Syntheses, Structures, and Photoluminescent Properties of

Aug 10, 2015 - Syntheses, structures and properties of chiral Ln(III) coordination polymers based on ( R )-4-(4-(1-carboxyethoxy)phenoxy)-3-fluorobenz...
3 downloads 10 Views 2MB Size
Subscriber access provided by UNIV OF PITTSBURGH

Article

Syntheses, Structures, and Photoluminescent Properties of Lanthanide Coordination Polymers Based on a Zwitterionic Aromatic Polycarboxylate Ligand Han-Ning Li, Hai-Yang Li, Lin-Ke Li, Li Xu, Kai Hou, Shuang-Quan Zang, and Thomas C. W. Mak Cryst. Growth Des., Just Accepted Manuscript • DOI: 10.1021/acs.cgd.5b00625 • Publication Date (Web): 10 Aug 2015 Downloaded from http://pubs.acs.org on August 11, 2015

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Crystal Growth & Design is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

Syntheses, Structures, and Photoluminescent Properties of Lanthanide Coordination Polymers Based on a Zwitterionic Aromatic Polycarboxylate Ligand

Han-Ning Li,a Hai-Yang Li,a Lin-Ke Li*,a Li Xu, Kai Hou, Shuang-Quan Zang*,a and Thomas C. W. Makb a

College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou,

450001, P. R. China b

Department of Chemistry and Center of Novel Functional Molecules, The Chinese

University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China

ABSTRACT Three series of lanthanide coordination polymers, {[Ln(L)(H2O)2]⋅NO3⋅2H2O }n (Ln = La 1, Pr 2), {[Ln2(L)2(NO3)(H2O)2]⋅Cl⋅6H2O}n (Ln = Nd 3), {[Ln(L)(H2O)2]⋅Cl⋅3H2O}n (Ln = 4, Eu 5, Gd 6, Tb 7, Dy 8, Ho 9, Er 10, Tm 11, Yb 12 and Lu 13) (H3L = 4-carboxy-1-(3,5-dicarboxy-benzyl)-pyridinium

chloride),

have

been

successfully

synthesized under hydro(solvo)thermally conditions. Single-crystal X-ray diffraction analyses revealed that compounds 1–3 all crystallize in triclinic space group Pī, but they display different three-dimensional structures with diverse dinuclear subunits. In contrast, compounds 4–13 display the same layer structures in triclinic space group Pī. The structural difference of these two classes of compounds is derived from the effect of lanthanide contraction. Powder X-ray diffraction (PXRD) and thermogravimetric analyses of compounds 1–13 have also been investigated and discussed in detail. The solid-state luminescent properties of compounds 4, 5, 7 and 8 were characterized and the results revealed that they exhibit characteristic Sm(III), Eu(III), Tb(III) and Dy(III) emissions in the pink, red, green and yellow light regions, respectively. More interestingly, the luminescence colors of the Tb(1−x)(L):xEu can be easily tuned from green to greenish yellow, yellow, orange and red-orange due to the energy transfer from Tb3+ to Eu3+ ions by adjusting the doping concentration of Eu3+ ions. 1

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

INTROUCTION The design and assembly of lanthanide coordination polymers have attracted tremendous interest for not only their intriguing structures, but also their potential applications as functional materials in optics, molecular magnetism, catalysis and proton conduction.1−4 In particular, lanthanide ions are very attractive luminescent centers for the high color purity and long lifetimes of their excited states, and their compounds have found uses in lighting, photonics, optical communication as well as luminescent probes and sensors.5 However, the lanthanide ions usually give weak luminescence because of the low molar absorption coefficient (less than 10 M−1·cm−1) of Laporte forbidden f−f transitions.6−7 Therefore, strong absorbing chromophores are usually incorporated as adjacent antennas or sensitizers which stimulate fluorescence emission from lanthanide ions. As is well known, organic ligands can strongly influence light absorption by transferring energy to lanthanide ions to enhance their fluorescence intensity. Hence, searching for suitable organic antenna chromophores with high absorption in the UV/near−UV spectral region is an attractive pursuit in the field of lanthanide coordination polymers.8−10 The use of polycarboxylate ligands acting as chromophoric moieties is one of the common and efficient methods to construct novel lanthanide-containing coordination polymers with specific structures and high luminescence quantum yields, because the lanthanide ions usually manifest high oxophilicity.11−13 Taking the aforementioned factors into consideration, we have chosen 4-carboxy-1-(3,5-dicarboxy-benzyl)-pyridinium chloride (H3L) as an organic linker to react with Ln(NO3)3⋅6H2O, and three series of lanthanide coordination polymers have been obtained. Other advantages that prompted our selection of carboxylate-based ligand H3L are as follows: (1) as a zwitterionic ligand,14−15 H3L is highly water-soluble and its aromatic rings can manifest antenna and/or structure-directing effect via π-stacking; (2) there are three carboxylate groups that may be completely or partially deprotonated, yielding a variety of coordination modes and higherdimensional compounds with interesting structures; (3) rotation and distortion involving the –CH2– motif can lead to different coordinated configurations. Herein we report the

2

ACS Paragon Plus Environment

Page 2 of 28

Page 3 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

syntheses, crystal structures, thermal stabilities and powder X-ray diffraction analyses of three series of Ln(III) coordination polymers. The solid-state luminescence properties of compounds 4, 5, 7 and 8 have also been studied in detail. Among the lanthanide ions, Eu3+ and Tb3+ ions are both important luminescent activators owing to their strong red and green emissions. As Eu3+ and Tb3+ ions have similar ionic radii, we also prepared a series of doped Tb(1−x)(L):xEu compounds for investigation. With the adjustment of the relative doping concentration of Eu3+ ions into Tb–MOF, the corresponding photoluminescence colors of these compounds can be modulated from green to greenish yellow, yellow, orange and red-orange. Thus these materials may have potential applications in fluorescent lamps for advertizing signs and in other optical display fields.16−18

EXPERIMENTAL SECTION Materials and general methods All starting materials were of analytical grade and obtained from commercial sources without further purification. 4-Carboxy-1-(3,5-dicarboxy-benzyl)-pyridinium chloride (H3L) ligand was synthesized according to the literature (Scheme S1).19 IR spectra were recorded from KBr pellets in the range from 4000 to 400 cm−1 on a Bruker VECTOR 22 spectrometer. Elemental analyses for C, H and N were determined using a Perkin-Elmer 240 elemental analyzer. Thermogravimetric analyses were performed using a SDT 2960 thermal analyzer from room temperature to 800 °C with a heating rate of 20 °C/min under nitrogen flow. The solid-state luminescence spectra were recorded on a Hitachi 850 fluorescence spectrophotometer. The fluorescence life time τ was determined by a FLS 980 fluorescence spectrometer. Powder X-ray diffraction (PXRD) analyses for compounds 1−13 were measured at 293 K on a Rigaku D/max-3B diffractometer (Cu Kα, λ = 1.5418 Å). The crushed single crystalline powder samples were prepared by crushing the crystals and scanning from 5 to 50 °C with a step of 0.1°/s. Solid UV−visible spectrum was obtained in the 200−800 nm range on a JASCOUVIDEC-660 spectrophotometer. Inductively coupled plasma (ICP) spectroscopy was detected on a Thermo ICAP 6500 DUO spectrometer. Based on international CIE standards, the Commission International de I’Eclairage (CIE) 3

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

color coordinates were calculated.

