Chapter 6
Downloaded via UNIV OF CALIFORNIA SANTA BARBARA on September 12, 2018 at 21:57:24 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Synthesis and Quantitative Structure—Activity Relationships of Pyridylsulfonylurea Herbicides S. Murai, Y. Nakamura, T. Akagi, N. Sakashita, and T. Haga Central Research Institute, Ishihara Sangyo Kaisha, Ltd., 2-3-1, Nishi-shibukawa, Kusatsu, Shiga 525, Japan
SL-950 (Nicosulfuron, ISO proposed) is a post emergence application herbicide for corn which has a novel type of pyridylsulfonylurea structure. The analogs of SL-950 were synthesized, and their quantitative structure activity relationship analyses was carried out to understand the drug-receptor interaction. The QSAR equations obtained indicates SL-950 is the most effective compound among those examined.
SL-950 i s a p y r i d y l s u l f o n y l u r e a t y p e h e r b i c i d e f o r c o r n w h i c h has N , N - d i m e t h y l c a r b a m o y l g r o u p a t t h e 3 - p o s i t i o n on p y r i d i n e r i n g (compound 19 i n T a b l e I ) and shows a b r o a d h e r b i c i d a l s p e c t r u m a g a i n s t b o t h g r a s s e s and b r o a d l e a f weeds ( 2 ) . For t h e p u r p o s e o f s t u d y i n g t h e s t r u c t u r e a c t i v i t y r e l a t i o n s h i p s o f t h e s e p y r i d y l s u l f o n y l u r e a compounds, we p r e p a r e d 55 a n a l o g s o f SL-950, each o f which b e a r s d i f f e r e n t s u b s t i t u e n t s R , R , R , X , X and Z a s shown i n T a b l e I . I n t h i s paper s u b s t i t u e n t s R on t h e 6 - p o s i t i o n o f t h e p y r i d i n e r i n g were t h e o n l y p y r i d i n e s u b s t i t u t i o n s examined. I t was c l e a r from a p r e v i o u s s t u d y t h a t t h e i n t r o d u c t i o n o f s u b s t i t u e n t s i n t o any p o s i t i o n e x c e p t 6 - p o s i t i o n o f p y r i d i n e r i n g of p y r i d y l s u l f o n y l u r e a remarkably decreased the h e r b i c i d a l activity (1). 1
2
3
1
2
3
