Syntheses, Structures, and Magnetic and Luminescence Properties of

Jun 7, 2013 - Both static and dynamic magnetic properties were studied for complex 1, which is proved to be a new single-ion magnet. The luminescence ...
1 downloads 0 Views 468KB Size
Supporting Information for

Syntheses, Structures, Magnetic and Luminescence Properties of a New DyIII-based Single Ion Magnet Ya-Li Wang,a Yue Ma∗,a Xi Yang,a Jinkui Tang∗,b Peng Cheng,a Qing-Lun Wang,a Li-Cun Li, a and Dai-Zheng Liaoa, c

a

Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE)

and TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, P. R. China. E-mail: [email protected]; Tel: (+86) 22-2350-5063. b

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. E-mail: [email protected].

c

State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, 361005, PR China.

Table S1. Selected bond lengths (Å) and angles (deg) for 1 Dy(1)-O(2) Dy(1)-O(1) Dy(1)-O(6) Dy(1)-O(4) Dy(1)-O(3) Dy(1)-O(5) Dy(1)-N(1) Dy(1)-N(2) O(2)-Dy(1)-O(1) O(2)-Dy(1)-O(6) O(1)-Dy(1)-O(6) O(2)-Dy(1)-O(4) O(1)-Dy(1)-O(4) O(6)-Dy(1)-O(4) O(2)-Dy(1)-O(3) O(1)-Dy(1)-O(3) O(6)-Dy(1)-O(3) O(4)-Dy(1)-O(3) O(2)-Dy(1)-O(5) O(1)-Dy(1)-O(5) O(6)-Dy(1)-O(5) O(4)-Dy(1)-O(5) O(3)-Dy(1)-O(5) O(2)-Dy(1)-N(1) O(1)-Dy(1)-N(1) O(6)-Dy(1)-N(1) O(4)-Dy(1)-N(1) O(3)-Dy(1)-N(1) O(5)-Dy(1)-N(1) O(2)-Dy(1)-N(2) O(1)-Dy(1)-N(2) O(6)-Dy(1)-N(2) O(4)-Dy(1)-N(2) O(3)-Dy(1)-N(2) O(5)-Dy(1)-N(2) N(1)-Dy(1)-N(2)

2.314(4) 2.325(4) 2.354(4) 2.354(4) 2.359(4) 2.356(4) 2.505(4) 2.513(5) 73.27(14) 138.90(15) 144.93(13) 74.37(15) 137.23(13) 76.07(14) 80.85(17) 75.51(14) 116.15(15) 72.38(13) 148.59(14) 80.44(15) 71.57(14) 117.36(15) 76.11(14) 109.93(16) 76.12(14) 78.23(15) 142.13(14) 144.96(15) 79.28(15) 75.06(15) 115.86(15) 72.75(15) 81.22(15) 148.17(15) 133.36(15) 64.77(15)

Dy(2)-O(9) Dy(2)-O(12) Dy(2)-O(7) Dy(2)-O(8) Dy(2)-O(11) Dy(2)-O(10) Dy(2)-N(3) Dy(2)-N(4) O(9)-Dy(2)-O(12) O(9)-Dy(2)-O(7) O(12)-Dy(2)-O(7) O(9)-Dy(2)-O(8) O(12)-Dy(2)-O(8) O(7)-Dy(2)-O(8) O(9)-Dy(2)-O(11) O(12)-Dy(2)-O(11) O(7)-Dy(2)-O(11) O(8)-Dy(2)-O(11) O(9)-Dy(2)-O(10) O(12)-Dy(2)-O(10) O(7)-Dy(2)-O(10) O(8)-Dy(2)-O(10) O(11)-Dy(2)-O(10) O(9)-Dy(2)-N(3) O(12)-Dy(2)-N(3) O(7)-Dy(2)-N(3) O(8)-Dy(2)-N(3) O(11)-Dy(2)-N(3) O(10)-Dy(2)-N(3) O(9)-Dy(2)-N(4) O(12)-Dy(2)-N(4) O(7)-Dy(2)-N(4) O(8)-Dy(2)-N(4) O(11)-Dy(2)-N(4) O(10)-Dy(2)-N(4) N(3)-Dy(2)-N(4)

