(6)-O(2)iii N(3)-O(4) N(1)-O(2)i O(6)-H(6E)‚‚‚O(2)iii O(6)-H(6D)‚‚‚O(2)iv N(4)-H(4C)‚‚‚N(6)v

2.859(3) 2.919(2) 2.916(2) 173(3) 177(3) 157.5

O(6)-O(2)iv N(2)-N(5)vi

2.864(3) 3.220(3)

N(2)-H(2D)‚‚‚N(5)vi N(1)-H(1A)‚‚‚O(2)i

159.4 161.5

1

3

4

5

a Symmetry transformations used to generate equivalent atoms: i ) -x, y, -z + 3/2 for [Ni(β′-rac-L)](ClO ) . i ) -x, y + 1/2, -z + 1; 4 2 ii ) -x, y - 1/2, -z + 1 for 1. i ) -x, -y + 2, -z; ii ) x, y, z + 1 for 3. i ) x + 1/2, -y + 5/2, z for 4. i ) -x + 2, -y + 1, -z + 1; ii ) -x, -y, -z; iii ) -x + 1, -y, -z + 1; iv ) x - 1, y, z; v ) x - 1, y - 1, z; vi ) x + 1, y + 1, z for 5.

0.71073 Å). All empirical absorption corrections were applied by using the SADABS program.9 The structures were solved using a direct method, which yielded the positions of all nonhydrogen atoms. These were refined first isotropically and then anisotropically. All of the hydrogen atoms bound to carbon were placed in calculated positions with fixed isotropic thermal

parameters and included in structure factor calculations in the final stage of full-matrix least-squares refinement. All calculations were performed using the SHELXTL system of computer programs.10 The crystallographic data for [Ni(β′-racL)](ClO4)2 and 1-5 are summarized in Table 1. The selected bond lengths and angles are listed in Table 2.

1472

Crystal Growth & Design, Vol. 5, No. 4, 2005

Jiang et al. Scheme 3

Results and Discussion Synthesis. Warner11 et al. isolated two types of isomers of four-coordinated planar Ni(II) complexes: the yellow powder of [Ni(R-rac-L)](ClO4)2 from the decomposition of the oxalate-bridged dimer with 40% aqueous perchlorate and the orange powder of [Ni(β-rac-L)](ClO4)2 from the decomposition of the oxalate-bridged dimer with CaCl2 in basic aqueous media. Waters12 et al. reported the structures of three metastable configurational isomers of planar Ni(II) complexes: the yellow one of [Ni(R-rac-L)](ClO4)2 and two orange ones of [Ni(β-rac-L)]ZnCl4‚H2O and [Ni(β-rac-L)](ClO4)2. The searching results from the Cambridge Crystallographic Database indicate that these are only three samples of metastable isomers of planar Ni(II) complexes; all other planar Ni(II) complexes reported show a stable meso-L configuration.13 We used [Ni(rac-L)](Ac)(ClO4) (Ac ) acetate anion) as a starting material to synthesize two configurational isomers of planar Ni(II) complexes: the pale yellow one of [Ni(R-rac-L)](ClO4)2 and the yellow-orange one of [Ni(β′-rac-L)](ClO4)2. In [Ni(rac-L)](Ac)(ClO4), the macrocycle shows a folded-rac-L configuration.14 After it was washed with perchloric acid, the powder of [Ni(rac-L)](Ac)(ClO4) was directly transformed to the solid of [Ni(R-rac-L)](ClO4)2 via removal of the acetate anion. The configurations of the four macrocyclic nitrogen atoms (RSRS) in folded-rac-L retain in R-rac-L under the strong acid and the solid state reaction conditions. When [Ni(R-rac-L)](ClO4)2 was dissolved in acetonitrile, a violet solution of cis-[Ni(folded-rac-L)(CH3CN)2](ClO4)2 appeared immediately, indicating that the configurational interconversion of the macrocyclic ligands between R-rac-L and folded-rac-L needs little energy due to the same RSRS configurations, so the conversion from R-rac-L to folded-rac-L occurs very quickly in acetonitrile solution. When a bifunctional bridge such as trans-butene dicarboxylate or 4-pyridinecarboxylate was added to the above solution, the crystals of sixcoordinated cis-[Ni(folded-rac-L)(B)] (B ) bridge ligand) were formed from the solution (see Scheme 3). However, when [Ni(rac-L)](Ac)(ClO4) was dissolved in a diluted perchloric acid solution, the [Ni(R-rac-L)] (ClO4)2 isomer initially formed with a metastable configuration was transformed slowly to a more stable isomer of [Ni(β′rac-L)] (ClO4)2 (indeed, when the acetonitrile solution of [Ni(R-rac-L)] (ClO4)2 stood at room temperature, the color changed slowly from violet to yellow, indicating that the isomerization also occurs slowly in solution.). When [Ni(β′-rac-L)](ClO4)2 was dissolved in acetonitrile, a yellow solution of typical planar Ni(II) complex appeared, and the yellow color did not change along with standing. When the bridging ligand was added to the

