Synthesis and Structure of the Cluster Ion Pair - American Chemical

Weibin Wang,† Paul J. Low,† Arthur J. Carty,*,† Enrico Sappa,‡ Giuliana Gervasio,*,§. Carlo Mealli,*,| Andrea Ienco,| and Enrique Perez-Carre...
0 downloads 0 Views 138KB Size
998

Inorg. Chem. 2000, 39, 998-1005

Synthesis and Structure of the Cluster Ion Pair {Ru3(CO)9[µ-P(NPri2)2]3}{Ru6(CO)15(µ6-C)[µ-P(NPri2)2]}. A Theoretical Overview of M3(µ-PR2)3 Frameworks Weibin Wang,† Paul J. Low,† Arthur J. Carty,*,† Enrico Sappa,‡ Giuliana Gervasio,*,§ Carlo Mealli,*,| Andrea Ienco,| and Enrique Perez-Carren˜ o|,⊥ Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada, Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Universita` degli Studi di Torino, Via P. Giuria, 7, 10125 Torino, Italy, Universita` del Piemonte Orientale “Amedeo Avogadro”, C.so Borsalino 54, 15100 Alessandria, Italy, and Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, CNR, Via Nardi 39, 50132 Firenze, Italy ReceiVed February 18, 1999 The compound {Ru3(CO)9[µ-P(NPri2)2]3}{Ru6(CO)15(µ6-C)[µ-P(NPri2)2]} (1), obtained via the addition of PCl(NPri2)2 to K2[Ru4(CO)13], crystallizes in the monoclinic space group P21/c with a ) 15.537(8) Å, b ) 36.151(16) Å, c ) 19.407(5) Å, β ) 91.14(2)°, Z ) 4, and R ) 0.069 for 8006 observed reflections. The unit cell is unusual in that it contains both a typical octahedral Ru6 cluster anion (1a), featuring an encapsulated carbide, and a symmetrical phosphido bridge, in addition to a 50-electron trinuclear cluster cation {Ru3(CO)9[µ-P(NPri2)2]3}+ (1c). The latter, with approximate D3h symmetry, exhibits long Ru-Ru distances (g3.15 Å). Among the family of clusters with M3(µ-PR2)3 cores and different numbers of both electrons (TEC) and terminal ligands (LxLyLz), 1c is unique in that it is a 333 stereotype with 50 valence electrons. MO calculations permit us to predict the existence of redox congeners of 1c clusters and related 48e Re3 clusters. This work also presents a summary of the relationships between the electronic and the geometric structures for all known M3LxLyLz(µ-PR2)3 species. The basic stereochemical features are influenced by the total-electron count and, hence, by the degree of M-M bonding, as well as the remarkable flexibility of the phosphido bridging ligands. The µ-PR2 ligands need not necessarily lie in the M3 plane, and a wide range of M-P-M angles (as small as 72° or as large as 133°) have been observed.

Introduction Metal-cluster compounds give rise to a remarkably diverse range of structures that continue to challenge synthetic and theoretical chemists alike. Over the years, many elegant theoretical approaches have been developed to provide order to this vast structural array, ranging from simple semiempirical models, such as the effective atomic number (EAN) and WadeMingos rules, to extended Hu¨ckel molecular orbital (EHMO) theory and ab initio methods.1 In any organometallic cluster, the Mn core will be supported by a variety of terminal and bridging ligands. A detailed description of the MO architecture for these complexes requires careful consideration of not only the number of cluster valence electrons that are available for bonding but also the stereochemistry and geometry of the supporting ligands. In this context, clusters that contain phosphido ligands (PR2) bridging M‚‚‚M vectors are particularly interesting because of the great structural flexibility of this ligand. This structural * Author to whom correspondence should be addressed † Steacie Institute for Molecular Sciences. ‡ Universita ` degli Studi di Torino. § Universita ` del Piemonte Orientale. | Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, CNR. ¶ Present address: Departamento de Quı´mica Fı´sica y Analı´tica, Universidad de Oviedo, Spain. (1) Mingos, D. M. P.; Wales, D. J. Introduction to Cluster Chemistry; Prentice-Hall: Englewood Cliffs, NJ, 1990; p 93.