2.321(4) 2.327(4) 2.338(4) 2.336(4) 2.344(4) 2.358(4) 2.505(4) 2.517(5) 75.17(14) 76.18(15) 137.74(16) 138.02(14) 145.45(14) 72.70(14) 117.09(15) 72.31(14) 149.57(13) 80.90(15) 72.74(14) 120.33(15) 78.84(15) 74.15(15) 79.62(13) 142.93(14) 79.19(15) 107.52(15) 74.49(14) 78.87(14) 144.23(15) 81.92(15) 71.02(15) 74.75(15) 115.31(15) 131.84(14) 146.99(15) 64.52(15)

Table S2. Selected bond lengths (Å) and angles (deg) for 2 Tb(1)-O(1) Tb(1)-O(5) Tb(1)-O(2) Tb(1)-O(6) Tb(1)-O(3) Tb(1)-O(4) Tb(1)-N(1) Tb(1)-N(2) O(1)-Tb(1)-O(5) O(1)-Tb(1)-O(2) O(5)-Tb(1)-O(2) O(1)-Tb(1)-O(6) O(5)-Tb(1)-O(6) O(2)-Tb(1)-O(6) O(1)-Tb(1)-O(3) O(5)-Tb(1)-O(3) O(2)-Tb(1)-O(3) O(6)-Tb(1)-O(3) O(1)-Tb(1)-O(4) O(5)-Tb(1)-O(4) O(2)-Tb(1)-O(4) O(6)-Tb(1)-O(4) O(3)-Tb(1)-O(4) O(1)-Tb(1)-N(1) O(5)-Tb(1)-N(1) O(2)-Tb(1)-N(1) O(6)-Tb(1)-N(1) O(3)-Tb(1)-N(1) O(4)-Tb(1)-N(1) O(1)-Tb(1)-N(2) O(5)-Tb(1)-N(2) O(2)-Tb(1)-N(2) O(6)-Tb(1)-N(2) O(3)-Tb(1)-N(2) O(4)-Tb(1)-N(2) N(1)-Tb(1)-N(2)

2.346(5) 2.355(4) 2.359(4) 2.359(5) 2.365(4) 2.367(5) 2.492(5) 2.512(5) 118.39(17) 71.78(17) 79.15(16) 76.08(17) 72.35(16) 118.61(17) 146.27(16) 75.57(16) 82.13(16) 136.68(16) 138.06(15) 78.90(16) 149.48(16) 73.86(17) 72.02(16) 78.51(17) 144.92(16) 77.86(16) 142.52(16) 75.33(16) 109.81(16) 70.49(17) 147.84(16) 130.74(17) 81.14(16) 115.25(16) 76.49(17) 64.58(16)

Tb(2)-O(7) Tb(2)-O(11) Tb(2)-O(10) Tb(2)-O(12) Tb(2)-O(8) Tb(2)-O(9) Tb(2)-N(4) Tb(2)-N(3) O(7)-Tb(2)-O(11) O(7)-Tb(2)-O(10) O(11)-Tb(2)-O(10) O(7)-Tb(2)-O(12) O(11)-Tb(2)-O(12) O(10)-Tb(2)-O(12) O(7)-Tb(2)-O(8) O(11)-Tb(2)-O(8) O(10)-Tb(2)-O(8) O(12)-Tb(2)-O(8) O(7)-Tb(2)-O(9) O(11)-Tb(2)-O(9) O(10)-Tb(2)-O(9) O(12)-Tb(2)-O(9) O(8)-Tb(2)-O(9) O(7)-Tb(2)-N(4) O(11)-Tb(2)-N(4) O(10)-Tb(2)-N(4) O(12)-Tb(2)-N(4) O(8)-Tb(2)-N(4) O(9)-Tb(2)-N(4) O(7)-Tb(2)-N(3) O(11)-Tb(2)-N(3) O(10)-Tb(2)-N(3) O(12)-Tb(2)-N(3) O(8)-Tb(2)-N(3) O(9)-Tb(2)-N(3) N(4)-Tb(2)-N(3)

2.336(5) 2.342(4) 2.347(5) 2.359(4) 2.373(4) 2.381(4) 2.507(5) 2.518(5) 116.93(16) 140.89(16) 78.95(16) 76.76(17) 72.06(15) 75.06(17) 72.02(16) 78.94(15) 146.68(15) 120.51(16) 143.82(16) 76.79(15) 71.99(17) 138.09(16) 78.89(16) 77.68(18) 147.93(16) 108.31(17) 139.86(16) 79.27(16) 76.14(17) 71.71(18) 145.29(16) 76.39(17) 78.20(17) 133.00(16) 117.29(17) 64.60(17)

