Synthesis, characterization, and anti-human immunodeficiency virus

Synthesis, characterization, and anti-human immunodeficiency virus activity of water-soluble salts of polyoxotungstate anions with covalently attached...
0 downloads 0 Views 2MB Size
1216

J. Med. Chem. 1992,35, 1216-1221

Synthesis, Characterization, and Anti-Human Immunodeficiency Virus Activity of Water-Soluble Salts of Polyoxotungstate Anions with Covalently Attached Organic Groups Mark S. Weeks,? Craig L. Hill,**+and Raymond F. Schinazi*J Department of Chemistry, Emory University, Atlanta, Georgia 30322, and Veterans Affairs Medical Center, and Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30033. Received September 9, 1991 The cesium and tetramethylammonium (TMA) salts of polyoxotungetate anions with covalently attached organosilyl groups of formula [(RSi)20]SiW110394-,where R = CH2CH2COCH3,(CH2),CN, and CH=CH2 (1-R, cesium salt, unless otherwise noted) have been prepared, purified, and spectroscopically characterized. The water solubility (25 "C) of these 10 new compounds ranges from 0.14 mM to 2.16 mM. All appear to be stable in aqueous media over a period of several hours aa assessed by 'H NMR. The activities (EC,) of the new compounds against human immunodeficiency virus in primary human lymphocytes range from 3.3 pM to 39.0 pM. Their toxicities (IC,) are all =eater than 100 uM. The inhibition constants of the new compounds against purified virion-derived HIV-1 reverse transcriptase are in the 1-10 pM range.

Introduction In the wake of the growing evidence that some of the most promising anti-HIV-1 agents, and in particular, 3'azido-3'-deoxythymidine (AZT),'v2 exhibit problems associated with toxicity, resistance, and drug delivery, efforts continue to mount to develop new nonnucleoside antiviral agents? Our continuing efforts address the development of a large class of soluble inorganic Compounds as antiviral agents. These compounds, known as polyoxometalates, are composed of early transition metal ions, usually in their doelectronic configurations, and oxide ions. The metal and oxide ions are typically arranged in MOBoctahedra which are linked by edge sharing or corner sharing bridged 0 atoms.' The first member of this class of compounds to receive substantial attention as an antiviral and anti-HN-1 agent, HPA-23 (molecular formula = (NH4+)17(H+)[NaShW2,O,le-]),6fi proved to be toxic in general and toxic to bone marrow cells in particular. At the limited levels of administration dictated by ita toxicity, HPA-23 proved to be ineffective in clinical trials.' Subsequently, other structural classes of tungsten-based polyoxometalates (polyoxotungstates)proved to be as or more active against HIV-1 in cell culture, far more active in vitro, less toxic, and perhaps most significantly, orders of magnitude less toxic in some cases to human bone marrow cells (human granulocyte-macrophage precursor cells) than HPA-23.8i9 This paper addresses a class of complexes whose antiviral activities have yet to be evaluated-polyoxometalates containing covalently attached organic groups. Although several classes of polyoxometalates containing organic or organometallic groups have been reported,'*" all but perhaps two of these classea are very unstable to hydrolysis and as such would have effectively no chance of remaining intact in a biological milieu for the lengths of times requisite for pharmacological efficacy. The two exceptions are the organometallic derivatives RM (M= Si, Ge, Sn, or Pb, and R = an alkyl or aryl group) of some polyoxotungstates examined by the groups of Pope, and Knoth,'* and the cyclopentadienyl titanium derivatives of certain polyoxotungstates examined by the groups of Knoth and Keana.12J3 Our general interest in polyoxometalates covalently derivatized with organic groups comes from the simple fact that such groups should permit a host of pharmacologically pertinent parameters of the polyoxometalates to be varied including, in principal, oral bioa*Address correspondence to Professor Craig L. Hill, Dept. of Chemistry, Emory University, Atlanta, GA 30322. Department of Chemistry. Department of Pediatrics.

vailability and blood-brain barrier permeability as well as activity and toxicity.