Preparation of the compounds. A mixture of H3L (0.0135 g, 0.04 mmol), La(NO3)3⋅6H2O for 1 (0.0173 g, 0.04 mmol), Pr(NO3)3⋅6H2O for 2 (0.0174 g, 0.04 mmol), H2O (1.5 mL) and acetonitrile (1.5 mL) was heated at 120 °C for three days in a 25 mL Teflon-lined stainless steel autoclave. After the mixture was cooled slowly to room temperature, crystals suitable for X-ray diffraction were separated, then washed with water and air-dried. Compound 3 was also synthesized hydrothermally in a Teflon-lined stainless steel autoclave by heating a mixture of H3L (0.0135 g, 0.04 mmol), Nd(NO3)3⋅6H2O (0.0175 g, 0.04 mmol), H2O (2 mL) and acetonitrile (1 mL) at 120 °C for 3 days, and then cooled slowly to room temperature. Crystals suitable for X-ray diffraction were collected, washed with water and air-dried. For compounds 4–13, the mixture of H3L (0.0135 g, 0.04 mmol), Sm(NO3)3⋅6H2O for 4 (0.0178 g, 0.04 mmol), Eu(NO3)3⋅6H2O for 5 (0.0178 g, 0.04 mmol), Gd(NO3)3⋅6H2O for 6 (0.0181 g, 0.04 mmol), Tb(NO3)3⋅6H2O for 7 (0.0181 g, 0.04 mmol), Dy(NO3)3⋅6H2O for 8 (0.0183 g, 0.04 mmol), Ho(NO3)3⋅6H2O for 9 (0.0184 g, 0.04 mmol), Er(NO3)3⋅6H2O for 10 (0.0185 g, 0.04 mmol), Tm(NO3)3⋅6H2O for 11 (0.0185 g, 0.04 mmol), Yb(NO3)3⋅6H2O for 12 (0.0187 g, 0.04 mmol), Lu(NO3)3⋅6H2O for 13 (0.0188 g, 0.04 mmol), H2O (1 mL) and acetonitrile (2 mL) was also heated at 120 °C for three days in a 25 mL Teflon-lined stainless steel autoclave. Then, the mixture was cooled slowly to room temperature, and crystals suitable for X-ray diffraction were collected, washed with water and dried in air. {[La(L)(H2O)2]·NO3·2H2O}n (1). Yield 52% based on La. Anal. calcd for C15H17N2O13La (572.2066): C 31.49, H 2.99, N 4.90; found: C 31.46, H 3.03, N 4.87; IR/cm-1 (KBr): 3482 (s), 1624 (m), 1565 (w), 1457 (m), 1384 (s), 1115 (s), 1044 (w), 767 (m), 720 (w), 617 (w). {[Pr(L)(H2O)2]·NO3·2H2O}n (2). Yield 52% based on Pr. Anal. calcd for C15H17N2O13Pr (574.2088): C 31.38, H 2.98, N 4.88; found: C 31.35, H 3.04, N 4.85; IR/cm-1 (KBr): 3430 (s), 1616 (m), 1566 (m), 1542 (m), 1384 (s), 1316 (m), 1273 (m), 1116 (m), 1037 (w), 880 (m), 770 (m), 718 (w), 682 (w). 4

ACS Paragon Plus Environment

Page 4 of 28

Page 5 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

{[Nd2(L)2(NO3)(H2O)2]·Cl·6H2O}n (3). Yield 64% based on Nd. Anal. calcd for C30H34N3O23ClNd2 (1128.5341): C 31.93, H 3.04, N 3.72; found: C 31.90, H 3.08, N 3.71; IR/cm-1 (KBr): 3431 (s), 1617 (s), 1565 (m), 1455 (w), 1384 (s), 1317 (m), 1116 (m), 1048 (w), 865 (m), 773 (m), 717 (w), 681 (w). {[Sm(L)(H2O)2]·Cl·3H2O}n (4). Yield 62% based on Sm. Anal. calcd for C15H19NO11ClSm (575.1242): C 31.33, H 3.33, N 2.44; found: C 31.31, H 3.37, N 2.45; IR/cm-1 (KBr): 3480 (s), 1638 (s), 1572 (m), 1456 (m), 1384 (s), 1262 (w), 1117 (s), 942 (m), 812 (m), 767 (m), 729 (w), 704 (w). {[Eu(L)(H2O)2]·Cl·3H2O}n (5). Yield 62% based on Eu. Anal. calcd for C15H19NO11ClEu (576.7282): C 31.24, H 3.32, N 2.43; found: C 31.23, H 3.35, N 2.43; IR/cm-1 (KBr): 3481 (s), 1637 (s), 1572 (m), 1452 (m), 1384 (s), 1249 (w), 1116 (w), 1045 (w), 767 (m), 731 (w), 703 (w). {[Gd(L)(H2O)2]·Cl·3H2O}n (6). Yield 62% based on Gd. Anal. calcd for C15H19NO11ClGd (582.0142): C 30.95, H 3.30, N 2.41; found: C 30.92, H 3.33, N 2.40; IR/cm-1 (KBr): 3481 (s), 1640 (s), 1573 (m), 1541 (w), 1384 (s), 1223 (m), 1115 (m), 767 (m), 732 (w), 618 (w). {[Tb(L)(H2O)2]·Cl·3H2O}n (7). Yield 62% based on Tb. Anal. calcd for C15H19NO11ClTb (583.6896): C 30.87, H 3.28, N 2.40; found: C 30.86, H 3.32, N 2.37; IR/cm-1 (KBr): 3425 (s), 1623 (s), 1578 (m), 1453 (m), 1387 (s), 1257 (m), 1120 (m), 1043 (w), 928 (w), 818 (m), 767 (m), 732 (w), 703 (w). {[Dy(L)(H2O)2]·Cl·3H2O}n (8). Yield 62% based on Dy. Anal. calcd for C15H19NO11ClDy (587.2642): C 30.68, H 3.26, N 2.39; found: C 30.67, H 3.28, N 2.40; IR/cm-1 (KBr): 3431 (s), 1637 (s), 1544 (m), 1384 (s), 1115 (m), 1045 (w), 855 (m), 768 (m), 731 (w), 702 (w). {[Ho(L)(H2O)2]·Cl·3H2O}n (9). Yield 62% based on Ho. Anal. calcd for C15H19NO11ClHo (589.6945): C 30.55, H 3.25, N 2.38; found: C 30.55, H 3.28, N 2.38; IR/cm-1 (KBr): 3432 (s), 1714 (w), 1636 (s), 1384 (s), 1115 (m), 967 (w), 835 (m), 766 (m), 732 (w), 617 (w). {[Er(L)(H2O)2]·Cl·3H2O}n (10). Yield 62% based on Er. Anal. calcd for C15H19NO11ClEr (592.0232): C 30.43, H 3.23, N 2.37; found: C 30.40, H 3.25, N 2.38; 5