above solution, only six-coordinated trans-[Ni(meso-L)(B)] (B ) bridge ligand) was formed from the solution (see Scheme 3). Comparison the Configuration of β′-rac-L with β-rac-L. As shown in Figure 1, the four macrocyclic nitrogen atoms of β′-rac-L show the same RRRR configurations as those of β-rac-L, and the [Ni(β′-rac-L)]2+ is nearly an optical isomer to the [Ni(β-rac-L)]2+, expect for one of the CH2CH2 groups (marked as red color), which is arranged in the same orientation. The β′-rac-L isomer is easy to convert to meso-L isomer since it only needs two adjacent nitrogen atoms in β′-rac-L to convert from the RR configuration to the SS configuration. Therefore, when [Ni(β′-rac-L)]2+ reacts with bridge ligands, they all form six-coordinated trans-[Ni(mesoL)(B)]. Compounds with Cis Configuration: Crystal Structures of 1, 2, and 4. An ORTEP drawing of 1 is shown in Figure 2, top. The structure consists of one cis-[Ni(f-rac-L)(HBDC)]+ cation and one ClO4- anion. In the cation, the nickel(II) ion displays a distorted octahedral coordination geometry by coordination with four nitrogen atoms of the macrocycle in a folded conformation and two carboxylate oxygen atoms of HBDC- in the cis-position. The Ni-N bond lengths [2.074(3)-2.132(4) Å] are slightly shorter than the Ni-O bond lengths [2.108(2) and 2.291(2) Å]. Each of the uncoordinated carboxylic groups of BDCH- anion forms two hydrogen bonds with the adjacent cis-[Ni(f-rac-L)(HBDC)]+ cation: One is the hydrogen bond between the hydroxyl oxygen atom and the coordinated carboxylate oxygen atom and the other is the hydrogen bond between the carboxylic oxygen atom and the secondary amine of the macrocyclic ligand. A 1D zigzag chain is formed via the above intermolecular hydrogen bonds linkage (Figure 2, bottom). The hydrogen bond distances are listed in Table 2. In 2, two [Ni(f-rac-L)]2+ cations are bridged by one BDC2- anion to form a dimer of [Ni(f-rac-L)]2(BDC)(H2O)}2+ (Figure 3). In the dimer, one of the Ni(II) ions is six-coordinated with four nitrogen atoms of the macrocyclic ligand and one bidentate carboxylic group of BDC2- anion; the other Ni(II) ion is six-coordinated with four macrocyclic nitrogen atoms, one monodentate

Figure 1. Configuration comparison of [Ni(β′-rac-L)]2+ (left) with the reported compound12 of [Ni(β-rac-L)]2+ (right).