(1) (a) Richman, D. D.; Fischl, M. A.; Grieco, M. H.; Gottlieb, M. S.; Volberding, P. A.; Laskin, 0. L.; Leedom, J. L.;Groopman, J. E.; Mildvan, D.; Hirsch, M. S.; Jackson, G. G.; Durack, D. T.; and Nusinoff-Lehrman, S. The toxicity of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. N . Engl. J. Med. 1987, 317, 192-197. (b) Yarchoan, R.; Klecker, R. W.; Weinhold, K. J.; Markham, P. D.; Lyerly, H. K.; Durack, D. T.; Gelmann, E.; Lehrmann, S. N.; Blum, R. M.; Bany, D.; Shearer, G.; Fischl, M. A.; Mitsuya, H.; Gallo, R. C.; Collins, J. M.; Bolognesi, D. P.; Myers, C. E.; Broder, S. Administration of 3'-azido-3'-deoxythymidine,an inhibitor of HTLV-III/LAV replication, to patients with AIDS of AIDS-related complex. Lancet 1986, 1, 575-580. (c) Mitsuya, H.; Weinhold, K. J.; Furman, P. A.; St. Clair, M. H.; Nusinoff-Lehrman, S.; Gallo, R. C.; Bolognesi, D.; Barry, D. W.; Broder, S. 3'-Azido-3'-deoxythymidine (BW A509U): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. U.S.A. 1985,82,7096-7100. (d) Schinazi, R. F. Strategies and targets for anti-human immunodeficiencyvirus type 1chemotherapy. In AIDS in children, adolescents and heterosexual adults: an interdisciplinary approach to prevention; Schinazi, R. F., Nahmias, A. J., Eds.; Elsevier North-Holland: New York, 1988; pp 126-143. (2) (a) Mitsuya, H.; Yarchoan, R.; Broder, S. Molecular targets for AIDS therapy. Science 1990,249,1533-1544. (b) Herdewijn, P.; Pauwels, R.; Baba, N.; Balzarini, J.; De Clercq, E. Synthesis and anti-HIV activity of various 2'- and 3'-substituted 2',3'dideoxyadenosines: A structure-activity analysis. J. Med. Chern. 1987,30, 2131-2137. (3) (a) Larder, B. A.; Darby, G.; Richman, D. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 1989, 243, 1731-1734. (b) Larder, B. A.; Kemp, S.D. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 1989,246,1155-1158. (c) Rooke, R.; Tremblay, M.; Soudeyns, H.; DeStephano, L.; Yao, X.-J.; Fanning, M.; Montaner, J. S. G.; O'Shaughnessy, M.; Gelmon, K.; Tsoukas, C.; Gill, J.; Reudy, J.; Wainberg, M. A. and the Canadian Zidovudine Multi-Centre Study Group. Isolation of drug-resistant variants of HIV-1 from patients on long-term zidovudine therapy. AIDS 1989, 3, 411-415. (d) Richman, D.; Rosenthal, A. S.; Skoog, M.; Eckner, R. J.; Chou, T.-C.; Sabo, J. P.; Merluzzi, V. J. BI-RG-587 Is active against zidovudine-resistant human immunodeficiency virus type 1 and synergistic with zidovudine. Antimicrob. Agents Chemother. 1991,35,305-308. (e) Lorentsen, K. J.; Hendrix, C. W.; Collins, J. M.; Kornhauser, D. M.; Petty, B. G.; Klecker, R. W.; Flexner, C.; Eckel, R. H.; Lietman, P. S. Dextran sulfate is poorly absorbed after oral administration. Ann. Intern. Med. 1989, 111, 561-566.

0022-2623/92/1835-1216$03.00/00 1992 American Chemical Society

Anti-HIV Water-Soluble Organopolyoxotungstate Salts

Journal of Medicinal Chemistry, 1992, Vol. 35,No.7 1217

We report here the synthesis and properties of new water soluble cesium salts of Knoth-type covalently de-

(4) General reviews of polyoxometalates: (a) Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer-Verlag: Berlin, 1983. (b) Pope, M. T.;M a e r , A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew. Chem., Int. Ed. Engl. 1991,30,34-48. (5) (a)Jasmin. C.; Chermann. J.-C.; HervC. G.; T W A.; Souchay, P.; Roy-Loustau, C.: Raybaud, N.;Sinoussi, F.; Raynaud, M. In vivo inhibition of murine leukemia and sarcoma viruses by the beteropolyanion 5-tungstc-2-antimoniate. J. Nat. Cancer Inst. 1974.53, 469-474. (h) Fischer, J.; Ricard, L.; Weiss, R The structure of the heteropolytungstate (NH&Na[NaW,,S$0,].14H20. An inorganic cryptate. J. Am. Chem. Soc. 1976,98,3050-3052. (e) Rozenhaum, W.; Dormont, D.; Spire, B.; Vilmer, E.; Gentilini, M.; Griscelli, C.; Montagnier, L.; Barre-Sinoussi. F.: Cherman. J. C. Antimoniotunestate (HPA