diversity is illustrated for the common framework M3(µ-PR2)3 (I) in Table 1.2 In addition to the phosphido bridges, these complexes feature a variety of terminal ligands at each metal center (Lx, Ly, Lz) and electron counts ranging from 42 to 54 valence electrons. In this paper, we report the synthesis and characterization of an unusual, discrete polymetallic salt {Ru3(CO)9[µ-P(NPri2)2]3}{Ru6(CO)15(µ6-C)[µ-P(NPri2)2]} 1. The cluster cation 1c is the first example of a 50-electron cluster cation with overall D3h symmetry and three terminal ligands on each metal atom. We have taken the opportunity to compare the structural and bonding features not only between 1c and the electron-precise Re3 analogues 4 and 5 but also across the entire range of M3LxLyLz(µ-PR2)3 clusters reported in Table 1. An analysis of the effects of the different electron populations and framework geometries on cluster bonding, based on qualitative MO theory, is presented with the arguments highlighted through the usage of the MO graphics package CACAO.28 (2) Cambridge Structural Database System, Version 5.15, Cambridge Crystallographic Data Centre: Cambridge, CB2 1EZ, U.K. (3) Deppisch, B.; Schafer, H.; Binder, D.; Leske, W. Z. Anorg. Allg. Chem. 1984, 519, 53. (4) Haupt, H.-J.; Balsaa, P.; Florke, U. Inorg. Chem. 1988, 27, 280. (5) Haupt, H.-J.; Florke, U.; Schneider, H. Acta Crystallogr., Sect. C 1991, 47, 2531. (6) Dunn, P.; Jeffery, J. C.; Sherwood, P. J. Organomet. Chem. 1986, 311, C55. (7) Asseid, F.; Browning, J.; Dixon, K. R.; Meanwell, N. J. Organometallics 1994, 13, 760.

10.1021/ic990195f CCC: $19.00 © 2000 American Chemical Society Published on Web 02/18/2000

Theoretical Overview of M3(µ-PR2)3 Frameworks

Inorganic Chemistry, Vol. 39, No. 5, 2000 999

Table 1. Trinuclear Species with M3(µ-PR2)3 Coresa complex

type

metals/T.E.C.

phosph subst

M1-M2 (Å)

M2-M3 (Å)

M3-M1 (Å)

2 3 1c 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

4,4,4 3,3,3b 3,3,3 3,3,3 3,3,3 4,2,2c 3,3,2d 3,2,2 3,2,2 3,2,2 3,2,2e,f 2,2,2 2,2,2 2,2,2 2,2,2g 2,2,2 2,2,2i 2,2,1f 2,2,1f 2,2,1 2,2,1 2,1,1i,l 1,1,1i 1,1,1i 1,1,1 1,1,1i 1,1,1 1,1,1j 1,1,1 1,1,1m 1,1,1m 1,1,1g,n

Mn3/54 Ni3/54 Ru3/50 Re3/48 Re3/48 WCo2/48 Ir3/50 Ir3/50 Rh3/50 Rh3/50 Ir3/48 Co3/48 Co3/48 Co3/48 Ir3/48 Pt3/48 Zn3/54 Ir3/46 Rh3/46 Rh3/46 Rh3/46 Zn3/50 Zn3/48 Zn3/48 Ag3/48 Cd3/48 Rh3/42 Pd3/44 Pt3/42 Pt3/44 Pt3/44 Pt3/44

H H NPri2 phen cychex Eth phen phen phen phen phen cychex phen meth phen spech phen phen phen butt phen cychex SiMe3 SiMe3 phen butt butt phen speck phen phen butt

4.30 3.81 3.17 2.91 2.91 3.00 3.03 3.18 3.12 3.08 2.86 2.68 2.66 2.63 3.00 4.05 4.14 2.74 2.76 2.81 2.70 4.15 4.10 3.86 4.15 4.43 2.67 3.00 2.75 3.07 3.59 3.60

4.30 3.81 3.17 2.91 2.91 2.71 3.22 3.33 3.25 3.22 2.71 2.57 2.57 2.51 2.71 4.08 4.26 2.80 2.80 2.79 2.81 4.05 4.26 4.28 4.16 4.54 2.67 2.95 2.73 2.96 2.76 2.71

4.36 3.81 3.15 2.92 2.92 2.68 3.29 3.20 3.13 3.12 2.96 2.58 2.57 2.57 2.97 4.22 4.16 2.80 2.80 2.73 2.79 4.16 4.14 4.07 4.17 4.55 2.64 2.95 2.74 2.96 2.76 2.72