Table S3. Selected bond lengths (Å) and angles (deg) for 3 Ho(1)-O(1) Ho(1)-O(2) Ho(1)-O(3) Ho(1)-O(4) Ho(1)-O(5) Ho(1)-O(6) Ho(1)-N(1) Ho(1)-N(2) O(1)-Ho(1)-O(2) O(1)-Ho(1)-O(3) O(2)-Ho(1)-O(3) O(1)-Ho(1)-O(4) O(2)-Ho(1)-O(4) O(3)-Ho(1)-O(4) O(1)-Ho(1)-O(5) O(2)-Ho(1)-O(5) O(3)-Ho(1)-O(5) O(4)-Ho(1)-O(5) O(1)-Ho(1)-O(6) O(2)-Ho(1)-O(6) O(3)-Ho(1)-O(6) O(4)-Ho(1)-O(6) O(5)-Ho(1)-O(6) O(1)-Ho(1)-N(1) O(2)-Ho(1)-N(1) O(3)-Ho(1)-N(1) O(4)-Ho(1)-N(1) O(5)-Ho(1)-N(1) O(6)-Ho(1)-N(1) O(1)-Ho(1)-N(2) O(2)-Ho(1)-N(2) O(3)-Ho(1)-N(2) O(4)-Ho(1)-N(2) O(5)-Ho(1)-N(2) O(6)-Ho(1)-N(2) N(1)-Ho(1)-N(2)

2.306(4) 2.319(4) 2.336(4) 2.343(4) 2.347(4) 2.351(4) 2.486(4) 2.493(4) 73.87(13) 74.05(13) 137.57(13) 80.73(14) 75.34(13) 72.72(13) 138.55(14) 144.76(13) 75.88(13) 116.30(14) 148.53(13) 79.98(14) 117.48(13) 75.91(13) 71.90(13) 110.47(14) 75.84(13) 142.26(13) 144.45(14) 78.27(14) 78.98(14) 74.88(14) 116.04(14) 80.91(14) 148.07(14) 72.76(14) 133.73(14) 65.35(15)

Ho(2)-O(12) Ho(2)-O(10) Ho(2)-O(8) Ho(2)-O(7) Ho(2)-O(11) Ho(2)-O(9) Ho(2)-N(4) Ho(2)-N(3) O(12)-Ho(2)-O(10) O(12)-Ho(2)-O(8) O(10)-Ho(2)-O(8) O(12)-Ho(2)-O(7) O(10)-Ho(2)-O(7) O(8)-Ho(2)-O(7) O(12)-Ho(2)-O(11) O(10)-Ho(2)-O(11) O(8)-Ho(2)-O(11) O(7)-Ho(2)-O(11) O(12)-Ho(2)-O(9) O(10)-Ho(2)-O(9) O(8)-Ho(2)-O(9) O(7)-Ho(2)-O(9) O(11)-Ho(2)-O(9) O(12)-Ho(2)-N(4) O(10)-Ho(2)-N(4) O(8)-Ho(2)-N(4) O(7)-Ho(2)-N(4) O(11)-Ho(2)-N(4) O(9)-Ho(2)-N(4) O(12)-Ho(2)-N(3) O(10)-Ho(2)-N(3) O(8)-Ho(2)-N(3) O(7)-Ho(2)-N(3) O(11)-Ho(2)-N(3) O(9)-Ho(2)-N(3) N(4)-Ho(2)-N(3)

2.310(4) 2.323(4) 2.331(4) 2.333(4) 2.341(4) 2.343(4) 2.492(4) 2.506(4) 75.09(14) 138.16(13) 145.41(13) 75.95(14) 137.51(14) 72.99(13) 73.03(14) 120.47(13) 74.01(14) 78.82(13) 117.39(13) 72.64(13) 80.53(14) 149.46(13) 79.49(13) 142.89(14) 79.06(14) 74.47(13) 107.91(14) 143.97(14) 78.54(13) 81.69(15) 70.93(13) 115.43(14) 74.68(14) 147.02(14) 132.01(13) 64.81(14)

Scheme S1. The polyhedrons with donor atoms around lanthanide center for complex 1.

Fig. S1. The D4d-symmetry polyhedra of dysprosium atoms.

Fig. S2. Packing diagram of complex 1. The hydrogen atoms and fluorine atoms are omitted for clarity.