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IR/cm-1 (KBr): 3431 (s), 1637 (s), 1576 (m), 1384 (s), 1116 (m), 1044 (w), 767 (m), 731 (w), 682 (w). {[Tm(L)(H2O)2]·Cl·3H2O}n (11). Yield 62% based on Tm. Anal. calcd for C15H19NO11ClTm (593.6984): C 30.35, H 3.23, N 2.36; found: C 30.35, H 3.25, N 2.36; IR/cm-1 (KBr): 3415 (s), 1667 (s), 1574 (m), 1464 (m), 1400 (s), 1257 (m), 1126 (m), 1043 (m), 856 (w), 817 (w), 768 (m), 731 (w), 704 (w). {[Yb(L)(H2O)2]·Cl·3H2O}n (12). Yield 62% based on Yb. Anal. calcd for C15H19NO11ClYb (597.8042): C 30.14, H 3.20, N 2.34; found: C 30.13, H 3.21, N 2.35; IR/cm-1 (KBr): 3427 (s), 1639 (s), 1576 (m), 1401 (m), 1384 (s), 1257 (w), 1117 (s), 1043 (w), 767 (m), 732 (w), 704 (w). {[Lu(L)(H2O)2]·Cl·3H2O}n (13). Yield 62% based on Lu. Anal. calcd for C15H19NO11ClLu (599.7312): C 30.04, H 3.19, N 2.34; found: C 30.02, H 3.22, N 2.35; IR/cm-1 (KBr): 3432 (s), 1636 (s), 1576 (m), 1457 (m), 1400 (m), 1384 (s), 1260 (w), 1115 (s), 1045 (m), 766 (m), 732 (w), 703 (w). As for iso-structural Ln analogs, a series of doped compounds Tb(1−x)(L): xEu (x = 1.46%, 2.64%, 14.79%, 19.49%, 35.46%, 56.50%) adopt the same methods are as mentioned above. The stoichiometric ratios of starting Eu3+/Tb3+ are 0.98/0.02, 0.97/0.03, 0.85/0.15, 0.80/0.20, 0.65/0.35 and 0.55/0.45, respectively. The accurate ratios are measured through inductively coupled plasma (ICP) spectroscopy. The powder X-ray diffraction analyses show the structures are similar with compounds 4–13. X-ray crystallography Single crystal X-ray analyses were conducted on a Bruker SMART APEX CCD diffractmeter20 using graphite-monochromatized Mo Kα radiation (λ = 0.71073 Å) at room temperature using the ω-scan technique. Lorentz polarization and absorption corrections were applied. The structures were solved by direct methods with SHELXS-9721 and refined by full-matrix least-squares using the SHELXL-9722 program. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms of the ligands were included in the structure factor calculation at idealized positions using a riding model and refined isotropically. The hydrogen atoms of the solvent water molecules were located from the difference Fourier maps, and then restrained at fixed positions and refined isotropically. 6

ACS Paragon Plus Environment

Page 6 of 28

Page 7 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

Analytical expressions of neutral atom scattering factors were employed, and anomalous dispersion corrections were incorporated. The crystallographic data and selected bond distances and angles for compounds 2, 3 and 5 are listed in Table 1 and S2. The unit cell parameters for compounds 1, 4 and 6-13 are listed in Table S1.

Table 1. Crystallographic data for compounds 2, 3 and 5.

compound

2

3

5

formula

C15H17N2O13Pr

C30H34N3O23ClNd2

C15H19NO11ClEu

Fw

574.21

1128.53

576.73

crystal system

Triclinic

Triclinic

Triclinic

space group







a (Å)

9.6300(4)

9.4381(3)

9.8876(7)

b (Å)

10.0916(4)

12.2437(5)

10.2189(4)

c (Å)

11.7335(6)

18.6387(8)

12.3454(6)

α (°)

87.958(4)

86.308(4)

95.853(4)

β (°)

67.638(4)

81.316(3)

112.751(6)

68.181(4)

68.892(4)

110.950(5)

971.53(7)

1986.17(13)

1031.64(10)

2

2

2

γ (°) 3

V (Å ) Z −3

Dc (g·cm )

1.932

1.887

1.857

F(000)

550

1112

596

reflns collected

6332

12728

7699

Independent reflns

3624

6980

3618

R(int)

0.0286

0.0339

0.0476

0.944

0.974

1.083

0.0409

0.0419

0.0552

0.1292

0.0896

0.1550

1.733/ –1.426

1.343/ –1.198

2.093/ –1.623

GOF on F R1a

2

(I>2σ (I ))

wR2b

(I>2σ (I )) −3

max/min(e Å ) a

R1 = ∑||Fo| − |Fc||/∑|Fo|. bwR2 = [∑w(Fo2 − Fc2)2/∑w(Fo2)2]1/2.

RESULTS AND DISCUSSION Crystal structures

7

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 1. (a) Coordination environment of the Pr(III) ion in compound 2 (all hydrogen atoms and solvent molecules are omitted for clarity). (b) Coordination geometry of the Pr atom in compound 2. Symmetry codes: #1 – x, 1 – y, 2 – z; #2 x, −1 + y, z; #3 1 – x, – y, 1 – z; #4 x, y, 1 + z; #5 1 – x, – y, 2 – z.

Single crystal X-ray diffraction and powder X-ray diffraction analyses revealed that compounds 1 and 2 are isostructural, crystallizing in triclinic space group Pī, and hence only the structure of 2 will be discussed in detail. As shown in Figure 1a, the asymmetric unit contains a Pr(III) center, one L3− ligand, two aqua ligands, two solvated water molecules and a free nitrate ion. The Pr(III) ion adopts a distorted tricapped trigonal prismatic geometry and is surrounded by seven oxygen atoms (O4, O1#3, O6#1, O5#2, O3#5, O4#5, O2#4) from different L3− ligands and two O atoms (O1W, O2W) from coordinated water molecules; O4, O1#3, O6#1, O5#2, O3#5 and O2#4 form a trigonal prism whereas O1W, O2W and O4#5 act as capping atoms (Figure 1b). The Pr–O bond lengths are in the range of 2.412(4)−2.694(4) Å, and the O–Pr–O bond angles vary from 50.03(13) to 149.03(14)º (Table S2). As for the L3− ligand, one carboxylic group takes the tridentate bridging coordination mode µ2-η2-, while the other two adopt the bidentate bridging coordination mode µ2- (Scheme 1a).

8

ACS Paragon Plus Environment

Page 8 of 28

Page 9 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

(II)

(I)

(a)

(b)

(c)

3−

Scheme 1. The coordination modes of L ligands in compounds 2 (a), 3 (b) and 5 (c).

The Pr1 ion and its corresponding centrosymmetric Pr1#5 ion (symmetry #5: 1 – x, – y, 2 – z) are connected by four carboxylic groups of L3− ligands (two carboxylate groups adopt the bidentate bridging coordination fashion and two carboxylate groups employ the tridentate bridging coordination modes (Scheme 2a)), forming an edge-sharing dinuclear subunit, and the adjacent Pr···Pr distance is about 4.207 Å. Such dinuclear subunits are linked to give an infinite chain, and adjacent chains are joined together by π-stacked benzene rings of L3− to form a 2D network motif (Figure 2a). Furthermore, adjacent layers are further associated together through the angular methylene and pyridine rings of L3− ligands, resulting in a 3D framework (Figure 2b).

9

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 2. (a) Layer structure of compound 2. (b) 3D coordination network of compound 2. The hydrogen atoms are not shown for clarity.

Compound 3 crystallizes in triclinic space group Pī and features a 3D coordination framework containing dinuclear Nd SBUs. The asymmetric unit contains two Nd(III) centers, two L3− ligands, two aqua ligands, one coordinated nitrate ion, a free Cl– and six solvated molecules. As shown in Figure 3a, each SBU contains two independent nine-coordinated Nd(III) ions. The Nd 1 ion is coordinated by six oxygen atoms (O1, O10#2, O7, O11#3, O4#1, O8) from five different L3− ligands, two oxygen atoms (O13, O14) from coordinated nitrate ion, and O1W from an aqua ligand, displaying a distorted tricapped trigonal-prismatic geometry; O1, O10, O14, O11#3, O4#1 and O8 form a trigonal prism whereas O1W, O7 and O13 act as capping atoms (Figure 3b). The Nd 2 ion is surrounded by nine oxygen atoms (O8, O12#3, O9#4, O5#6, O3#1, O2#5, O4#1, O6#6) from six different L3− ligands, together with O2W from an aqua ligand, displaying a distorted bicapped trigonal-prismatic geometry; O8, O12#3, O9#4, O5#6, O3#1 and O2#5 form a trigonal prism whereas O4#1, O6#6 and O2W act as capping atoms (Figure 3b). The

10

ACS Paragon Plus Environment

Page 10 of 28

Page 11 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

Nd–O bond distances are in the range of 2.342(5)–2.797(5) Å, and the O–Nd–O bond angles fall in the range of 49.02(16) to 144.8(2)º (Table S2).

