Synthesis and Reactivity of Trinuclear Gold (III) Dithiolate Complexes

Fabrice Guyon , Aurélien Hameau , Abderrahim Khatyr , Michael Knorr , Hedi Amrouche , Daniel Fortin , Pierre D. Harvey , Carsten Strohmann , Amadou L...
0 downloads 0 Views 848KB Size
Organometallics 1996, 14, 5537-5543

5537

Synthesis and Reactivity of Trinuclear Gold(II1) Dithiolate Complexes. X-ray Structure of [Au(C6Fd(S2C6H4)l3 and [AU(C~F~)(S~CG)I~)(SC~)I~SPP~~)] Elena Cerrada,? Eduardo J. Fernandez,t Peter G. Jones,§Antonio Laguna,? Mariano Laguna,*>? and Raquel Terrobat Departamento de Quimica Inorganica, Instituto de Ciencia de Materiales de Aragbn, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain, Departamento de Quimica, Universidad de la Rioja, 26001 Logroiio, Spain, and Institut f i r Anorganische und Analytische Chemie der Technischen Universitat, Postfach 3329, 38023 Braunschweig, Germany Received June 9, 1995@ Q2[Zn(S-S)21or [SnMe2(S-S)I(Q = NBu4 or PPN, S-S = S Z C ~ HS2C6H3CH3, ~, or C3S5 (dmit)) reacts with truns-[Au(CsF5)Cl2(tht)laffording trinuclear species [Au(C~F~)(S-S)]~ (1-3). When [ A G ( t h t ) l (X = C1 or Br) are used instead, [AuBr(S-S)I, (4-6) and [AuCl(dmit)], (7) are obtained. Complex 1 further reacts with PPh3 to give [AU(C~F~)(S~C~H~)(SC~H~SPP~~)]. Complexes 1-3 react with neutral (pyridine) or anionic (Cl, Br, or SCN) ligands affording [Au(C6Fs)(S-S)(py)l(9a-c)or Q[Au(C~F~)(S-S)X] (loa-c- 12a-c) complexes. The structures of 1and 8 have been established by X-ray crystallography. Complex 1shows a six-membered Au& ring which adopts a chair configuration and shows a gold-gold distance of 3.515 Complex 8 is a mononuclear square-planar gold(II1)complex with a new SC&SPPh3 thiolate ligand, the P-S bond length being 2.058(5)

A.

A.

Introduction

(S-S)(PR3)31+,12 [Au401-(C3S5)201-dppm)21,l3 or the benzenehexathiol derivative "golden wheel" [{CSAu(PThe synthesis of gold complexes containing Au-S Ph3)}61.14 Only a few examples of dinuclear gold(II1) bonds has attracted considerable attention in recent complexes have been reported such as [AudCHzyears because of their potential applications in various P P ~ ~ C H Z ) Z ( S ~ and C~H [AuzMe2(SR)21 ~ ) ~ I ~ ~ (R = Ph,16" areas such as medicine,l mainly as antiarthritic drugs, COCH3,16bEtlsc). deposition of gold films in electronic devices, and the In this paper we report the synthesis of the trinuclear glass industry2 or as gold thiol interface^.^ Recent gold(II1) derivatives [AuX(S-S)13 (S-S = 1,2-benzenediscoveries showing that aurothiolates have some indithiolate ( S Z C ~ H3,440luenedithiolate ~), (SZC~H~CH~), hibitory effects on HN-1 (the etiologic agent of AIDS),4 and 2-thioxo-1,3-dithiole-4,5-dithiolate (C3S5, dmit); X cytotoxicity, and anticancer activity5 have encouraged = Br, C1, or C6F5) by dithiolate ligand transfer from Q2the research activity in these areas. [Zn(S-S)21and [SnMe2(S-S)]. The reaction of the triAu-S complexes are known in oxidation states I, 11, nuclear derivatives with various neutral or organic or I11 and in complexes formally containing gold(IV),6 ligands breaks the thiolate bridge, affording [Au(C6F5)which probably contain gold(II1)with partially oxidized (S-SILI (L= PPh3 or py) or Q[Au(C~F~)(S-S)XI (X= C1, ligands. Most are mononuclear, but there are noteworBr, SCN; Q = NBu4 or PPN). The reaction of PPh3 with thy exceptions such as the dinuclear gold(I1)c~mplexes,~ [Au(CsFs)(S2CsH4)l3leads t o the expected addition the recently reported [S(AuPR3)3](PR3 = PPh3, PPh2product, but a side reaction involves an unprecedented ,~ Me, PMe3),s [S(AuPR&I (PR3 = P P ~ S )[Auq(S-S)2thiolate-phosphine coupling, affording [Au(CgF& (PEt3)2](S-S = 1,2-S2CsH4 or 3,4-S2CsH3CH3),10,11[AuQ(S2C6H4)(SCsH4SPPh3)]as a byproduct. The molecular ~ H ~ [Au(C6Fs))I~ structures of [ A U ( C ~ F ~ ) ( S ~ C and Universidad de Zaragoza-CSIC. (S2CsH4)(SCsH4SPPh3)1have been established by single* Universidad de la Rioja. +