Synthesis S y n t h e t i c methods o f s u l f o n a m i d e p r e c u r s o r s f o r s u l f o n y l u r e a s a r e summarized i n Scheme I ( 2 ) . P h y s i c o - c h e m i c a l properties of t h e s e s u l f o n a m i d e s and s u l f o n y l u r e a s a r e shown i n r e f e r e n c e (3). S u l f o n a m i d e i n t e r m e d i a t e s f o r compounds 1—35 w i t h o u t any s u b s t i t u e n t a t t h e 6 - p o s i t i o n on p y r i d i n e r i n g were p r e p a r e d by r o u t e A i n scheme I , w h i l ^ p r e c u r s o r s f o r compounds 36—56 w h i c h have a c e r t a i n s u b s t i t u e n t R a t 6 - p o s i t i o n were p r e p a r e d by r o u t e e i t h e r B, C o r D. I n r o u t e B, 2 , 6 - d i c h l o r o n i c o t i n a m i d e s , 3
0097-6156/92/0504-0043$06.00/0 © 1992 American Chemical Society Baker et al.; Synthesis and Chemistry of Agrochemicals III ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
44
SYNTHESIS AND CHEMISTRY OF AGROCHEMICALS III
Table I Synthesized SL-950 Analogs C0N-R
X,
2
y& R
Compd. 1 2 3 4 5 6 7 8
R
1
H 3
3
5
2
5
2
3
9 10
i-C H c-C H -CH CH=CH -CH CH=CH
11 12
-CH C = CH C ii H 9
13 14 15 16 17 18
(CH ) OCH (CH ) 0CH CH C0 CH C6 H5 CH CH CH CH
19 20
3
7
3
7
2
2
2
2
2
2
2
3
2
2
3
2
2
3
3
3
3
3
21 22 23 24 25 26 27 28
C H CH CF 0CH 0CH C0 CH C H
29 30
4-Cl-C H* 2,4-F -C H
C H C H 2
5
2
5
2
R
3
H H H H H H CH CH CH CH
3
H H H H H H H H H H
0CH 0CH 0CH 0CH 0CH 0CH CH CH 0CH 0CH
CH
3
H H H H H H H H H H
0CH 0CH 0CH 0CH 0CH CH 0CH 0CH 0CH 0CH
3
3
3
C H C H5 CH CH CH CH CH CH CH 5
3
3
5
3
3
6
2
6
3
X
1
H H H H H H
3
3
X
0CH CH 0CH CH 0CH 0CH 0CH 0CH 0CH 0CH
H H H H
3
3
3
2
H H H H H H H H H H
2
3
2
2
2
5
2
6
X
R
CH CH C H C H CH CF 2
N^
(Pi
^N^Cl
N SBn |f,g
|a,h,e,f,i y^s.
C0 Me
j or g
2
CONR'R >
(Pi
2
—* (Pi v
2
l , a , b or d
iPl
CONR'R
>
2
m,e
CONR'R
2
JPl
BnO
f , i
3
a,R H
iPl
2
y ^
CONR'R
2
—> iPl 3
R ^N^S0 NH
2
2
N SBn
j[pX
k
3
2
2
2
2
2
c ) NaH,R X/THF, d) N H ( R ' ) R / C H C l
2
2
2
2
R ^N^S0 NHH-
a) S O C l , b ) R ' N H / C H C l ,
2
H0^N^S0 NH-+-
^^CONR^
—*
S0 NH 2
CONR^
— *
HO^N^SBn
/ N
jOf
•
Cl^N^Cl y^
N
/s^CONR'R
KM
Cl^N^Cl
2
y^CONR'R
k
^N^S0 NH +
2
3
2
(Pi
^N^S0 NH4route B
^\CF
2
2
2
e) BnSH,K C0 /DMSO, f ) C l / a q . A c O H , g) N H / C H C 1 , h) MeOH, 2
3
2
3
NEt3/EDC, i ) t - B u N H / C H C l , 2
2
2
1
2
2
2
k) C F C 0 H , 1) I . A I C I 3 / E D C 2.H SO* 3
2
2
j ) Me AlN(R )R /benzene-CH Cl , 2
f
2
2
m) BnOH,K C0 /DMSO, n) c . H C l 2
3
Scheme I Synthetic Routes of Sulfonamides
Baker et al.; Synthesis and Chemistry of Agrochemicals III ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
Synthesis and QSAR of Pyridylsulfonylurea Herbicides
MURAI ET AL.