Figure 3. (a) Coordination environment of two independent Nd(III) ions in compound 3 (all hydrogen atoms and solvent molecules are omitted for clarity). (b) Coordination geometries of Nd atoms in compound 3. Symmetry codes: #1 2 – x, 1 – y, 1 – z; #2 2 − x, 1 − y, −z; #3 x, 1 + y, z; #4 1 – x, 1 – y, –z; #5 x − 1, y, z; #6 x – 1, 1 + y, z.

It is worth mentioning that in compound 3 there are two types of L3− ligands: I–L3− and II–L3− (Scheme 1b). The three carboxylate groups of I–L3− display two different coordination modes: one adopts bridging tridentate coordination mode µ2-η2-, while the others show bidentate bridging coordination fashion µ2-. The three carboxylate groups of II–L3− adopt different coordination modes: one carboxylate groups of the benzene ring employs bridging tridentate coordination mode µ2-η2-, the other shows bidentate bridging coordination fashion µ2-, and the carboxylic group of the pyridine ring displays chelating bidentate coordination fashion η2-. 11

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

As seen in Scheme 2b, the neighboring Nd(III) ions are connected together through the carboxylate groups of L3− ligands to form a dinuclear unit, in which one carboxylate group adopts the bidentate bridging coordination fashion and the other two employ tridentate bridging coordination modes. The Nd···Nd distance across the dinuclear unit is about 4.203 Å, and the dinuclear units are further linked by the benzene rings of the L3− ligands to form a sheet (Figure 4a). Furthermore, adjacent sheets are associated together through the angular methylene and pyridine rings of L3− ligands to form an overall 3D framework (Figure 4b).

Figure 4. (a) Coordination layer in compound 3. (b) 3D coordination network structure of compound 3. The hydrogen atoms are not shown for clarity.

Crystallographic analyses revealed that compounds 4–13 are isostructural, all crystallizing in triclinic space group Pī and possessing identical layer networks; hence only the structure of compound 5 will be described in detail. As shown in Figure 5a, the asymmetric unit contains a Eu(III) center, one L3− ligand, two aqua ligands, three solvated water molecules and a free Cl–. The eight-coordinated Eu(III) ion exhibits distorted bicapped trigonal-prismatic coordination geometry, being surrounded by six oxygen atoms 12

ACS Paragon Plus Environment

Page 12 of 28

Page 13 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

(O1, O2, O3#1, O4#2, O5#4, O6#3) from different L3− ligands, and two oxygen atoms (O1W, O2W) from aqua ligands; O2, O5#4, O4#2, O6#3, O1W and O3#1 form a trigonal prism whereas O1 and O2W act as capping atoms (Figure 5b). The Eu–O bond lengths are in the range of 2.360(6)–2.889(7) Å and the O–Eu–O bond angles vary from 47.8(2) to 147.5(2)º (Table S2). The three carboxylate groups of L3− employ two different coordination modes: chelating bidentate and bidentate bridging (Scheme 1c). The neighboring Eu(III) ions are connected by four carboxylate groups of L3− ligands in bidentate bridging µ2-mode, giving rise to an edge-sharing dinuclear subunit, and the distance between the adjacent Eu(III) ions is about 4.130 Å (as shown in Scheme 2c).

Figure 5. (a) Coordination environment of the Eu(III) ions in compound 5 (all hydrogen atoms and solvent molecules are omitted for clarity). (b) Coordination geometry of the Eu atom in compound 5. Symmetry codes: #1 1 – x, 2 – y, 1 – z; #2 x, −1 + y, z; #3 x, −1 + y, −1 + z; #4 1 – x, 2 – y, 2 – z.

The dinuclear subunits are connected by carboxylate groups of the benzene rings to form an infinite coordination chain. Such adjacent 1D chains are further linked by carboxylate groups of the pyridine rings to form a 2D network motif (Figure 6a). Adjacent layers are interlinked by interlayer π···π stacking interactions between neighboring phenyl rings (centroid–centroid: 3.697 Å), which result in a 3D supramolecular architecture (Figure 6b).

13

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 6. (a) Layer structure of compound 5. (b) Three-dimensional supramolecular structure of compound 5. The hydrogen atoms are not shown for clarity.

The three different structural types demonstrate the effect of lanthanide contraction with the decrease in cationic radii. Compounds 1–3 with the large lanthanides (La, Pr and Nd) display 3D networks, in which the L3− ligands adopts coordination modes a–L3− and b–L3− (Scheme 1a, 1b), and compounds 4–13 with the small lanthanides (Sm–Lu) show layer structures with the L3− ligands taking coordination mode c–L3− (Scheme 1c). Besides this, the construction of different subunits also greatly depends on the cationic radii of the central metal ions. This aspect can be observed in the structural changes of compounds 1–13: in 1–2, the coordination numbers of the two symmetry-related metal ions are both nine, and dinuclear SBUs of a-type emerges (Scheme 2a). In compound 3, though the two independent metal ions both are nine-coordinated, the dinuclear subunit changes to b-type (Scheme 2b). In compounds 4–13, with decreasing cationic radii, the coordination number reduces to eight, and the third dinuclear SBUs: type c appears (Scheme 2c). From the results it can clearly be seen that lanthanide contraction has a great influence on the 14

ACS Paragon Plus Environment

Page 14 of 28

Page 15 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

formation of different types of structures, and the adoption of diverse coordination modes of the L3− ligands.23

Scheme 2. Three types of dinuclear SBUs.

Thermal properties and PXRD patterns TGA measurements of compounds 2, 3 and 5 were performed from room temperature to 800 °C under a nitrogen atmosphere to study the thermal stability of these coordination polymers (Figure S1). Compounds 2, 3 and 5 here are chosen for description in detail since 1–2 and 4–13 have similar structures. The TGA curve for 2 shows that in the range of 30–397 °C, the total weight loss of ca. 12.09% is attributed to the loss of two lattice water molecules and two coordinated water molecules (calcd: 12.54%). Above 397 °C, the weight loss is due to the collapse of the whole framework. For compound 3, a gradual weight loss between 30–317 °C can be attributed to the release of the coordinated water molecules and the free water molecules (observed, 12.45%; calculated, 12.77%). Decomposition of the anhydrous composition is observed from 317 °C. For compound 5, a gradual weight loss between 30–175 °C is attributed to the release of three solvated water molecules and two coordinated water molecules (observed, 15.39%; calculated, 15.62%). However, there is no obvious weight loss between 175 °C and 410 °C, and further weight loss indicates decomposition of the framework from 410 °C. In order to confirm the phase purity of these compounds, powder X-ray diffraction (PXRD) of compounds 1–13 were recorded at room temperature. As shown in Figures S2–S5, the peak positions of the theoretical and experimental PXRD patterns are in good agreement with each other, which clearly indicate the high purity and homogeneity of these samples.