Macrocyclic Nickel(II) Complexes

Crystal Growth & Design, Vol. 5, No. 4, 2005 1473

Figure 4. ORTEP drawing of the cation of 4 (top). Thermal ellipsoids are drawn at the 30% level. The hydrogen-bonded 1D zigzag chain of 4 (bottom). Figure 2. ORTEP drawing of the cation of 1 (top). Thermal ellipsoids are drawn at the 30% level. The hydrogen-bonded 1D zigzag chain of 1 (bottom).

Figure 3. ORTEP drawing of the dimer of 2. Thermal ellipsoids are drawn at the 30% level.

carboxylic group, and one water molecule. This unsymmetrical coordination manner of BDC2- anion is quite unusual. In the dimer, both macrocyclic ligands are arranged in a folded cis-configuration. The Ni-N bond distances of 2.083(2)-2.164(3) Å are close to the Ni-O distances of 2.060(2)-2.195(3) Å. The uncoordinated oxygen atom of BDC2- anion forms an intramolecular hydrogen bond with the coordinated water molecule [O(5)‚‚‚O(4) ) 2.527(3) Å, O(5)-H(5E)‚‚‚O(4) ) 179(6)°]. The two uncoordinated water molecules form intermolecular hydrogen bonds with the oxygen atoms of BDC2anion [O(14)‚‚‚O(2) ) 2.793(5), O(15)‚‚‚O(1) ) 2.877(6) Å]. The crystal structure of 4 (Figure 4, top) is made up of [Ni(f-rac-L)(pyca)]+ cation and ClO4- anion. In [Ni-

(rac-L)(pyca)]+, the nickel(II) ion displays a distorted octahedral geometry by coordination with four nitrogen atoms of the macrocycle with a folded conformation and two carboxylic oxygen atoms of the pyca- anion in the cis-position. Each of the nitrogen atoms of pyca- forms a weak intermolecular hydrogen bond with the adjacent N(3) of the macrocyclic ligand [N(3)‚‚‚N(5i) ) 3.115(4) Å, N(3)-H(3A)‚‚‚N(5i) ) 148.7°, i ) x + 1/2, -y + 5/2, z], resulting in a 1D zigzag chain via the above intermolecular hydrogen bonds (Figure 4, bottom). Compounds with Trans Configuration: Crystal Structures of 3 and 5. An ORTEP drawing of 3 is shown in Figure 5, top. Compound 3 is composed of uncoordinated BDCH2 molecules and 1D chains of alternating [Ni(meso-L)]2+ cations with BDC2- anions. Each Ni(II) ion in the chain is located on an inversion center and is six-coordinated with four nitrogen atoms from the macrocycle in the equatorial plane and two carboxylate oxygen atoms from the bridged BDC2groups in axial positions, forming a slightly distorted octahedral geometry. The five atoms of Ni(II), N(1), N(2), N(1i), and N(2i) (i ) -x, -y + 2, -z) are completely coplanar. The Ni-O(axial) bond length [2.1279(13) Å] is longer than the Ni-N(equatorial) bond lengths [2.0685(15)-2.0999(15) Å]. In the chain, each BDC2anion bridges two Ni(II) ions in a bis-monodentate fashion with Ni‚‚‚Ni separation of 9.258 Å. The uncoordinated carboxylic oxygen atom forms an intramolecular hydrogen bond with the nitrogen atom of the macrocyclic ligand [N(1)‚‚‚O(2) ) 2.917(2) Å, N(1)H(1C)‚‚‚O(2) ) 158.2°]. The [Ni(meso-L)(BDC)] chains are held together via intermolecular O-H‚‚‚O hydrogen bonds between the hydroxyl groups of BDCH2 molecules and the uncoordinated oxygen atoms of BDC2[O(3)‚‚‚O(2i) ) 2.565(2) Å, O(3)-H(3)‚‚‚(O2i) ) 175.4°, i ) x, y, z + 1], resulting in a 2D layer (Figure 5, bottom).