route
C
/\.C0 H
a,b o r d,e
2
M
CONR'R
2
JPl N SBn
>
Me^N^OH
f,g
—
/^CONR'R
>
2
IoT Me^N^SOzNHz
Me
| a,h,e,f,: C0 Me
C0 Me
2
2
x
Me f T S0 NH-
p,q,k > R0CH
BrH C^N^S0 NH-
2
2
^
2
I
.C0NMe
N
2
S 0 NH
2
C0NMe
2
2
r , s , q, k ,C0 Me 2
Br HC'"N'"S0 NH-f2
FH C^N'"S0 NH
2
J M
2
2
2
2
t C0 Me 2
u,g,k
C0NMe
0HC"N'"S0 NH-h \
0HC^N^S0 NH
2
2
2
2
s,q,k
IS
C0NMe
F HC^N^S0 NH 2
route
2
2
2
D
F C
N
3
CI
F C
N
3
S 0 NH •
v,k
.^C0NMe
— >
x o l F C^N^S0 NH
2
3
2
2
2
) N B S / C C I 4 , p) RONa/ROH, q j N H f R ) R / M e O H , r ) A g N 0 / a c e t o n e - H 0, 1
2
3
) E t N S F / C H C l , t ) AgN0 /EtOH-H 0 u) H 0 ( C H ) OH,TsOH, 2
3
2
2
3
2
2
2
) n - B u L i , ClC0NMe /THF 2
Scheme I Continued
American Chemical Society Library 1155 16th St., N.W. Baker et Washington, al.; Synthesis andD.C. Chemistry of Agrochemicals III 20036
ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
2
47
48
SYNTHESIS AND CHEMISTRY OF AGROCHEMICALS III
p r e p a r e d from 2 , 6 - d i c h l o r o - 3 - t r i f l u o r o m e t h y l p y r i d i n e by t h e s i d e - c h a i n t r a n s h a l o g e n a t i o n , were t r e a t e d w i t h b e n z y l a l c o h o l to i n t r o d u c e b e n z y l o x y p r o t e c t i n g group a t t h e 6 - p o s i t i o n by a nucleophilic substitution. The 6 - b e n z y l o x y compounds f r e e d from a p p r o x i m a t e l y 10% o f t h e c o r r e s p o n d i n g 2 - b e n z y l o x y i s o m e r , were reacted with benzylmercaptan t o introduce the t h i o e t h e r e a l l i n k a g e a t 2 - p o s i t i o n , which was t o be c o n v e r t e d t o a sulfonamide group. The 6 - h y d r o x y l compounds, o b t a i n e d by d e p r o t e c t i o n o f t h e b e n z y l g r o u p , were r e a c t e d w i t h v a r i o u s n u c l e o p h i l e s t o i n t r o d u c e a s u b s t i t u e n t R a t t h e 6 - p o s i t i o n . By r o u t e B, t h e p r e c u r s o r s f o r compounds 37—41, and 47—53 were p r e p a r e d . P r e c u r s o r s f o r compounds 36, 42 and 43 b e a r i n g a l k y l g r o u p s and compounds 55 and 56 b e a r i n g a l k o x y m e t h y l g r o u p s a s R a t 6p o s i t i o n were p r e p a r e d by t h e f i r s t two methods i n r o u t e C, respectively. S y n t h e t i c methods f o r p r e c u r s o r s f o r t h e 6f l u o r o m e t h y l (compound 44), 6 - f o r m y l (compound 54) and 6d i f l u o r o m e t h y l (compound 45) d e r i v a t i v e s a r e a l s o shown i n r o u t e C. A p r e c u r s o r f o r compound 46 b e a r i n g a t r i f l u o r o m e t h y l group a t 6 - p o s i t i o n was p r e p a r e d a c c o r d i n g t o r o u t e D. The s u l f o n a m i d e p r e c u r s o r s were c o n v e r t e d t o s u l f o n y l u r e a compounds by one o f t h r e e c o u p l i n g p r o c e s s e s shown i n Scheme II. The f i r s t method i s t h e c o n d e n s a t i o n o f t h e a m i n o p y r i m i d i n e s o r a m i n o t r i a z i n e s w i t h t h e p h e n y l Np y r i d y l s u l f o n y l c a r b a m a t e s d e r i v e d from s u l f o n a m i d e precursors. The s e c o n d and t h e t h i r d methods a r e t h e c o n d e n s a t i o n o f t h e sulfonamides with e i t h e r t h e phenyl carbamates o r t h e i s o c y a n a t e s which were d e r i v e d from e i t h e r a m i n o p y r i m i d i n e s o r aminotriazines. 3
3
(1st
method)
y (2nd method) )-N R
z ( 3 r d method)
3
X, w) NaH , (PhO) 2 CO/DMF,
x) H N - ( Q z 2
/AcOEt,
Scheme II Coupling Process
Baker et al.; Synthesis and Chemistry of Agrochemicals III ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
6.