15

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 28

Photochemical properties To investigate the luminescence properties, the UV/vis absorption spectrum for H3L was firstly recorded in the solid state at room temperature (Figure S6). It is observed that in the spectral region from 230–300 nm, H3L exhibits two intense broad excitation bands centered at 235 and 265 nm, which can be attributed to π–π* transitions of the aromatic rings. The luminescent behavior of complexes 4, 5, 7 and 8 was investigated in the solid state at room temperature. Excitation spectra of compounds 4, 5, 7 and 8 were detected by monitoring the 4G5/2→4H9/2 transition of Sm(III), 5D0→7F2 transition of Eu(III), 5D4→7F5 transition of Tb(III) and 4F9/2→6H13/2 transition of Dy(III), respectively. In the range of 340–370 nm, they all exhibit broad bands with maximum absorptions at 345, 362 and 365 nm, respectively. When 4 is excited at 345 nm, pink emission typical of the Sm3+ ion is observed (Figure S7). It is obvious that the observed bands can be ascribed to appropriate f–f transitions, and the three sharp peaks at 561, 594 and 641 nm correspond to the 4G5/2→4H5/2, 4G5/2→4H7/2 and

4

G5/2→4H9/2 transitions, respectively. Among these transitions, the

4

G5/2→4H9/2

transition (electric dipole transition) has close intensity with the 4G5/2→4H7/2 transition, and the compound results in pink luminescence finally.24 As for compound 5, when excited at 345 nm at room temperature, red emission typical of the Eu3+ ion is detected (Figure 7), and four sharp peaks appearing at 590, 611, 649 and 696 nm correspond to the characteristic f–f transitions of 5D0→7Fn (n = 0–4) of Eu(III) ions. Among these transitions, the electric dipole 5D0→7F2 transition is the strongest one, and the so-called hypersensitive transition is responsible for the bright red luminescence of the compound. Furthermore, the intensity of the 5D0→7F2 transition increases with lower site symmetry of Eu(III), while the magnetic dipole 5D0→7F1 transition is insensitive to site symmetry. It is generally accepted that the fluorescent intensity ratio of 5D0→7F2 to 5

D0→7F1 is very sensitive to the structural change in the vicinity of Eu3+ ions. In compound

5, the intensity ratio I(5D0→7F2)/I(5D0→7F1) is equal to ca. 5, suggesting that the Eu(III) ions do not occupy inversion centers.25 This result is in agreement with the crystal structural analysis.

16

ACS Paragon Plus Environment

Page 17 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

Figure 7. Solid-state luminescence spectrum of compound 5 (Eu compound) at room temperature.

Upon excitation at 362 nm at room temperature, compound 7 exhibits green luminescence with characteristic Tb(III) bands at 486, 542, 581 and 619 nm, which can be attributed to the 5D4→7FJ (J = 6, 5, 4 and 3) transitions, respectively (Figure 8). As expected, the intensity of the 5D4→7F5 transition is the strongest since the transition is sensitive to the nature of the Tb atom,26 and the less strong emission band at 486 nm is attributed to the 5

D4→7F6 transition. The other two weaker bands at 581 and 619 nm correspond to the

5

D4→7F4 and 5D4→7F3 transitions, respectively. In compound 7, it is obvious that energy

transfer efficiently from the L3− ligand to the Tb(III) center.

17

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 8. Solid-state luminescence spectrum of compound 7 (Tb compound) at room temperature.

When excited at 365 nm at room temperature, compound 8 displays yellow photoluminescent behavior with typical Dy(III) emissions at 478 and 570 nm (Figure S7), which corresponding to the characteristic emission of 4F9/2→6HJ (J = 15/2 and 13/2) transitions of Dy(III). The characteristic yellow emission of the 4F9/2→6H13/2 transition is much stronger than the blue emission of 4F9/2→6H15/2, so the Dy(III) compound emits yellow light.27

18

ACS Paragon Plus Environment

Page 18 of 28

Page 19 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

Figure 9. Luminescence spectra of Tb(1−x)(L):xEu compounds at room temperature.

Additionally, a series of functional luminescent MOF materials have been successfully obtained by doping isostructural Eu3+ into Tb3+ compounds to tune the emission colors by adjusting the doped Eu3+ concentration. The results of powder X-ray diffraction indicate that these structures are all similar to that of Tb–MOF (Figure S8). The luminescence properties of the doped Tb(1−x)(L):xEu compounds are very interesting when excited at 350 nm, showing characteristic luminescence peaks at 486, 542, 581, 590, 611 and 696 nm. With increasing of Eu3+ ions concentration, the characteristic fluorescence emissions of the Tb3+ ions decrease, while the characteristic fluorescence emissions of the Eu3+ ions increase. This result is due to the enhanced probability of energy transfer from Tb3+ to Eu3+ ions with the Eu3+ ions concentration increasing. Hence, the life time τ monitored by the 5D4→7F5 transition (543 nm) of Tb3+ is determined to be 801.92µs in Tb-MOF, which is much longer than that in coped Tb(1−x)(L):xEu (Table S3). The characteristic luminescence of the Eu3+ ions reaches a maximum at x = 14.79%, and then it begins to decrease due to the concentration quenching effect (Figure 9)28. This quenching effect can be confirmed by the fluorescent dynamics of Eu3+. As shown in Figure 10, a faster luminescence decay of the 5

D0 state of Eu3+ in Tb97.36%(L):2.64%Eu (336.44 µs) and Tb80.51%(L):19.49%Eu (378.24 µs)

is observed as compared to that in Tb85.21%(L):14.79%Eu (446.10 µs). The above 19

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

conclusions confirm an energy transfer from Tb3+ to Eu3+ in Tb(1−x)(L):xEu compounds. Furthermore, energy transfer cannot occur between two separated phases18e, so the doped compound is not a mixture of Tb-MOF and Eu-MOF, but a single coordination polymer.

Figure 10. Decay curves and fitting curves (fitting by I(t) = I0 + A1exp(-t/τ1) + A2exp(-t/τ2)) for Tb-MOF and doped compounds.

Additionally, the fluorescence emissions of the Tb-based materials undergo obvious changes upon doping by different concentrations of Eu3+ ions, so that the photoluminescence colors of the Eu3+ doped Tb–MOF can be tuned from green to greenish yellow, yellow, orange and red-orange. At the same time, the corresponding CIE chromaticity coordinates change from (0.337, 0.567) to (0.602, 0.356) by variation of the doping concentration of the Eu3+ ions (Figure 11). So, this work represents a significant step for making functional luminescent materials in the visible region by selecting the appropriate metal–organic hosts and activator ions.

20

ACS Paragon Plus Environment

Page 20 of 28

Page 21 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

Figure 11. (left) CIE chromaticity diagram for the Tb(1−x)(L):xEu (x = 0% (a), 1.46% (b), 2.64% (c), 14.79% (d), 19.49% (e), 35.46% (f), 56.50% (g), 100% (h)). (right) The corresponding colors of the Tb(1−x)(L): xEu samples under irradiation of UV light of 365 nm.