Fieurn 1. Structure of the ol-SiW..O.. the labeled [email protected] which corre&&d in Table 11. ~~~~~

~

~~~~~~~

~

~

lacunanr subunit showine to the-indicated signal;

(6) Several papera over the Last few years have established the

antiviral activity of silicotungstate (n-H,SiWI2O,), HPA-23, and other polyoxometalates: (a) Bonissol, C.; Kona, P.; Chermann, J. C.; Jasmin, C.; Raynaud, M. C. R. Acod. Sei., Ser. 2: 1972,274,303W3033. (b) Raynaud, M.; Chermann, J. C.; Plata, F.; Jasmin,C.; Math& G. Silicotungstates. C. R. Acad. Sci. Ser. 2 1971,272,347-348. (e) Jasmin, C.; Raybaud, N.; Chermann, J. C.; Haapala, D.; Sinoussi, F.; Loustau, C. B.; Bonissol. C.: Kona. P.: Ravnaud. M. In vitro effects of silicotungstate ok some RNA- viruses. Biomedicine 1973, 18, 319-327. (d) Ablashi, D. V.; Twardzik, D. R.; Eaaton, J. M.; Armstrong, G. R.; Luetzeler, J.; Jasmin. C.; Chermann, J. C. Effects of 5-tungsto-2-antimoniate in oncogenic DNA and RNA virus-cellsystem. Eur. J.Cancer 1977,13,713-720. (e) Tsiang, H.; Atanasiu, P.; Chermann, J. C.; Jasmin, C. Inhibition of rabies virus in vitro by the ammonium-5-tungstc-2antimoniate. J.Gen. Virol. 1978,40,665-668. (0 Bwereau, F.; Ermine, A. Effects of heteropolyanions and nucleoside analogues on rabies v i r w In vitro study of syntheses and viral production. Ann. Virol. I983,134E, 487-506. (9) Souyri-Caporale, M.; Tovey, M. G.; Ono. K.; Jasmin, C.; Cbermann, J. C. Modulation by the polyoxotungstate HPA-23 of EpsteinBarr virus early antigen expression in Raji cells treated with iododeoryuridine. J. Gen. Virol. 1984,65,831-835. (h) Larnicol, N.; Augery, Y.; Le Bousse-Kerdiles, C.; Degiorgis, V.; Chermann, J. C.; T66, A,; Jasmin, C. In vivo effect of a new mineral condensed ion (HPA 39) on murine friend leukaemia J. Gen. Virol. 1981,55, 17-23. (i) Kimberlin, R. H.; Walker, C. A. Antiviral compound effective against experimental m a pie. Lancet 1979,591-592. (i) Kimberlin, R. H.; Walker, C. A. The antiviral compound HPA-23 can prevent mapie when administered at the time of infection. Arch. Virol. 1983, 78, S18.

(7) (a) Mcskovitz, B. L.; the HPA-23 mperative study group. Clinical trial of tolerance of HPA-23 in patients with acquired immune deficiency syndrome. Antimicrob. Agents Chemother. 1988,32,1300-1303. (h) Burgard, M.; Sansonetti, P.; Vittecoq, D.; Deseamps. P.; Guetard, D.;Heraon, S.;Rozenhaum, W.; Rouzioux. C. Lack of HPA-23 antiviral activity in HIVinfected patients without AIDS. AIDS 1990.3,665-668. (8) (a) Hill, C. L.; Hartnup, M.; Faraj, M.; Weeka, M.; ProsserMcCartha, C. M.; Brown, R. B.; Schinazi, R F.; Sommadossi, J.-P. Polyoxometalates as inorganic anti-HIV-1 compounds. Structure-activitv relationshios. In Aduonees in Chemotherapy of AIDS, Pharrnorolo& and Therapeutics; Diasio, R., Sommadmoi. J.