Technische Universitat Braunschweig. Abstract published in Advance ACS Abstracts, November 1,1995. (1)(a) Shaw, C. F., 111; Isab, A. A,; Hoeschele, J. D.; Starich, M.; Jocke, J.; Schulteis, P.; Xiao, J. J. Am. Chem. SOC.1994,116,2254. (b) Graham, G. C.; Champion, G. D.; Ziegher, J. B. Inflammopharmacology 1991,1 , 99. (2) (a) Rapson, W. S.; Groenewald, T. In Gold Usage; Academic Press: London, 1978. (b) Papazian, A. N. Gold Bull. 1982,15, 81. (3) Fenter, P.; Eberhardt, A,; Eisenberger, P. Science 1994,226, 1216. (4) (a) Okada, T.; Patterdon, B. K.; Ye, 0. S.; Gurney, M. E. Virology 1993,192,631, (b)Blough, H. A.; Richetti, M.; Montagnier, B. H. Chem. Abstr. 1991,115, 174630~. ( 5 ) Sadler, P. J. In Metal Complexes in Cancer Chemotherapy; Keppler, K. B., Ed.; VCH: Weinheim, Germany. 1993. (6)Rinford, G.; Thorup, N.; Bjornholm, T.; Bechgaard, K. Acta Crystallogr. 1990,C46, 1437. (7) Bardaji, M.; Jones, P. G.; Laguna, A,; Laguna, M. Organometallics 1995,14, 1310 and references therein. ( 8 ) a) Jones, P. G.; Thone, C. Acta Crystallogr. 1980,1336,2777. (b) Angermaier, K.; Schmidbaur, H. Chem Ber. 1994,127,2387. 8

@

(9) Canales, F.; Gimeno, M. C.; Jones, P. G . ; Laguna, A. Angew. Chem., Int. Ed. En& 1994,33,769. (10) D a d a , R. M.; Elduque, A,; Grant, T.; Staples, R. J.; Fackler, J. P., Jr. Inorg. Chem. 1993,32,1749. (11)Nakamoto. M.: Schier. A,: Schmidbaur, H. J . Chem. Soc., Dalton Trans. 1993,1347.

(12) Gimeno, M. C.; Jones, P. G.; Laguna, A,; Laguna, M.; Terroba, R.Inorg. Chem. 1994,33,3932. (13) Cerrada, E.; Jones, P. G.; Laguna, A.; Laguna, M. J. Chem. Soc., Dalton Trans. 1994,1315. (14)Yip, H. K.; Schier, A.; Riede, J.; Schmidbaur, H. J . Chem. SOC., Dalton Trans. 1994,2333. (15)Heinrich, D. H.; Fackler, J. P., Jr. Inorg. Chem. 1990,29,4402. (16) (a)Johnson, A,; Puddephatt, R. J. J.Chem. SOC. Dalton Trans. 1975,115. (b) Bergfeld, M.; Schmidbaur, H. Chem. Ber. 1969,102, 2408. (c) Paparizos, Ch. Dissertation, Case Western Reserve University, 1977, pp 1-186;Diss. Abstr. Int. 1978,B38, 4227. (17)Cerrada, E.; Fernandez, E. J.; Gimeno, M. C.; Laguna, A.; Laguna, M.; Terroba, R.; Villacampa, M. D. J. Organomet. Chem. 1995, 492,105.

0276-733319512314-5537$09.00/0 0 1995 American Chemical Society

Cerrada et al.

5538 Organometallics, Vol. 14, No. 12, 1995 0

Figure 2. Molecule of compound 1 in the crystal (side view, arbitrary radii, H and F atoms omitted for clarity). F2

&

Figure 1. Molecule of compound 1 in the crystal with view direction (approximately)along the crystallographic3-fold axis. Ellipsoids correspond to 50% probability levels. Hydrogen radii are arbitrary. The asymmetric unit and the equivalent atom S1' are labeled. crystal analysis, showing a six-membered AUQ&ring in the former and the above-mentioned combination of dithiolate and triphenylphosphine in the latter. Results and Discussion Recently17 we have shown that dithiolate complexes [SnMez(S-S)Ior Q2[Zn(S-S)21 [S-S = l,2-benzenedithiolate (&CsH4), 3,4-toluenedithiolate (S2C6&CH3), and 2-thioxo-1,3-dithiole-4,5-dithiolate (dmit); Q = NEt4 or PPh3=N=PPh3 (PPN)] transfer dithiolate groups to gold centers, on reaction with gold(II1) complexes cis-[Au(CsF5)C12L] (L = phosphine or arsine ligand) (eq 1).

Table 1. Details of X-ray Structure Analyses for ComDounds 1 and 8

formula Mr cryst habit cryst size (mm) space group temp ("C) cell constants a (A) b c (A) a (deg) P (deg) y (deg)

(4)

v (A31

Z

D, (Mg m-3) F(OO0) ,u (mm-')

transm factors 2&,, (deg) no. of reflcns measd indvdt Rint wR(F2, all reflcns) R(F, F > 4a(F)) no. of params no. of restraints S max Ma max A,J (e A-3)

dark red tablet 0.60 x 0.27 x 0.12 P3 -130

pink platelet 0.25 x 0.15 x 0.02 P1 -100

16.005(2) 16.005(2) 9.384(2) 90 90 120 2081.8(6) 2 2.413 1392 10.9 0.44-0.98 55

12.677(3) 13.288(3) 13.534(3) 72.02(2) 82.19(2) 67.72(2) 2006.1(8) 2 1.782 1052 4.23 0.38-0.73 50

5848 3190 0.052 0.098 0.039 181 160

7087 6727 0.117 0.114 0.066 228 107 0.76

The analogous reaction starting from cis- or trans[Au(C6Fs)Clz(tht)l(tht = tetrahydrothiophene), in acetone or dichloromethane, and S-S = 1,2-S2C& affords 1.05 0.001