CONCLUSIONS In summary, we have presented here three unprecedented families of lanthanide-based coordination polymers synthesized with 4-carboxy-1-(3,5-dicarboxy-benzyl)-pyridinium chloride, H3L. The L3− ligands exhibit diverse coordination modes in thirteen compounds, resulting in three different structural types, which also demonstrate the lanthanide contraction effect. Compounds 1–2 display 3D frameworks based on dinuclear Ln SBUs, and two symmetry-related Ln(III) ions are both nine-coordinated. Compound 3 also shows a 3D framework based on dinuclear Ln SBUs, and the coordination numbers of the two independent metal ions are also both nine. Compounds 4–13 exhibit layer structures based on carboxylate-bridged chains, and the Ln3+ ions are all eight-coordinated. With the increase in atomic number, the ionic radii of the lanthanide ions decrease, leading to different structures of the lanthanides complexes. The TGA curves show the high thermal stability of the three types of structures. Compounds 4, 5, 7 and 8 exhibit the characteristic luminescence of corresponding Ln3+ ions, indicating efficient energy transfer from L3− ligands to Ln3+ ions. Interestingly, the photoluminescence colors can be tuned from green to 21

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

green-yellow, yellow, orange and red-orange by adjusting the doping concentration of the Eu3+ ions to Tb−MOF, making these materials potentially useful for applications in fluorescent lamps for advertizing signs and other color display devices.

ASSOCIATED CONTENT Supporting information available Crystallographic data in CIF format, synthesis of the ligand H3L, experimental and calculated powder XRD patterns, thermogravimetric analysis diagram, UV-vis absorption spectrum and luminescence spectra. This material is available free of charge via the Internet at http://pubs.acs.org. Crystallographic data for the structures reported in this article have been deposited in the Cambridge Crystallographic Data Center with CCDC reference numbers 1058593-1058591 for complexes 2, 3 and 5.

AUTHOR INFORMATION Corresponding Author *E-mail: [email protected], [email protected] Notes The authors declare no competing financial interest.

ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No. 21371153, 20901070), Program for Science & Technology Innovation Talents in Universities of Henan Province (13HASTIT008), and Key Scientific and Technological Project of Henan Province (132102210411) and Zhengzhou University.

REFERENCES 1 (a) Wu, M. F.; Wang, M. S.; Guo, S. P.; Zheng, F. K.; Chen, H. F.; Jiang, X. M.; Liu, G. N.; Guo, G. C.; Huang, J. S. Cryst. Growth Des., 2011, 11, 372. (b) Sun, Y. G.; Gu, X. F.; Ding, F.; Smet, P. F.; Gao, E. J.; Poelman, D.; Verpoort, F. Cryst. Growth Des., 2010, 10, 1059. (c) Rao, X. T.; Song, T.; Gao, J. K.; Cui, Y. J.; Yang, Y.; Wu, C. D.; Chen, B. L.; Qian, G. D. J. 22

ACS Paragon Plus Environment

Page 22 of 28

Page 23 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

Am. Chem. Soc., 2013, 135, 15559. (d) Diniz, J. R.; Correa, J. R.; Moreira Dde; A.; Fontenele, R. S.; de Oliveira, A. L.; Abdelnur, P. V.; Dutra, J. D. L.; Freire, R. O.; Rodrigues M. O.; Neto, B. A. D. Inorg. Chem., 2013, 52, 10199. (e) Thielemann, D. T.; Wagner, A. T.; Rösch, E.; Kölmel, D. K.; Heck, J. G.; Rudat, B.; Neumaier, M.; Feldmann, C.; Schepers, U.; Bräse S.; Roesky, P. W. J. Am. Chem. Soc., 2013, 135, 7454. (f) Cui, Y. J.; Yue, Y. F.; Qian G. D.; Chen, B. L. Chem. Rev., 2012, 112, 1126. (g) Chen, B. L.; Yang, Y.; Zapata, F.; Lin, G. Z.; Qian G. D.; Lobkovsky, E. M. Adv. Mater., 2007, 19, 1693. 2 (a) Gustafsson, M.; Bartoszewicz, A.; Martín-Matute, B.; Sun, J. L.; Grins, J.; Zhao, T.; Li, Z. Y.; Zhu G. S.; Zou, X. D. Chem. Mater., 2010, 22, 3316. (b) Eliseeva, S. V.; Bünzli, J. C. G. Chem. Soc. Rev., 2010, 39, 189. (c) Kurmoo, M. Chem. Soc. Rev., 2009, 38, 1353. (d) An, H. Y.; Zhang, H.; Chen, Z. F.; Li, Y. G.; Liu X.; Chen, H. Dalton Trans., 2012, 41, 8390. (e) Wu, C. D.; Ngo, H. L.; Lin, W. B. Chem. Commun., 2004, 1588. (f) Armelao, L.; Quici, S.; Barigelletti, F.; Accorsi, G.; Bottaro, G.; Cavazzini, M.; Tondello, E. Coord. Chem. Rev., 2010, 254, 487. 3 (a) Hussain, B.; Savard, D.; Burchell, T. J.; Wernsdorfer, W.; Murugesu, M. Chem. Commun., 2009, 1100. (b) Rocha, J.; Carlos, L. D.; Paz., F. A. A.; Ananias, D. Chem. Soc. Rev., 2011, 40, 926. (c) Carlos, L. D.; Ferreira, R. A. S.; de Zea Bermudez, V.; Julián-López, B.; Escribano, P. Chem. Soc. Rev., 2011, 40, 536. (d) D’Vries, R. F.; Alvarez-Garcia, S.; Snejko, N.; Bausa, L. E.; Gutierrez-Puebla, E.; de Andres, A.; Monge, M. Á. J. Mater. Chem. C, 2013, 1, 6316. 4 (a) Bünzli, J. C. G.; Eliseeva, S. V.; Chem. Sci., 2013, 4, 1939. (b) Tanase, S.; Reedijk, J. Coord. Chem. Rev., 2006, 250, 2501. (c) Kuriki, K.; Koike, Y.; Okamoto, Y. Chem. Rev., 2002, 102, 2347. (d) Halim, M.; Tremblay, M. S.; Jockusch, S.; Turro, N. J.; Sames, D. J. Am. Chem. Soc., 2007, 129, 7704. (e) Serre, C.; Millange, F.; Marrot, J.; Férey, G. Chem. Mater., 2002, 14, 2409. (f) Jiang, S. D.; Liu, S. S.; Zhou, L. N.; Wang, B. W.; Wang, Z. M.; Gao, S. Inorg. Chem., 2012, 51, 3079. 5 (a) Du, Y. P.; Zhang, Y. W.; Yan, Z. G.; Sun, L. D.; Yan, C. H. J. Am. Chem. Soc., 2009, 131, 16364. (b) Shinoda, S.; Tsukube, H. Analyst, 2011, 136, 431. (c) Sava, D. F.; Rohwer, L. E. S.; Rodriguez, M. A.; Neaoff, T. M. J. Am. Chem. Soc. 2012, 314, 3983. (d) Bünzli, J. C. G. Chem. Rev., 2010, 110, 2729. (e) Li, Y.; Zhang, S. S.; Song, D. T. Angew. Chem., Int. 23