1474

Crystal Growth & Design, Vol. 5, No. 4, 2005

Jiang et al.

Figure 6. ORTEP drawing of 5 (top). Thermal ellipsoids are drawn at the 30% level. The 1D zigzag chain of 4 formed by the offset face-to-face π-π interactions between the pyridyl rings (middle). The intermolecular hydrogen bonding interactions (bottom). Figure 5. ORTEP drawing of 3 (top). Thermal ellipsoids are drawn at the 30% level. The hydrogen-bonded 2D layer of 3 (bottom).

The crystal structure of 5 (Figure 6, top) shows that the asymmetric unit consists of two independent [Ni(meso-L)(pyca)2] molecules and four water molecules. Each nickel(II) ion lies on an inversion center and is coordinated with four macrocyclic nitrogen atoms in the equatorial plane and two oxygen atoms of pyca- anions in axial positions. The Ni-N distances [2.0661(15)2.0935(15) Å] are slightly shorter than the Ni-O distances [2.1421(14)-2.1744(14) Å]. Each [Ni(meso-L)(pyca)2] molecule interacts with two adjacent [Ni(mesoL)(pyca)2] molecules through the offset face-to-face π-π interactions between the coordinated pyca- ions to form a 1D chain (Figure 6, middle), with a centroid‚‚‚centroid distance of 3.586 Å in the Ni(1) series of chains and 3.677 Å in the Ni(2) series of chains. Within the chain, the uncoordinated oxygen atom of pyca- forms an intramolecular hydrogen bond with the secondary amine of the macrocycle [N(1)‚‚‚O(2i) ) 2.916(2) Å, N(1)H(1A)‚‚‚O(2i) ) 161.5°, i ) -x + 2, -y + 1, -z + 1 and N(3)‚‚‚O(4) ) 2.919(2) Å, N(3)-H(3D)‚‚‚O(4) ) 159.4°]. As shown in Figure 6, bottom, the Ni(1) and Ni(2) series of chains are combined together through the intermolecular hydrogen bonding interactions to form an extended hydrogen-bonded 3D network. In conclusion, two planar Ni(II) isomers of [Ni(R-racL)](ClO4)2 and [Ni(β′-rac-L)](ClO4)2 were prepared by using a simple method. Reactions of [Ni(R-rac-L)](ClO4)2

isomer with HBDC-, BDC2-, and pyca- bridging ligands give six-coordinated cis-nickel(II) complexes 1, 2, and 4. Reactions of [Ni(β′-rac-L)](ClO4)2 isomer with HBDCand pyca- lead to six-coordinated trans-nickel(II) complexes 3 and 5. Therefore, simply by controlling the configurations of the planar Ni(II) complexes, it is easy to construct the six-coordinated complexes with defined cis- or trans-configurations. It is noteworthy that the bridging ligands in 1, 4, and 5 are coordination unsaturated, which can be used as “complex ligands” to construct supramolecular compounds with other metal ions or complexes. This work is being investigated. Acknowledgment. This work was supported by NSFC (20371051), NSF of Guangdong Province (04205405), and the Education Department of Guangdong Province. References (1) Macrocyclic clusters: (a) Sokol, J. J.; Shores, M. P.; Long, J. R. Inorg. Chem. 2002, 41, 3052. (b) Heinrich, J. L.; Berseth, P. A.; Long, J. R. Chem. Commun. 1998, 1231. (c) Sokol, J. J.; Shores, M. P.; Long, J. R. Angew. Chem., Int. Ed. 2001, 40, 236. (d) Berseth, P. A.; Sokol, J. J.; Shores, M. P.; Heinrich, J. L.; Long, J. R. J. Am. Chem. Soc. 2000, 122, 9655. (e) Shore, M. P.; Sokol, J. J.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 2279. (f) Berben, L. A.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 11588. (2) Macocyclic 1D chains: (a) Li, Y. W.; Xiang, H.; Lu, T. B.; Ng, S. W. Acta Crystallogr. 2004, E60, m317. (b) Lu, T. B.; Xiang, H.; Luck, R. L.; Mao, Z. W.; Chen, X. M.; Ji, L. N. Inorg. Chim. Acta 2003, 355, 229. (c) Liu, J.; Lu, T. B.;