τ1-2 (deg) 104 138 cpl cpl cpl 170 cpl cpl 174 cpl 174 cpl 168 156 cpl 95 127 104 103 116 97 152 135 110 cpl 150 cpl cpl cpl cpl cpl cpl

τ2-3(deg) 104 138 cpl cpl cpl cpl cpl 169 164 167 107 119 114 110 108 123 173 cpl 172 cpl 171 144 151 156 119 143 cpl cpl 173 159 174 cpl

τ3-1 (deg) cpl 138 cpl cpl cpl 102 170 cpl cpl cpl cpl 119 120 137 157 148 117 cpl 172 151 171 152 cpl 173 127 cpl 163 cpl cpl 159 174 cpl

ref 3 4 4 5 6 7 8 9 9 7 10 11 12 13 14 15 8 8 16 9, 17 18 19 19 20 21 22 23 24 25, 26 26 27

a Extracted from the Cambridge Structural Database (April 1998).2 No additional atomic bridge between metals is allowed. Unless specified, the terminal ligands are two-electron donors, such as CO, RCN, or phosphine. M-M distances are reported in the order for LxM-LyM, LyM-LzM, and LzM-LxM (x, y, and z are the respective numbers of terminal ligands in the column labeled “type”). For each intermetallic vector, the dihedral angle (τx-y) is calculated between the planes M3 and M2P. The two planes are indicated as coplanar (cpl) if 175° < |τx-y| < 180°. b All of the L3M fragments are CpNi. c The fragment L4M is Cp(CO)W. d The unit is cationic. The second fragment L3M contains a methyl anion. e The fragment L3M is (CO)(OH)(I)Ir. f One bidendate ligand, Ph2PCH2PPh2 (dppm), provides one terminal P donor to each L2M fragment. g The geometric parameters are given as averages between two independent molecules. h A formally two-electron reduced P4S3 cage uses the P atoms of the broken P-P as terminal and bridging ligands, respectively. i One alkyl terminal ligand at each metal atom. j The L2M fragment is completed by a tetrahydrofuran ligand. k One terminal chloride ligand at M3. l R and R′ phosphido substituents are tert-butylimino- and tert-butyltrimethylsilyl-amino groups, respectively m One terminal phenyl ligand at M3. n One terminal hydride ligand at M3.

Experimental Section General Procedure. Synthetic manipulations were performed in a nitrogen-atmosphere glovebox. The solvents were dried and distilled (8) Berry, D. E.; Browning, J.; Dehghan, K.; Dixon, K. R.; Meanwell, N. J.; Phillips, A. J. Inorg. Chem. 1991, 30, 396. (9) Haines, R. J.; Steen, N. D. C. T.; English, R. B. J. Chem. Soc., Dalton Trans. 1984, 515. (10) Albright, T. A.; Kang, S.-K.; Arif, A. M.; Bard, A. J.; Jones, R. A.; Leland, J. K.; Schwab, S. T. Inorg. Chem. 1988, 27, 1246. (11) Markiewicz, M. K.; Fraser, M. E.; Ungar, R. K.; Fortier, S.; Baird, M. C. Acta Crystallogr., Sect. C 1985, 41, 336. (12) Keller, E.; Vahrenkamp, H. Chem. Ber. 1979, 112, 2347. (13) Browning, J.; Dixon, K. R.; Meanwell, N. J. Inorg. Chim. Acta 1993, 213, 171. (14) Di Vaira, M.; Peruzzini, M.; Stoppioni, P. J. Chem. Soc., Dalton Trans. 1985, 291. (15) Davidson, M. G.; Edwards, A. J.; Paver, M. A.; Raithby, P. R.; Russell, C. A.; Steiner, A.; Verhorevoort, K. L.; Wright, D. S. J. Chem. Soc., Chem. Commun. 1995, 1989. (16) Arif, A. M.; Heaton, D. E.; Jones, R. A.; Kidd, K. B.; Wright, T. C.; Whittlesey, B. R.; Atwood, J. L.; Hunter, W. E.; Zhang, H. Inorg. Chem. 1987, 26, 4065. (17) Haines, R. J.; Steen, N. D. C. T.; English, R. B. J. Organomet. Chem. 1981, 209, C34. (18) Edwards, A. J.; Paver, M. A.; Raithby, P. R.; Russell, C. A.; Wright, D. S. Organometallics 1993, 12, 4687. (19) Rademacher, B.; Schwarz, W.; Westerhausen, M. Z. Anorg. Allg. Chem. 1995, 621, 287. (20) Eisenmann, J.; Fenske, D.; Simon, F. Z. Anorg. Allg. Chem. 1995, 621, 1681.