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Ed., 2013, 52, 710. 6 (a) Klink, S. I.; Hebbink, G. A.; Grave, L.; Oude Alink, P. G. B.; van Veggel, F. C. J. M.; Werts, M. H. V. J. Phys. Chem. A, 2002, 106, 3681. (b) De Bettencourt Dias, A.; Viswanathan, S. Chem. Commun., 2004, 1024. 7 (a) Lanthanide Probes in Life, Chemical and Earth Sciences: Theory and Practice, ed. J. C. G. Bünzli and G. R. Choppin, Elsevier, Amsterdam, 1989. (b) Duan, J.; Higuchi, M.; Foo, M. L.; Horike, S.; Rao, K. P.; Kitagawa, S. Inorg. Chem., 2013, 52, 8244. 8 (a) Nonat, A. M.; Allain, C.; Faulkner, S.; Gunnlaugsson, T. Inorg. Chem., 2010, 49, 8449. (b) Liu, G. X.; Huang, R. Y.; Huang, L. F.; Xu, H. ; Ren, X. M. J. Chem. Crystallogr., 2010, 40, 283. (c) Sabbatini, N.; Guardigli, M.; Lehn, J. M. Coord. Chem. Rev., 1993, 123, 201. (d) Feng, X.; Wang, J. G.; Liu, B.; Wang, L. Y.; Zhao, J. S.; Ng, S. Cryst. Growth Des., 2012, 12, 927. (e) Lima, P. P.; Nolasco, M. M.; Paz, F. A. A.; Ferreira, R. A. S.; Longo, R. L.; Malta, O. L.; Carlos, L. D. Chem. Mater., 2013, 25, 586. 9 (a) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc. Rev., 2009, 38, 1330. (b) Cross, J. P.; Lauz, M.; Badger, P. D.; Petoud, S. J. Am. Chem. Soc., 2004, 126, 16278. (c) Wang, L. F.; Kang, L. C.; Zhang, W. W.; Wang, F. M.; Ren, X. M.; Meng, Q. J. Dalton Trans., 2011, 40, 9490. (d) Klink, S. I.; Keizer, H.; van Veggel, F. C. J. M. Angew. Chem., Int. Ed., 2000, 39, 4319. 10 (a) Louie, A.; Chem. Rev., 2010, 110, 3146. (b) Yang, C.; Fu, L. M.; Wang, Y.; Zhang, J. P.; Wong, W. T.; Ai, X. C.; Qiao, Y. F.; Zou, B. S.; Gui, L. L. Angew. Chem., Int. Ed., 2004, 43, 5010. (c) Mancino, G.; Ferguson, A. J.; Beeby, A.; Long, N. J.; Jones, T. S. J. Am. Chem. Soc., 2005, 127, 524. (d) Bünzli, J. C. G.; Piguet, C. Chem. Soc. Rev., 2005, 34, 1048. (e) Ma, J. C.; Liu, Y. Y.; Yang, J.; Liu, Y. Y.; Ma, J. F. CrystEngComm, 2011, 13, 3498. 11 (a) Moore, E. G.; Samuel, A. P. S.; Raymond, K. N. Acc. Chem. Res., 2009, 42, 542. (b) Xu, H.; Liu, F.; Cui, Y. J.; Chen, B. L.; Qian, G. D. Chem. Commun., 2011, 47, 3153. (c) Sun, D. F.; Ke, Y. X.; Collins, D. J.; Lorigan, G. A.; Zhou, H. C. Inorg. Chem., 2007, 46, 2725. (d) Hilder, M.; Junk, P. C.; Kynast, U. H.; Lezhnina., M. M. J. Photochem. Photobiol. A, 2009, 202, 10. (e) Ma, Y.; Wang, Y. Coord. Chem. Rev., 2010, 254, 972. (f) Pan, Z. R.; Xu, J.; Yao, X. Q.; Li, Y. Z.; Guo, Z. J.; Zheng, H. G. CrystEngComm, 2011, 13, 1617. (g) Wang, F.; Deng, K. J.; Wu, G. L.; Liao, H. Y.; Liao, H. L.; Zhang, L. L.; Lan, S. M.; Zhang, 24

ACS Paragon Plus Environment

Page 24 of 28

Page 25 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

J. M.; Song, X. G.; Wen, L. L. J Inorg Organoment Polym., 2012, 22, 680. 12 (a) Reddy, M. L. P.; Sivakumar, S. Dalton Trans., 2013, 42, 2663. (b) Wang, P.; Ma, J. P.; Dong, Y. B.; Huang, R. Q. J. Am. Chem. Soc., 2007, 129, 10620. (c) Zucchi, G.; Murugesan, V.; Tondelier, D.; Aldakov, D.; Jeon, T.; Yang, F.; Thuéry, P.; Ephritikhine, M.; Geffroy, B. Inorg. Chem., 2011, 50, 4851. (d) Shavaleev, N. M.; Eliseeva, S. V.; Scopelliti, R.; Bünzli, J. C. G. Inorg. Chem., 2010, 49, 3927. (e) Yang, X. D.; Zhang, C. H.; Wang, D. P.; Chen, Y. G. Inorg. Chem. Commun., 2010, 13, 1350. (f) Zheng, X. J.; Wang, Z. M.; Gao, S.; Liao, F. H.; Yan, C. H.; Jin, L. P. Eur. J. Inorg. Chem., 2004, 14, 2968. 13 (a) Wang, D. E.; Deng, K. J.; Lv, K. L.; Wang, C. G.; Wen, L. L.; Li, D. F. CrystEngComm, 2009, 11, 1442. (b) Lü, X. Q.; Feng, W. X.; Hui, Y. N.; Wei, T.; Song, J. R.; Zhao, S. S.; Wong, W. Y.; Wong, W. K.; Jones, R. A. Eur. J. Inorg. Chem., 2010, 2714. (c) Zhang, H. B.; Peng, Y.; Shan, X. C.; Tian, C. B.; Lin, P.; Du, S. W. Inorg. Chem. Commun., 2011, 14, 1165. (d) Jiang, H. L.; Tsumori, N.; Xu, Q. Inorg. Chem., 2010, 49, 10001. (e) Xu, J.; Su, W. P.; Hong, M. C.; Cryst. Growth Des., 2011, 11,337. (f) Ji, B. M.; Deng, D. S.; He, X.; Liu, B.; Miao, S. B.; Ma, N.; Wang, W. Z.; Ji, L. G.; Liu, P.; Li, X. F. Inorg. Chem., 2012, 51, 2170. (g) Mallick, A.; Saha, S.; Pachfule, P.; Roy, S.; Banerjee, R. Inorg. Chem., 2011, 50, 1392. (h) Ji, C. C.; Li, J.; Li, Y. Z.; Guo, Z. J.; Zheng, H. G. CrystEngComm, 2010, 12, 3183. 14 (a) Chow, M. Y.; Zhou, Z. Y.; Mak, T. C. W. Inorg. Chem., 1992, 31, 4900. (b) Yang, Q. Y.; Li, K.; Luo, J.; Pan, M.; Su, C. Y. Chem. Commun., 2011, 47, 4234. (c) Sun, W. W.; Tian, C. Y.; Jing, X. H.; Wang, Y. Q.; Gao, E. Q. Chem. Comm., 2009, 4741. 15 (a) Jin, X H.; Wang, J.; Sun, J. K.; Zhang, H. X.; Zhang, J. Angew. Chem. Int. Ed., 2011, 50, 1149. (b) Jin, X. H.; Sun, J. K.; Cai, L. X.; Zhang, J.; Chem. Commun., 2011, 47, 2667. (c) Jin, X. H.; Sun, J. K.; Xu, X. M.; Li, Z. H.; Zhang, J. Chem. Commun., 2010, 46, 4695. 16 (a) Blasse, G.; Grabmaier, B. C. Luminescent Materials; Springer-Verlag: Berlin, Heideberg, 1994. (b) Carnall, W. T.; Fields, P. R.; Rajnak, K. J. Chem. Phys., 1968, 49, 4450. (c) Choi, C. L.; Yen, Y. F.; Sung, H. H.-Y.; Siu, A. W.-H.; Jayarathne, S. T.; Wong, K. S.; Williams, I. D. J. Mater. Chem., 2011, 21, 8547. 17 (a) Guo, H. L.; Zhu, Y. Z.; Qiu, S. L.; Lercher, J. A.; Zhang, H. J. Adv. Mater., 2010, 22, 4190. (b) Wang, Z. Q.; Yang, Y.; Cui, Y. J.; Wang, Z. Y.; Qian, G. D. J. Alloys Compd., 2012, 25