Macrocyclic Nickel(II) Complexes

(3)

(4)

(5)

(6)

Xiang, H.; Mao, Z. W.; Ji, L. N. CrystEngComm 2002, 4, 64. (d) Lu, T. B.; Xiang, H.; Li, X. Y.; Su, C. Y.; Mao, Z. W.; Ji, L. N.; Yu, K. B. Chem. J. Chin. Univ. 2000, 21, 187. (e) Lu, T. B.; Xiang, H.; Chen, S.; Su, C. Y.; Yu, K. B.; Mao, Z. W.; Cheng, P.; Ji, L. N. J. Inorg. Organomet. Polym. 1999, 9, 165. (f) Kou, H. Z.; Zhou, B. C.; Gao, S.; Liao, D. Z.; Wang, R. J. Inorg. Chem. 2003, 42, 5604. (g) Kou, H. Z.; Si, S. F.; Gao, S.; Liao, D. Z.; Jiang, Z. H.; Yan, S. P.; Fan, Y, G.; Wang, G. L. Eur. J. Inorg. Chem. 2002, 699. (h) Kou, H. Z.; Zhou, B. C.; Liao, D. Z.; Wang, R. J.; Li, Y. Inorg. Chem. 2002, 41, 6887. (i) Kou, H. Z.; Liao, D. Z.; Jiang, Z. H.; Yan, S. P.; Wu, Q. J.; Gao, S.; Wang, G. L. Inorg. Chem. Commun. 2000, 3, 151. (j) Colacio, E.; Dominguez-Vera, J. M.; Ghazi, M.; Kivekas, R.; Klinga, M.; Moreno, J. M. Chem. Commun. 1998, 1071. (k) Lu, T. B.; Xiang, H.; Li, X. Y.; Su, C. Y.; Mao, Z. W.; Ji, L. N.; Yu, K. B. Chem. J. Chin. Univ. 2000, 21, 187. (l) El Fallah, M. S.; Escuer, A.; Vicente, R.; Solans, X.; Font-Bardia, M.; Verdaguer, M. Inorg. Chim. Acta 2003, 344, 133. Macrocyclic 2D brick walls: (a) Lu, T. B.; Xiang, H.; Luck, R. L.; Jiang, L.; Mao, Z. W.; Ji, L. N. New J. Chem. 2002, 26, 969. (b) Lu, T. B.; Xiang, H.; Luck, R. L.; Mao, Z. W.; Wang, D.; Chen, C.; Ji, L. N. CrystEngComm 2001, 3, 42. (c) Choi, H. J.; Suh, M. P. J. Am. Chem. Soc. 1998, 120, 10622. (d) Kou, H. Z.; Gao, S.; Ma, B. Q.; Liao, D. Z. Chem. Commun, 2000, 1309. (e) Suh, M. P.; Ko, J. W.; Choi, H. J. J. Am. Chem. Soc. 2002, 124, 10976. Macrocyclic 2D honeycomb-like structures: (a) Xiang, H.; Gao, S.; Lu, T. B.; Luck, R. L.; Chen, X. M.; Mao, Z. W.; Ji, L. N. New J. Chem. 2001, 25, 875. (b) Kou, H. Z.; Gao, S.; Bai, O.; Wang, Z. M. Inorg. Chem. 2001, 40, 6287. (c) Kou, H. Z.; Gao, S.; Ma, B. Q.; Liao, D. Z. Chem. Commun. 