Synthesis and QSAR of Pyridylsulfonylurea Herbicides
MURAIETAL.
Quantitative Structure A c t i v i t y Relationships A n a l y s e s o f q u a n t i t a t i v e s t r u c t u r e a c t i v i t y r e l a t i o n s h i p were c a r r i e d out by t h e a d a p t i v e l e a s t - s q u a r e s method ( 4 ) . H e r b i c i d a l a c t i v i t i e s o f a f o r e m e n t i o n e d SL-950 a n a l o g s were d i v i d e d i n t o t h r e e c l a s s e s a c c o r d i n g t o the i n t e n s i t y a g a i n s t s o y b e a n , c o c k l e b u r , m o r n i n g - g l o r y , smartweed and pigweed by f o l i a r a p p l i c a t i o n a t t h e r a t i o o f 125 g a . i . / h a . I n T a b l e I I , r a n k 3 means t h e most e f f e c t i v e c l a s s w h i l e rank 1 i n d i c a t e s no herbicidal effect. E q u a t i o n (1) i s t h e b e s t e q u a t i o n ( c o r r e l a t i o n c o e f f i c i e n t i s 0.89 and i s s a t i s f a c t o r y ) o b t a i n e d f o r compounds 1—34 which have no s u b s t i t u e n t s a t t h e 6 - p o s i t i o n on t h e p y r i d i n e r i n g .
L = 1.056 Alog (0.628)
P - 0.279 ( A l o g P ) (2.383) - 0.036 Vw (0.207)
2
- 0.007 Vw (1.033)
1
(R )
2
(R ) - 1.380 I + 1.680 (0.248)
N = 34 ( 3 - g r a d e s ) , Rs = 0.89, e = 0.160, M i s = R s ( l e a v e - o n e - o u t ) = 0.74, Alog P = 1.892
(1 )
3(0)
o p t
In t h e e q u a t i o n ( 1 ) , L r e p r e s e n t s t h e d i s c r i m i n a n t f u n c t i o n and t h e v a l u e i n p a r e n t h e s i s under each term i n d i c a t e s t h e c o n t r i b u t i o n f a c t o r w h i c h i s the v a l u e o f c o e f f i c i e n t m u l t i p l i e d by t h e s t a n d a r d d e v i a t i o n . P h y s i c o - c h e m i c a l p a r a m e t e r s f o r each compound a r e shown i n T a b l e I I . V w ( R ) i s t h e van der Waals volume o f s u b s t i t u e n t R c a l c u l a t e d by B o n d i ' s method ( 5 ) . R i s d e d i c a t e d t o t h e more b u l k y g r o u p i n comparison w i t h R group. V w ( R ) i s t h e van der Waals volume o f R group i n e x c e s s o f t h a t of a m e t h y l g r o u p . I n o t h e r words, i n t h e case o f a h y d r o g e n o r a m e t h y l group as R , V w ( R ) was e s t i m a t e d as 0. A l o g P i s t h e summation of t h e 1o c t a n o l / w a t e r p a r t i t i o n c o e f f i c i e n t s c a l c u l a t e d by C i p p e n ' s method {6) f o r p y r i d i n e r i n g and t h e o t h e r h e t e r o c y c l i c m o i e t y e x c e p t t h e s u l f o n y l u r e a b r i d g e . N i s the number o f compounds. Rs i s t h e Spearman rank c o r r e l a t i o n c o e f f i c i e n t . e i s the d i s p e r s i o n of e r r o r . M i s i s t h e number m i s c l a s s i f i e d . The f i g u r e i n p a r e n t h e s i s a f t e r t h e v a l u e o f M i s i s the number m i s c l a s s i f i e d by two g r a d e s . I i s a dummy p a r a m e t e r f o r h e t e r o c y c l i c m o i e t y , t h a t i s , I i s 0 f o r p y r i m i d i n e and 1 f o r triazine. 1
1
1
2
2
2
2
2
Baker et al.; Synthesis and Chemistry of Agrochemicals III ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
49
50
SYNTHESIS AND CHEMISTRY OF AGROCHEMICALS III
Table II Physico-chemical Parameters Used for Equations (1) and (2) rank o f a c t i v i t y Compds.