Fig. S3. The weak π···π stacking interactions between bpy moieties (centroid-centroid distance = 3.744 Å) for complex 1.

Fig. S4. Room-temperature solid-state luminescence spectrum of the ligand. Obviously, a strictly theoretical treatment of magnetic property for such the system cannot be carried out because of the large anisotropy of the DyIII ion. However, to obtain a rough quantitative estimate of the magnetic interaction parameters between paramagnetic species, the temperature-dependent magnetic susceptibility was analyzed by an approximate model for 1. The DyIII ion may be assumed to exhibit a splitting of the mj energy levels (Ĥ = ∆Ĵz2) in an axial crystal field.1 Thus χDy can be described as Eq 1. In the expression, ∆ is the zero-field-splitting parameter, g is the Lande factor, k is the Boltzmann constant, β is the Bohr magneton constant, and N is Avogadro's number. The zJ′ parameter based on the molecular field approximation in Eq 2 is introduced to simulate the magnetic interactions between all the paramagnetic species in the system.2 Thus the magnetic data of 1 can be analyzed by the following approximate treatment of Eqs (1)-(2). χ Dy =

Ng 2 β 2 4 kT

χM =

 225exp( −225 ∆/4kT )+169exp( −169 ∆/4 kT )+121exp( −121∆/4kT )+81exp( −81∆/4 kT )+ 49exp( −49 ∆/4kT )+ 25exp( −25 ∆/4 kT )+9exp( −9 ∆/4kT )+exp( − ∆/4 kT )    exp( −225 ∆/4kT )+exp( −169 ∆/4kT )+exp( −121∆/4kT )+exp( −81∆/4 kT )+exp( −49 ∆/4kT )+ exp( −25 ∆/4 kT ) +exp( −9 ∆/4 kT ) +exp( − ∆/4kT )  

χ Dy

1 − ( 2 zJ '/ Ng 2 β 2 ) χ Dy

(1)

(2)

Giving the best fitting parameters of g = 1.346, ∆ = -0.024 cm-1, zJ′ = -0.046 cm-1 for complex 1. The very small zJ′ value is indicative of the very weak magnetic interaction between DyIII ions.

7.5 5.0

M / µB

2.5 0.0 -2.5 -5.0 -7.5 -60000 -40000 -20000

0

20000 40000 60000

H / Oe

Fig. S5. Magnetization curve versus applied field of 1 measured at 1.9 K. It emphasizes the absence of significant magnetic hysteresis loop at 1.9 K.

Fig. S6. Temperature dependence of the in-phase χ΄ (○) and out-of-phase χ΄΄ (□) components of the alternating-current susceptibility for complex Tb(2) under zero dc field at the frequency of 997 Hz.

Fig. S7. Temperature dependence of the in-phase χ΄ (○) and out-of-phase χ΄΄ (□) components of the alternating-current susceptibility for complex Ho(3) under zero dc field at the frequency of 997 Hz.

References (1) (a) Kahwa, I. A.; Selbin, J.; O’Connor, C. J.; Foise, J. W.; McPherson, G. L. Inorg. Chim. Acta. 1988, 148, 265-272. (b) Xu, J. X.; Ma, Y.; Liao, D. Z.; Xu, G. F.; Tang, J. K.; Wang, C.; Zhou, N.; Yan, S. P.; Cheng, P.; Li. L. C. Inorg. Chem. 2009, 48, 8890-8896. (c) Wang, Y. L.; Zhou, N.; Ma, Y.; Qin, Z. X.; Wang, Q. L.; Li, L. C.; Cheng, P.; Liao, D. Z. CrystEngComm. 2012, 14, 235-239. (d) Ouyang, Y.; Zhang, W.; Xu, N.; Xu, G. F.; Liao, D. Z.; Yoshimura, K.; Yan, S. P.; Cheng, P. Inorg. Chem. 2007, 46, 8454-8456. (e) Xu, N.; Shi, W.; Liao, D. Z.; Yan, S. P.; Cheng, P. Inorg. Chem. 2008, 47, 8748-8756. (f) Wang, Y. L.; Gao, Y. Y.; Ma, Y.; Wang, Q. L.; Li, L. C.; Liao, D. Z. CrystEngComm. 2012, 14, 4706-4712. (2) Liao, Y.; Shum, W. W.; Miller, J. S. J. Am. Chem. Soc. 2002, 124, 9336-9337.