2000, 713. (d) Kou, H. Z.; Bu, W. M.; Gao, S.; Liao, D. Z.; Jiang, Z. H.; Yang, S. P.; Fan, Y. G.; Wang, G. L. J. Chem. Soc., Dalton Trans. 2000, 2996. (e) Kou, H. Z.; Bu, W. M.; Gao, S.; Liao, D. Z.; Jiang, Z. H.; Yan, S. P.; Fan, Y. G.; Wang, G. L. J. Chem. Soc., Dalton Trans. 1999, 2477. (f) Colacio, E.; Dominguez-Vera, J. M.; Ghazi, M.; Kivekas, R.; Lloret, F.; Moreno, J. M.; Stoeckli-Evans, H. Chem. Commun. 1999, 987. (g) Ko, J. W.; Min, K. S.; Suh, M. P. Inorg. Chem. 2002, 41, 2151. Macrocyclic 3D coordination polymers: (a) Lu, T. B.; Xiang, H.; Su, C. Y.; Cheng, P.; Mao, Z. W.; Ji, L. N. New J. Chem. 2001, 25, 216. (b) Min, K. S.; Suh, M. P. Eur. J. Inorg. Chem. 2001, 449. (c) Min, K. S.; Suh, M. P. Chem. Eur. J. 2001, 7, 303. (d) Choi, H. J.; Suh, M. P. Inorg. Chem. 1999, 38, 6309. (e) Ohba, M.; Usuki, N.; Fukita, N.; O h kawa, H. Angew. Chem., Int. Ed. Engl. 1999, 38, 1795. (f) Lu, T. B.; Xiang, H.; Chen, S.; Su, C. Y.; Yu, K. B.; Mao, Z. W.; Cheng, P.; Ji, L. N. J. Inorg. Organomet. Polym. 1999, 9, 165. (g) Choi, H. J.; Lee, T. S.; Suh, M. P. Angew. Chem., Int. Ed. Engl. 1999, 38, 1405. Macrocyclic complexes with cis-conformation: (a) Xiang, H.; Lu, T. B.; Chen, S.; Mao, Z. W.; Feng, X. L.; Yu, K. B. Polyhedron 2001, 20, 313. (b) Lampeka, Y. D.; Lightfoot, P.; Maloshtan, I. M.; Mrozinski, J.; Skorupa, A. Teor. Eksp. Khim. (Russ.) (Theor. Exp. Chem.) 2001, 37, 246. (c) Min, K. S.; Suh, M. P. Eur. J. Inorg. Chem. 2001, 449.