Vw(R') obsd.
1 2
2 2
3 4
3 1 2 2 2 2 2 1
5 6 7 8 9 10 1 1 12 13 14
2 3 3 1 3 2 2 2 2 1 2 2 2 1 1 2 3 1
19 20
3 1
21 22 23 24
3 2 1 2
3 2 1 2
25 26
3 1 2 2 2 2
3 1 2 2 2 2
27 28 29 30
3
Vw(R )
A log P
I
0 .784 1 .125 1 .125
pred.
3 2 2 1 1 2 2 1 3 1
15 16 17 18
2
Vw(R )
3 .45 13 .68 13 .68 23 .91 23 .91 32 .16 34 .14 27 .24 30 .62 30 .62
0 0 0 0 0 0 0 0 0 0
3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45
2 .298 1 .610 1 .930 1 .899 1 .503 1 .758 1 .960
0 0 0 1 0 0 0 0 0 1
23,.72 44,.37 37,.84 37,.84 42..29 47..37 13.,68 13..68 13.,68 13.,68
0 0 0 0 0 0 0 0 0 0
3,.45 3,.45 3,.45 3,.45 3..45 3..45 3.,45 3.,45 3.,45 3.,45
1 .290 2 .533 0 .758 0 .960 -0,.091 2,.626 1 .596 , 2,.154 1 .466 . 1 .668 .
0 0 0 1 0 0 0 1 0 1
3. 45 3. 45 3. 45 3. 45 3. 45 3. 45 3. 45 3. 45 3. 45 3. 45
1 .951 . 2.,436 2.,638 2.,271 1 ,466 . 2.,154 1 .408 2. 967 3. 562 3. 308
0 0 1 0 0 1 0 0 0 0
23..91 23. 91 23. 91 32. 16 17. 38 17. 38 32. 06 47. 37 56. 16 52. 87
0 10. 25 10. 25 0 0 0 0 0 0 0
Baker et al.; Synthesis and Chemistry of Agrochemicals III ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
6.
MURAIETAL.
Synthesis and QSAR of Pyridylsulfonylurea Herbicides
Table II Continued rank of
activity 1
Compds.
Vw(R ) obsd. 2 2 1 2 1
2 2 1 2 1
37 38
3 3 1
3 3 1
39 40
3 3
3 3
41 42
3 3 3 3 3
47 48
3 3 3 3 3 3 3 2
3 3 2
49 50
3 3
3 3
31 32 33 34 35 36
43 44 45 46
51 52 53 54 55 56
2
2
3 1 2
3 2 3 2 2
3 2
2
Vw(R )
3
Vw(R )
A log P
I
3 .45 3 .45 3 .45 3 .45 3 .45 13 .67 31 .67 .67 31 , 5,.72 11 .62 ,
2 .040 0 .751 0 .953 2 .404 2 .242 1 .399 1 .563 . 2,.251 1 .775 , 1 .997 ,
0 0 1 0 1 0 0 1 0 0
14,.40
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pred. 20 .46 24 .16 24 .16 31 .26 20 .46 13 .68 13 .68 13 .68 13,.68 13,.68
6,.80 6..80 6..80 0 6..80 0 0 0 0 0
13,.68 13,.68 13..68 13..68 13..68 13.,68 13.,68 13.,68 13.,68 13..68
0 0 0 0 0 0 0 0 0 0
27..10
2,.298 1 .740 , 2..390 1 .648 . 2..131 2..626 1 ,904 . 2.,389 1 ,611 . 2.,096
13. 68 13. 68 13. 68 13. 68 13. 68 13. 68
0 0 0 0 0 0
38. 84 24. 47 37. 92 15. 15 27. 10 49. 06
2. 416 2. 304 0. 434 1 .649 1 .194 1 .999
13,.67 23..90 15..95 18..98 21 ..93 31 ..67 41 .,89 16. 87
Baker et al.; Synthesis and Chemistry of Agrochemicals III ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
51
52
SYNTHESIS AND CHEMISTRY OF AGROCHEMICALS III
2