-P., Eds., 1990: pp 33-41. (b) Hill, C. L.; Weeks. M.;Schinazi, H.F. Anti-HIV-I activity, toxirity, and stability studies of representative structural families of polyoxometalates. J. Med. Chem. 1990,33, 2767-2772. (9) (a) Inouye, Y.; Take, Y.; Tokutake, Y.; Ycshida, T.; Yamamoto, A,; Yamase, T.; Nakamura, S. Inhibition of replication of human immunodeficiency virus by a heteropolyoxotungstate (PM-19). Chem. Phmm. Bull. 1990,38,285-287. (b) Take, Y.; Tohtake, Y.; Inouye, Y.; Yoshida, T.; Yamamoto, A,; Yamase, T.;Nakamura, S. Inhibition of proliferation of human immunodeficiency virus type 1by novel heteropolyoxotungstates in vitro. Antiviral Res. 1991, 15, 113-124.

A

H

Figure 2. Proposed structures for the bridgingR S @ i()*' unit. (A) Symmetry equivalent SiR groups, perpendicular to the mirror plane. (B) Symmetry inequivalent SiR groups, parallel to the mirror plane.

rivatized polyoxotungstates of formula [(RSi),O]SiWI1Omk,where R = one of three organic groups that (10) Recent representative papen, on organometallic derivatives of polyoxometalates: (a) Klemperer, W. G.; Yaganaki, A. Syn-

thesis and Structural characterization of a polyoxoanion sup ported 1,5-cycloodadieneiridium(I)complex, [(n-C&,JIr(doC&fe5TiW60,Jl*. Chem. Lett. 1989,11, xc11-2044. (b) Chae, H.K.; Klemperer, W. G.; Day, V. W. An organometallic hydroxide route to [(C,Me,)Rh],(V,O,J. Inorg. Chem. 1989,28, 1423-1424. (c) Klemperer, W. G.; Schwartz, C.; Wright, D. A. Mechanistic polyoxoanion chemistry: intramolecular rearrangements of the a-Mo30ze'-, C6HSAsMo7016'-, and (CBH5A&M~OllC anions. J. Am. Chem. Sac. 1985, 107, 69414950. (d) Besecker, C. J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R. Synthesis and structure of the [(OC)3Mn( ~ i s - N b ~ W , 0 ~and ~ ) 1[~OC3Re(cis-Nb~W,0,~~13~~ anions. Inorg. Chem. 1985,24,44-50. (e) Beseeker, C. J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R. The ([(CH,),C,IRh(cisNb,W,O,,)I)" isamera: synthesis, structure, and dynamics. J. Am. Chem. Soc. 1984,106,412544136. (0 Finke, R. G.; Drcege, M. W. Trisubstituted heteropolytungstates as soluble metal oxide analogues. 1. The preparation, characterization, and reactions of organic solvent soluble forms of Si2W,8Nbs077:, SiWm,O,'-, and the SiWgNbaOa' supported organornetallkc complex [(CJdeJRh-SiWgNb,0,ls. J. Am. Chem. Soc. 1984, 106,7274-7277. (9) Edlund, D. J.; Saxton, R. J.; Lyon, D. K.; Finke, R. G. Trisubstituted heteropolytungstates as soluble metal oxide analogues. 4. The synthesis and characterization of organic solvent-soluble (BulN)I,H,P,W,Nb60,1s3 and (Bu4N)~2W,6Nb3061 and solution spectroscopic and other evidence for the supported organometallic derivatives (Bu,N)7[(C~MeS)Rb-P,W,~Nh~O~~l and (Bu,N)d(C&fedRuP1W,sNba082].Organometallics 1988,7,1692-1704. (h) Finke, R. G.: Rapko, B.; Domaille, P. J. Trisubstituted heteropolytungstates as soluble metal oxide analogues. 2. 1,2,3-8SiWsV,0u7- supported CpTisf, (B~N),[CpTi-SiW~V,O,]. Organometallics 1986,5,17&178. (i) See also ref 4a, Chapter 7. (11) Organic esters of polyoxometalatas: (a) Day, V.