Crystal Growth & Design, Vol. 5, No. 4, 2005 1475 (7) (a) Toriumi, K.; Ito, T. Acta Crystallogr. B 1981, 37, 24. (b) Gao, E. Q.; Zhao, Q. H.; Tang, J. K.; Liao, D. Z.; Jiang, Z. H.; Yan, S. P. J. Coord. Chem. 2002, 55, 205. (c) Curtis, N. F.; Swann, D. A.; Waters, T. N. J. Chem. Soc., Dalton Trans. 1973, 1408. (d) Ito, H.; Fujita, J.; Toriumi, K.; Ito, T. Bull. Chem. Soc. Jpn. 1981, 54, 2988. (e) Colacio, E.; DominguezVera, J. M.; Escuer, A.; Kivekas, R.; Romerosa, A. Inorg. Chem. 1994, 33, 3914. (f) Colacio, E.; Dominguez-Vera, J. M.; Escuer, A.; Kivekas, R.; Klinga, M.; Moreno, J. M.; Romerosa, A. J. Chem. Soc., Dalton Trans. 1997, 1685. (g) Escuer, A.; Vicente, R.; Ribas, J.; Costa, R.; Solans, X. Inorg. Chem. 1992, 31, 2627. (h) Gao, E. Q.; Tang, J. K.; Liao, D. Z.; Jiang, Z. H.; Yan, S. P.; Wang, G. L. Helv. Chim. Acta 2001, 84, 908. (i) Escuer, A.; Vicente, R.; El Fallah, M. S.; Solans, X.; Font-Bardia, M. J. Chem. Soc., Dalton Trans. 1996, 1013. (j) Escuer, A.; Vicente, R.; El Fallah, M. S.; Solans, X.; Font-Bardia, M. Inorg. Chim. Acta 1998, 278, 43. (k) Colacio, E.; Dominguez-Vera, J. M.; Romerosa, A.; Kivekas, R.; Klinga, M.; Escuer, A. Inorg.Chim. Acta 1995, 234, 61. (l) Gao, E. Q.; Tang, J. K.; Liao, D. Z.; Jiang, Z. H.; Yan, S. P.; Wang, G. L. Inorg. Chem. 2001, 40, 3134. (m) Basiuk, E. V.; Basiuk, V. V.; Gomez-Lara, J.; Toscano, R. A. J. Inclusion Phenom. Macrocyclic Chem. 2000, 38, 45. (n) Tang, J. K.; Gao, E. Q.; Zhang, L.; Liao, D. Z.; Jiang, Z. H.; Yan, S. P. J. Coord. Chem. 2002, 55, 527. (o) Tang, J. K.; Si, S. F.; Gao, E. Q.; Liao, D. Z.; Jiang, Z. H.; Yan, S. P. Inorg. Chim. Acta 2002, 332, 146. (p) Mitsumi, M.; Okawa, H.; Sakiyama, H.; Ohba, M.; Matsumoto, N.; Kurisaki, T.; Wakita, H. J. Chem. Soc., Dalton Trans. 1993, 2991. (q) Colacio, E.; Dominguez-Vera, J. M.; Lloret, F.; Rodriguez, A.; Stoeckli-Evans, H. Inorg. Chem. 2003, 42, 6962. (8) Tait, A. M.; Busch, D. H. Inorg. Synth. 1976, 18, 4. (9) Sheldrick, G. M. SADABS, Program for Empirical Absorption Correction of Area Detector Data; University of Go¨ttingen: Go¨ttingen, 1996. (10) Sheldrick, G. M. SHELXS 97, Program for Crystal Structure Refinement; University of Go¨ttingen: Go¨ttingen, 1997. (11) Warner, L. G.; Busch, D. H. J. Am. Chem. Soc. 1969, 91, 4092. (12) Curtis, N. F.; Swann, D. A.; Waters, T. N. J. Chem. Soc., Dalton Trans. 1973, 1963. (13) (a) Drew, M. G. B.; Mok, K. F. Acta Crystallogr. C 1987, 43, 666. (b) Ito, T.; Toriumi, K. Acta Crystallogr. B 1981, 37, 88. (c) Ito, T.; Toriumi, K.; Ito, H. Bull. Chem. Soc. Jpn. 1981, 54, 1096. (c) Tang, J. K.; Si, S. F.; Gao, E. Q.; Liao, D. Z.; Jiang, Z. H.; Yan, S. P. J. Chem. Crystallogr. 2002, 32, 331. (d) Gao, E. Q.; Liao, D. Z.; Jiang, Z. H.; Yan, S. P. Acta Crystallogr. C 2001, 57, 807. (e) Ruiz, R.; Julve, M.; Cano, J.; Soto, J.; Martinez-Manez, R.; Munoz, C.; Paya, J. Trans. Met. Chem. 1993, 18, 523. (f) Misra, T. K.; Chung, C. S.; Cheng, J.; Lu, T. H. Polyhedron 2001, 20, 3149. (g) Munoz, M. C.; Cano, J.; Ruiz, R.; Lloret, F.; Faus, J. Acta Crystallogr. C 1995, 51, 873. (14) Whimp, P. O.; Bailey, M. F.; Curtis, N. F. J. Chem. Soc. A 1970, 1956.

CG049559R