S i n c e the c o e f f i c i e n t s f o r Vw(R') and V w ( R ) a r e n e g a t i v e , t h e l a r g e r R and R d e c r e a s e t h e h e r b i c i d a l a c t i v i t y . The optimum v a l u e f o r A l o g P w i l l e x i s t b e c a u s e t h e e q u a t i o n i s q u a d r a t i c f o r i t . C a l c u l a t e d optimum v a l u e f o r A l o g P i s 1.892. T h i s v a l u e i s l a r g e r than t h e A l o g P f o r SL-950 ( 1 . 4 6 6 ) . However, from t h e f a c t t h a t l a r g e R and R d e c r e a s e t h e a c t i v i t y , t h e r e s u l t o f t h e combined e f f e c t of A l o g P and Vw s u g g e s t s t h a t SL-950 shows t h e h i g h e s t a c t i v i t y . N e x t , we c a r r i e d out a QSAR a n a l y s i s f o r SL-950 a n a l o g s i n c l u d i n g s u l f o n y l u r e a s w h i c h have a s u b s t i t u e n t as R to a n a l y z e t h e c o n t r i b u t i o n by t h a t g r o u p . The b e s t e q u a t i o n (2) f o r compounds 1 — 56 i s o b t a i n e d by t h e p r o c e d u r e shown below. 1
2
1
2
3
L = 0.953 A l o g (0.428)
- 0.028 Vw (0.179)
P - 0.233 ( A l o g P ) (1.449)
2
(R )
- 0.005 Vw (0.716)
3
(R )
2
- 0.013 Vw (1.751)
1
(R )
- 1.436 I + 1.938 (0.211)
N = 56, Rs = 0.89, e = 0.191, R s ( l e a v e - o n e - o u t ) = 0.81, A l o g P
(2)
Mis = 7 ( 0 ) = 2.006
o p t
To o b t a i n e q u a t i o n ( 2 ) , t h e same p a r a m e t e r s as t h a t o f t h e e q u a t i o n (1) were used e x c e p t V w ( R ) w h i c h i s van der Waals volume o f R g r o u p . I t was c o n f i r m e d t h a t t h e r e were no c o r r e l a t i o n s between A l o g P and each Vw. A l l o f t h e terms f o r Vw a r e a g a i n n e g a t i v e and t h e e q u a t i o n i s a l s o q u a d r a t i c f o r A l o g P as was e x p e r i e n c e d f o r t h e e q u a t i o n ( 1 ) . The v a l u e s o f c o n t r i b u t i o n f a c t o r i n d i c a t e t h a t t h e c o n t r i b u t i o n o f V w ( R ) and Vw(R ) i s important. E s p e c i a l l y , V w ( R ) has t h e l a r g e s t c o n t r i b u t i o n f a c t o r among a l l o f the p a r a m e t e r s i n t h e e q u a t i o n . The o r d e r o f f l e x i b i l i t y f o r t h e s i t e o f r e c e p t o r i s R , R, R a c c o r d i n g t o t h e a b s o l u t e v a l u e s o f c o e f f i c i e n t f o r Vw. The optimum v a l u e f o r A l o g P was c a l c u l a t e d t o be 2.006. In t h e e q u a t i o n s (1) and (2) we used a dummy p a r a m e t e r c o n c e r n i n g h e t e r o c y c l e m o i e t y e x c e p t l o g P, i n w h i c h t h e c o n t r i b u t i o n of h e t e r o c y c l e moiety i s p a r t l y i n v o l v e d . With the i n t e n t i o n of a thorough i n v e s t i g a t i o n of the c o n t r i b u t i o n of t h e h e t e r o c y c l i c m o i e t y t o t h e h e r b i c i d a l a c t i v i t y , we c a r r i e d out a n o t h e r QSAR a n a l y s i s u s i n g 15 compounds i n T a b l e I I I b e a r i n g a dimethylcarbamoyl group at the 3 - p o s i t i o n of p y r i d i n e r i n g keeping the l e f t - h a l