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

510, L5. (c) Evans, R. C.; Carlos, L. D.; Douglas, P.; Rocha, J. J. Mater. Chem., 2008, 18, 1100. (d) Wang, Y.; Yang, J.; Liu, Y. Y.; Ma, J. F. Chem. Eur. J. 2013, 19, 14591. 18 (a) Zhou, J. M.; Shi, W.; Xu, N.; Cheng, P. Inorg. Chem., 2013, 52, 8082. (b) Kerbellec, N.; Kustaryono, D.; Haquin, V.; Etienne, M.; Daiguebonne, C.; Guillou, O. Inorg. Chem., 2009, 48, 2837. (c) Lan, Y. Q.; Jiang, H. L.; Li, S. L.; Xu, Q. Adv. Mater., 2011, 23, 5015. (d) Cui, Y. J.; Xu, H.; Yue, Y. F.; Guo, Z. Y.; Yu, J. C.; Chen, Z. X.; Gao, J. K.; Yang, Y.; Qian, G. D.; Chen, B. L. J. Am. Chem. Soc., 2012, 134, 3979. (e) Ma, M. L.; Ji, C.; Zang, S. Q. Dalton Trans., 2013, 42, 10579. 19 (a) Routasalo, T.; Helaja, J.; Kavakka, J.; Koskinen, A. M. P.; Eur. J. Org. Chem., 2008, 3190. (b) Berto, T. C.; Praneeth, V. K.; Goodrich, L. E.; Lehnert, N.; J. Am. Chem. Soc., 2009, 131, 17116. (c) Sivakumar, C.; Nasar, A. S.; J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 3337. 20 SMART and SAINT. Area Detector Control and Integration Software; Siemens Analytical X-Ray Systems, Inc.: Madison, WI, 1996. 21 (a) Sheldrick, G. M. Acta Crystallogr., Sect. A: Fundam. Crystallogr., 1990, 46, 457. (b) Sheldrick, G. M. SHELXS-97, Program for solution of crystal structures, University of Göttingen, Germany, 1997. 22 Sheldrick, G. M. SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997. 23 (a) Xu, J.; Cheng, J. W.; Su, W. P.; Hong, M. C. Cryst. Growth Des., 2011, 11, 2294. (b) Zhang, Z. H.; Okamura, T. A.; Hasegawa, Y.; Kawaguchi, H.; Kong, L. Y.; Sun, W. Y.; Ueyama, N. Inorg. Chem., 2005, 44, 6219. (c) Lu, W. G.; Zhong, D. C.; Jiang, L.; Lu, T. B. Cryst. Growth Des., 2012, 12, 3675. (d) Shannon, R. D. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Cryst., 1976, 32, 751. (e) Gu, Z. G.; Fang, H. C.; Yin, P. Y.; Tong, L.; Ying, Y.; Hu, S. J.; Li, W. S.; Cai, Y. P. Cryst. Growth Des., 2011, 11, 2220. (f) Sun, X. L.; Shen, B. X.; Zang, S. Q.; Du, C. X. CrystEngComm, 2013, 15, 5910. 24 (a) Li, Z. F.; Yu, J. B.; Zhou, L.; Zhang, H. J.; Deng, R. P. Inorg. Chem. Commun., 2008, 11, 1284. (b) Zhou, T. H.; Yi, F. Y.; Li, P. X.; Mao, J. G. Inorg. Chem., 2010, 49, 905. (c) Wang, H. S.; Zhao, B.; Zhai, B.; Shi, W.; Cheng, P.; Liao, D. Z.; Yan, S. P. Cryst. Growth

26

ACS Paragon Plus Environment

Page 26 of 28

Page 27 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Crystal Growth & Design

Des., 2007, 7, 1851. (d) Decadt, R.; Van Hecke, K.; Depla, D.; Leus, K.; Weinberger, D.; Van Driessche, I.; Van Der Voort, P.; Van Deun, R. Inorg. Chem., 2012, 51, 11623. 25 (a) Sivakumar, S.; Reddy, M. L. P.; Cowley, A. H.; Butorac, R. R. Inorg. Chem., 2011, 50, 4882. (b) Fernandes, M.; de Zea Bermudez, V. ; Sá Ferreira, R. A.; Carlos, L. D.; Charas, A.; Morgado, J.; Silva, M. M.; Smith, M. J. Chem. Mater., 2007, 19, 3892. (c) Xia, J.; Zhao, B.; Wang, H. S.; Shi, W.; Ma, Y.; Song, H. B.; Cheng, P.; Liao, D. Z.; Yan, S. P. Inorg. Chem., 2007, 46, 3450. (d) Biju, S.; Ambili Raj, D. B.; Reddy, M. L. P.; Kariuki, B. M. Inorg. Chem., 2006, 45, 10651. 26 (a) Zhang, H. B.; Zhou, L. J.; Wei, J.; Li, Z. H.; Lin, P.; Du, S. W. J. Mater. Chem., 2012, 22, 21210. (b) Biju, S.; Reddy, M. L. P.; Cowley, A. H.; Vasudevan, K. V. J. Mater. Chem., 2009, 19, 5179. (c) Bai, Z. S.; Xu, J.; Okamura, T.; Chen, M. S.; Sun, W. Y.; Ueyama, N. Dalton Trans., 2009, 2528. 27 (a) Zhu, Y. Y.; Sun, Z. G.; Chen, H.; Zhang, J.; Zhao, Y.; Zhang, N.; Liu, L.; Lu, X.; Wang, W. N.; Tong, F.; Zhang, L. C. Cryst. Growth Des., 2009, 9, 3228. (b) Zhang, H. J.; Fan, R. Q.; Chen, W.; Zheng, X. B.; Li, K.; Wang, P.; Yang, Y. L. J. Lumin., 2013, 143, 611. 28 (a) de Lill, D. T.; de Bettencourt-Dias, A.; Cahill, C. L. Inorg. Chem., 2007, 46, 3960. (b) Rodrigues, M. O.; Dutra, J. D. L.; Nunes, L. A. O.; de Sá, G. F.; de Azevedo, W. M.; Silva, P.; Almeida Paz, F. A.; Freire, R. O.; Júnior, S. A. J. Phys. Chem. C., 2012, 116, 19951. (c) He, G. J.; Guo, D.; He, C.; Zhang, X. L.; Zhao, X. W.; Duan, C. Y. Angew. Chem. Int. Ed., 2009, 48, 6132. (d) Liu, K.; You, H. P.; Zheng, Y. H.; Jia, G.; Song, Y. H.; Huang, Y. J.; Yang, M.; Jia, J. J.; Guo, N.; Zhang, H. J. J. Mater. Chem., 2010, 20, 3272.

27

ACS Paragon Plus Environment

Crystal Growth & Design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 28

SYNOPSIS TOC

Syntheses, Structures, and Photoluminescent Properties of Lanthanide Coordination Polymers Based on a Zwitterionic Aromatic Polycarboxylate Ligand

In this paper, three series of lanthanide coordination polymers have been successfully synthesized

under

hydro(solvo)thermally

conditions

based

on

4-carboxy-1-(3,5-dicarboxy-benzyl)-pyridinium chloride. Due to the effect of the lanthanide contraction, the ligands exhibit diverse coordination modes, which lead to the compounds of lanthanides with different structures. Additional, we successfully obtained the functional luminescent MOF materials by doping isostructural Eu3+ into Tb3+ compounds to tune the emission colors by changing the doped Eu3+ concentration.

28

ACS Paragon Plus Environment