under nitrogen prior to use. The reagents were commercially supplied and used without further purification. Infrared spectra were recorded on a Nicolet 520 FTIR spectrometer. NMR spectra were recorded on Bruker AC-200 (31P{1H} at 81.02 MHz) or Bruker AC-250 (1H at 250.0 MHz) instruments. Mass spectroscopy was performed on a JEOL JMSAX505H mass spectrometer, using FAB ionization techniques. Preparation of {Ru3(CO)9[µ-P(NPri2)2]3}{Ru6(CO)15(µ6-C)[µP(NPri2)2]} (1). A mixture of Ru3(CO)12 (562 mg, 0.879 mmol), benzophenone, and potassium (molar ratio 1/1.5/1.5) was treated with THF (20 mL) over a 10 min period. The solution was stirred for 24 h, yielding a deep red solution. Subsequently, PCl(NPri2)2 (353 mg, 1.32 (21) Benac, B. L.; Cowley, A. H.; Jones, R. A.; Nunn, C. M.; Wright, T. C. J. Am. Chem. Soc. 1989, 111, 4986. (22) Atwood, J. L.; Hunter, W. E.; Jones, R. A.; Wright, T. C. Inorg. Chem. 1983, 22, 993. (23) Arif, A. M.; Heaton, D. E.; Jones, R. A.; Nunn, C. M. Inorg. Chem. 1987, 26, 4228. (24) Scherer, O. J.; Konrad, R.; Guggolz, E.; Ziegler, M. L. Chem. Ber. 1985, 118, 1. (25) Bender, R.; Braunstein, P.; Dedieu, A.; Ellis, P. D.; Huggins, B.; Harvey, P. D.; Sappa, E.; Tiripicchio, A. Inorg. Chem. 1996, 35, 1223. (26) (a) Taylor, N. J.; Chieh, P. C.; Carty, A. J. J. Chem. Soc., Chem. Commun. 1975, 448. (b) Bender, R.; Braunstein, P.; Tiripicchio, A.; Tiripicchio Camellini, M. Angew. Chem., Int. Ed. Engl. 1985, 24, 861. (27) Leoni, P.; Manetti, S.; Pasquali, M.; Albinati, A. Inorg. Chem. 1996, 35, 6045. (28) (a) Mealli, C.; Proserpio, D. M. J. Chem. Educ. 1990, 67, 399. (b) Mealli, C.; Ienco, A.; Proserpio, D. M. Book of Abstracts of the XXXIII ICCC, Florence, 1998, 510.

1000 Inorganic Chemistry, Vol. 39, No. 5, 2000

Low et al.

Table 2. Crystallographic Data for 1 emp. form.

C73N8O24P4Ru9‚C3.5

fw

2248.35 g/mol

a (Å) b (Å) c (Å) β° V (Å3) Z)

15.537(8) 36.15(2) 19.407(5) 91.140(1) 10 898(8) 4

space grp T (K) λ (Å) Fcalc (g cm-3) µ (Mo, KR) ( cm-1) R (Fo) Rw2 (Fo)

P21/c 293 0.710 73 1.492 1.329 0.0689a,b 0.192c

a F > 4σ(F ). b R ) ∑||F | - |F ||/∑|F |. c wR ) [∑[w(F 2 - F 2)2]/ o o o c o 2 o c ∑[w(Fo2)2]]1/2, w ) 1/[σ2(Fo)2 + (0.0999P)2 + 212.50P] where P ) (max(Fo2,0)+ 2Fc2)/3.

mmol, 2 × 0.75 equiv to Ru3(CO)12) was added in dropwise fashion, and the reaction was allowed to proceed for an additional 3 h. After the solvent was removed, the residue was extracted into CH2Cl2 and absorbed onto dried silica gel. The stained silica gel was dried in vacuo. Column chromatography (silica gel, 70-230 mesh, oven dried, 150 °C, 48 h), with CH2Cl2 as the eluant, following an initial elution with hexane and CH2Cl2/hexane (v/v ) 1/1), led to the isolation of the product 1. Air-stable, dark red crystals of 1 (10 mg,