f of the s t r u c t u r e f i x e d . In Table I I I , X r e p r e s e n t s the s m a l l e r group i n comparison w i t h X group. A c c o r d i n g t o t h e r e s u l t of l e a v e - o n e - o u t p r e d i c t i o n , e q u a t i o n (3) was s e l e c t e d . £ o i n t h e e q u a t i o n i s t h e summation o f Hammett's e l e c t r o n i c p a r a m e t e r s (7) o f each p o s i t i o n o f t h e heterocycle ring. V i s t h e a d d i t i o n o f van der Waals volume o f b o t h X i n e x c e s s o f t h a t o f 0CH and Z i n e x c e s s o f CH. From t h e e q u a t i o n a c e r t a i n e l e c t r o n i c i n t e r a c t i o n between t h e h e t e r o c y c l e r i n g and r e c e p t o r was e l u c i d a t e d i n a d d i t i o n t o t h e s t e r i c e f f e c t f o r X and Z. 3
3
1
3
1
3
2
1
2
1
3
1
Baker et al.; Synthesis and Chemistry of Agrochemicals III ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
1
6.
Synthesis and QSAR of Pyridylsulfonylurea Herbicides
MURAIETAL.
L = 7.18 Z o (1.37)
~ 1.61 ( Z a ) (5.95)
2
- 0.168 V - 6.15 (1.02)
N = 15, Rs = 0.92, e = 0.217, R s ( l e a v e - o n e - o u t ) = 0.72, Z a
O
P
(3)
Mis = 1(0) t = 2.23
C o n t r i b u t i o n f a c t o r s o f each term show t h a t t h e c o n t r i b u t i o n o f e l e c t r o n i c parameter i s l a r g e r than t h a t of s t e r i c e f f e c t . The optimum v a l u e f o r Z a was c a l c u l a t e d t o be 2.23 from t h e equation.
Table HI Compounds and Physico-chemical Parameters for Equation (3) C0N(CH ) 3
X
2
X
3ompd.
Y
17 18
N N N N N N N N N
1
Y
2
2
rank of a c t i v i t y pred. obsd.
Z a
V
2
1 .91
0
1
3. 03 2. 10 2. 84
0
Z
X
N
CH
CH
0CH
3
2
N N N N N N N N N
N CH N CH CH CH CH CH CH
0CH
3
0CH
3
1
0CH
3
0CH
3
3
2
0CH
3
1
1
2 2 2 2
2 2 2 2
N
CH
CH
N
N
CF
0CH
65 66
N CH
CH
CH
CF
CH
N
0CH
67
CH
CH
N
H
19 26 57 58 59 60 61 62 63 64
N N
1
CH
X
3
3
2
0CH
3
OC2H5
0CH
3
OCHF2
0CH
3
SCH
3
0CH
3
CI 0CHF
SCH
3
2
OCHF2
1
1
SCH
1
2
CH
3
3
3
3
3
3
2. 08 2. 29 2. 13 2. 35 2. 48 2. 16
0 0 0 0 0 0
5.51 7.60
1
1
1 .72
0
1
2
2. 16
CF
3
1
1
1 .79
2.27 5.06
CF
3
1
1
1 .48
0
CF
3
1
1
1 .36
0
0CH
3
Baker et al.; Synthesis and Chemistry of Agrochemicals III ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
53
54
SYNTHESIS AND CHEMISTRY OF AGROCHEMICALS III
The r e s u l t s o f t h e a f o r e - m e n t i o n e d c o r r e l a t i o n a n a l y s e s c a n be summarized i n t h e r e c e p t o r mapping shown i n Scheme I I I . E q u a t i o n (1) i n d i c a t e s t h a t t h e p y r i d i n e r i n g b i n d s w i t h r e c e p t o r b e a r i n g some h y d r o p h o b i c c h a r a c t e r . Especially the b i n d i n g s i t e o f t h e r e c e p t o