W.;Klemperer, W. G.; Scbwartz, C. Synthesis, Characterization, and interconversion of the niobtungstic acid NbzW40,&*, its anhydride, and ita alkyl/silyl esters. J. Am. Chem. Sm. 1987, 109, 6030-6044. (b) Zuhieta, J.; Chen, Q. Synthesis and structural characterization of a polyoxovanadate cwrdination complex with a hexametalate core: [(n-C,Hs),Nl,[V60,3(O,NC(CH,O),),]. Inorg. Chem. 1990,ZS. 1456-1458.

1218 Journal of Medicinal Chemistry,1992, Vol. 35,No. 7

Weeks et al.

Table I. Infrared Spectral Data Si-0-Si asymm stretch 1040 Cs4[(CH3C02CH2CH2Si)20]SiW110m C S ~ [ ( N C C H ~ C H ~ C H ~ S ~ ) ~ O ] S ~ W ~ ~ O ~1040 1050 Cad[(CH2=CHSi)20]SiWl10~ 1050 [(CH3),N+I4[(CH3C02CH2CH2Si)201SiWl1039 1050 [(CH3),N+],[ (ClCH2CH2CH2Si)20]SiWl1039 [(CH3)4N+14[(CH2=CHSi)201SiW11039 1040 1035 [(CH3)4N+]4[(CH3CH2Si)201S~W11039 1040 [(CHS)~N+II[(CH~S~)ZOIS~WI~O~~ ’Absent or very weak. All values are reported in wavenumbers (cm-l).

Si-C stretch 1 2 1230 700 1250 710 1270 700 1225 720 1265 710 700 1290 1240 720 1260 700

C-H stretch 2980 2940 29600 2970 2970 2970 2960 2960

C-H bend 1 2 1420 1440 1420 1455 1405 a 1420 1450 1415 1450 1420 1460 1410 1450 1410 1450

Table 11. la3W NMR Chemical Shifts and Line Widths” signal re1 intensities

1 2 3 4 5 6 2 2 1 2 2 2 -105.6 -110.2 -125.3 -169.9 -249.0 [(CH3)4N+14[(CH3C02CH2CHzSi)zOlSiWl1039 -103.7 1.9 1.5 1.5 1.5 1.5 1.9 -106.7 -111.0 -126.2 -171.9 -250.3 [(CH3)4N+]4[(ClCH2CH2CH2Si)20]SiW11039 -104.4 2.3 2.3 2.7 1.9 1.9 2.3 ~~C~~~~N+14~~CH2=CHSi~201SiW11039 -104.4 -106.7 -111.1 -125.5 -170.2 -247.1 1.9 1.9 1.9 1.9 1.9 2.3 -104.1 -107.6 -110.9 -126.9 -172.2 -252.3 1.5 1.1 1.5 1.6 1.1 1.1 -104.4 -108.0 -110.9 -125.8 -174.2 -255.2 1.1 1.2 1.1 0.8 1.1 1.1 a All A Y ~in , ~hertz. All shifts in ppm relative to 2.0 M Na2W04(,, external. The signal corresponds to the tungstens in Figure 1. All line widths are shown below their respective signals.

complex

impart varying degrees of hydrophobic character or other potential points of attachment to other organic and/or biological molecules. The spectroscopic properties, hydrolytic stability, anti-HIV-1 activity and toxicity in cell culture, and activity against the HIV-1 reverse transcriptase enzyme (RT) of these compounds are given. Results and Discussion Synthesis and Basic Properties of the Title Complexes. The reactions of organosilyl trichlorides, RSiCl, ~~

(12) Organosilyl derivatives of polyoxometalates: (a) Knoth, W. H. Derivatives of heteropolyanions. 1. Organic derivatives of W12SiOac, W12POa0”,and Mo12SiOM4-.J. Am. Chem. SOC. 1979,101,759-760. (b) Knoth, W. H. Derivatives of heteropolyanions. 2. Metal-metal-bondedderivatives. J. Am. Chem. SOC. 1979,101, 2211-2213. (c) Zonnevijlle, F.; Pope, M. T. Attachment of organic groups to heteropoly oxometalate anions. J. Am. Chem. SOC. 1979,101,2731-2731.(d) Klemperer, W. G.; Mainz, V. V.; Wang, R. C.; Shum, W. Organosilicates as silica surface models: the molybdenum trioxide complexes R3SiOMoO