r which s u r r o u r d s t h e 3 - p o s i t i o n s u b s t i t u e n t o f p y r i d i n e r i n g c o u l d accomodate o n l y a l i m i t e d numbers o f atoms, e l u c i d a t i n g t h a t m e t h y l g r o u p i s t h e most d e s i r a b l e a s t h e s u b s t i t u e n t R and R . S i n c e t h e s t e r i c c o n t r i b u t i o n o f s u b s t i t u e n t R a s w e l l a s t h a t o f R was f o u n d t o be i m p o r t a n t by e q u a t i o n ( 2 ) , t h e b i n d i n g r e g i o n a r o u n d R can be s i z e - l i m i t e d . From t h e e q u a t i o n (3) were s u g g e s t e d two points. S i n c e an optimum v a l u e e x i s t s f o r t h e e l e c t r o n i c p a r a m e t e r o , t h e r e must be an e l e c t r o n i c i n t e r a c t i o n between t h e h e t e r o c y c l e m o i e t y and r e c e p t o r d i p o l e , and t h a t t h i s i n t e r a c t i o n i s s t e r i c a l l y a f f e c t e d a t the p l a c e near s u b s t i t u e n t X' and n u c l e a r atom Z. 1
2
3
1
3
Scheme III Interpretation of the QSAR Analyses
Conclusion The r e s u l t o f QSAR a n a l y s e s was summarized a s t h e r e c e p t o r mapping i n Scheme I I I . The optimum v a l u e s f o r A l o g P was o b t a i n e d and t h e s t e r i c e f f e c t f o r R', R , R X and Z was observed. An e l e c t r o n i c i n t e r a c t i o n between t h e h e t e r o c y c l e m o i e t y and t h e r e c e p t o r was a l s o s u g g e s t e d from t h e e q u a t i o n ( 3 ) . The t h r e e e q u a t i o n s were c o n s i s t e n t w i t h t h e f a c t t h a t SL-950 was t h e most d e s i r a b l e h e r b i c i d a l compound. 2
3
1
Baker et al.; Synthesis and Chemistry of Agrochemicals III ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
6.
MURAIETAL.
Synthesis and QSAR of Pyridylsulfonylurea Herbicides 55
Literature Cited 1.
2.
3. 4. 5. 6. 7.
Murai, S.; Haga, T . ; Fujikawa, K.; Sakashita, N . ; Kimura, F., Ed.; ACS Symposium Series No. 443; American Chemical Society: Washington, D . C . , 1991; p98. Murai, S.; Haga, T . ; Sakashita, N . ; Honda, C.; Nakamura, Y.; Honzawa, S.; T s u j i i , Y . ; Kimura, F . ; Fujikawa, K.; Nishiyama, R. J. Pestic. Sci., Submitted. Kimura, F . ; Haga, T . ; Sakashita, N.; Honda, C.; Murai, S. European Patent 0 232 067, 1987. Moriguchi, I . ; Komatsu, K. Eur. J. Med. Chem., 1981, 19. Bondi, A. J. Phys. Chem., 68, 1964, 68, 441. Ghose, A. K.; Crippen, G. M. J. Comput. Chem., 1986, 7, 565. Hansch, C.; Leo, A . ; Taft, R. W. Chem. Rev., 1991, 91, 165.
RECEIVED April27,1992
Baker et al.; Synthesis and Chemistry of Agrochemicals III ACS Symposium Series; American Chemical Society: Washington, DC, 1992.